
Page 0 of 20 Decode – D. Roio Dyne.org

Project no. 732546

 Data Privacy and

Smart Language

requirements, its

initial set of smart

rules and related

ontology

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

1

DECODE
DEcentralised Citizens Owned Data Ecosystem

D3.3 Data Privacy and Smart Language requirements, its initial set of smart rules and related ontology

Version Number: 1.0

Lead beneficiary: Dyne.org Foundation Amsterdam

Due Date: November 2017

Author(s): Denis Roio (Dyne.org)

Editors and reviewers: James Barrit (TW), George Danezis (UCL), Ludovico Boratto (Eurecat), Paulus
Meessen (RU), Mark de Villiers (TH)

Dissemination level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria, Chief Technology and Digital Innovation Officer,
Barcelona City Hall (IMI)

Date: 04/12/2017

This report is currently awaiting approval from the EC and cannot be not considered to be a final
version.

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

2

DECODE language design patterns

Denis Roio, Dyne.org

Monday, 04 December, 2017

This document explains the nature of smart rules in DECODE. It establishes guidelines and requirements
for the implementation of an execution engine for a new domain specific language. DECODE’s language
is an external DSL implemented using a Syntax-Directed Translation. Its Semantic Model leads to coarse-
grained tasks to be executed by the nodes on the peer to peer network. This is a living document and its
latest version can be found on decodeproject.eu.

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

3

Table of Contents

Table of Contents .. 3

Introduction.. 4

A new memory model ... 4

1. Blockchain languages ... 6

1.1. Bitcoin’s SCRIPT .. 6

1.2. The Ethereum VM .. 7

2. Language Security .. 10

2.1. Threats when developing a language .. 11

2.1.1. Ad-hoc notions of input validity ... 11

2.1.2. Parser differentials .. 11

2.1.3. Mixing of input recognition and processing ... 11

2.1.4. Language specification drift .. 12

3. Smart-rules language .. 13

3.1. Functional requirements .. 13

3.1.1. Deterministic ... 13

3.1.2. Trustless .. 14

3.1.3. Solid .. 14

3.2. Usability requirements.. 14

3.2.1. Simple, graphical representation .. 14

3.2.2. Test environment .. 14

3.2.3. First-class data .. 15

4. Conclusion .. 16

4.1. Syntax-Directed Translation ... 16

4.2. Satisfiability Modulo theories ... 16

5. Bibliography .. 18

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

4

Introduction
The main way to communicate with a DECODE node and operate its functions is via a
language, rather than an API. All read and write operations affecting entitlements and accessing
attributes can be expressed in a smart-rule language, which we intend to design and develop to
become a robust open standard for authorisation around personal data. The DECODE smart-
rule language will aim to naturally avoid complex constructions and define sets of
transformations that can be then easily represented with visual metaphors; in terms of
programming language it will be deterministic and side effect-free in order to better prove its
correctness.

At this stage of the research, this document is split in 3 sections:

1. a brief “state of the art” analysis, considering existing blockchain-based languages and in
particular the most popular “Solidity” supported by the Ethereum virtual machine.

2. a brief enumeration of the characteristics of this implementation and an abstraction from it,
to individuate the fundamental features a smart-rule language should have in the context of
permissionless, distributed computing.

3. a set of technical recommendations for the development of smart-rules in DECODE

This document is not speculative, but is companion to an actual implementation being
developed during the course of DECODE’s project: the “zenroom” (link).

A new memory model

In computing science the concepts of HEAP and STACK are well known and represent the
different areas of memory in which a single computer can store code, address it while executing
it and store data on which the code can read and write. With the advent of “virtual machines”
(abstract computing machines like JVM or BEAM, not virtualised operating systems) the
implementation of logic behind the HEAP and STACK became more abstract and not anymore
bound to a specific hardware architecture, therefore leaving more space for the portability of
code and creative memory management practices (like garbage collection). It is also thanks to
the use of virtual machines that high level languages became closer to the way humans think,
rather than the way machines work, benefitting creativity, awareness and auditability
(McCartney, 2002). This is an important vector of innovation for the language implementation in
DECODE, since it is desirable for this project to implement a language that is close to the way
humans think.

With the advent of distributed computing technology and blockchain implementations there is a
growing necessity to conceive the HEAP and STACK differently (Pizka and Rehn, 2002), mostly
because there are many more different conditions for memory bound to its persistence,
read/write speed, mutability, distribution etc.

https://decodeproject.github.io/lua-zenroom/

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

5

The underpinning of this document, elaborated on the term “blockchain language”, is that a new
“distributed ledger”, as collective and immutable memory space, can be addressed with code
running on different machines.

A “blockchain language” then is a language designed to interact with a “distributed ledger”. A
distributed ledger is a log of “signed events” whose authenticity can be verified by any node
being part of the network; taking part of a network can be regulated by permissions (in a so
called “permissioned blockchain”) or completely open to any participant complying to the
protocol (so called “permissionless blockchain”).

This document intentionally leaves aside considerations about the consensus algorithm of a
blockchain-based network, which are very specific issues concerning the implementation of a
blockchain and are covered by other research tasks in DECODE. While assuming an ideal
condition for fault tolerance will be provided by other research tasks in DECODE, this research
will continue focusing on the function that the distributed ledger has for the distributed
computation of a language, assuming the most interesting case of a permissionless blockchain
(an open network) since that is the most ambitious research goal for DECODE as stated for the
development of Chainspace (Al-Bassam et al., 2017).

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

6

1. Blockchain languages
This section is a brief exploration of the main language implementations working on
blockchains. Far from being an exhaustive overview, it highlights the characteristics of these
implementations and most importantly the approach followed in building virtual machines that
are based on assembler-like operation codes and languages that compile to these.

The conclusion of this section is that the blockchain languages so far existing are designed with
a product-oriented mindset, starting from the implementation of a virtual machine that can
process OP_CODEs. Higher level languages build upon it, parsing higher level syntactics and
semantics and compiling them into a series of OP_CODEs. This is the natural way most
languages like ASM, C and C++ have evolved through the years.

Arguably, a task-oriented mindset should be assumed when re-designing a new blockchain
language for DECODE: that would be the equivalent of a human-centered research and design
process. The opportunity for innovating the field lies in abandoning the OP_CODE approach
and instead build an External Domain Specific Language (Fowler, 2010) using an existing
grammar to do the Syntax-Directed Translation. The Semantic Model can be then a coarse-
grained implementation that can sync computations with blockchain-based deterministic
conditionals.

1.1. Bitcoin’s SCRIPT

Starting with the “SCRIPT” implementation in Bitcoin (Nakamoto, 2008) and ending with the
Ethereum Virtual Machine implementation, it is clear that blockchain technologies were
developed with the concept of “distributed computation” in mind. The scenario is that of a
network of computers that, at any point in time, can execute the same code on a part of the
distributed ledger and that execution would yield to the same results, making the computation
completely deterministic.

The distributed computation is made by blockchain nodes that act as sort of “virtual machines”
and process “operation codes” (OP_CODE) just like a computer does. These OP_CODES in
fact resemble assembler language operations.

In Bitcoin the so called SCRIPT implementation had an unfinished number of “OP_CODE”
commands (operation codes) at the time of its popularisation and, around the 0.6 release, the
feature was in large part deactivated to ensure the security of the network, since it was
assessed by most developers involved that the Bitcoin implementation of SCRIPT was
unfinished and represented threats to the network. Increasing the complexity of code that can
be executed by nodes of an open network is always a risk, since code can contain arbitrary
operations and commands that may lead to unpredictable results affecting both the single node
and the whole network. The shortcomings of the SCRIPT in Bitcoin were partially addressed: its
space for OP_RETURN (Roio et al., 2015) became the contested ground for payloads (Sward
et al., 2017) that could be interpreted by other VMs, as well the limit was partially circumvented
by moving more complex logic in touch with the Bitcoin blockchain (Aron, 2012), for instance
using the techniques adopted by Mastercoin (Willett, 2013) and “sidechains” as Counterparty
(Bocek and Stiller, 2018) or “pegged sidechains” (Back et al., 2014) implementations. All these

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

7

are implementations of VMs that run in parallel to Bitcoin, can “peg” their results on the main
Bitcoin blockchain and still execute more complex operations in another space, where tokens
and conditions can be created and affect different memory spaces and distributed ledgers.

Languages implemented so far for this task are capable of executing single OP_CODEs:
implementations are very much “machine-oriented” and focused on reproducing the behaviour
of a turing-complete machine (Wegner et al., 2012) capable of executing generic computing
tasks.

1.2. The Ethereum VM

The Ethereum Virtual Machine is arguably the most popular implementation of a language that
can be computed by a distributed and decentralised network of virtual machines that have all
their own HEAP and STACK, but all share the same immutable distributed ledger on which
“global” values and the code (contracts) manipulating them can be inscribed and read from.

Computation in the EVM is done using a stack-based bytecode language that is like a cross
between Bitcoin Script, traditional assembly and Lisp (the Lisp part being due to the recursive
message-sending functionality). A program in EVM is a sequence of opcodes, like this:

PUSH1 0 CALLDATALOAD SLOAD NOT PUSH1 9 JUMPI STOP JUMPDEST PUSH1 32
CALLDATALOAD PUSH1 0 CALLDATALOAD SSTORE

The purpose of this particular contract is to serve as a name registry; anyone can send a
message containing 64 bytes of data, 32 for the key and 32 for the value. The contract checks if
the key has already been registered in storage, and if it has not been then the contract registers
the value at that key. The address of the new contract is deterministic and calculated on the
sending address and the number of times that the sending account has made a transaction
before.

The EVM is a simple stack-based architecture. The word size of the machine (and thus size of
stack item) is 256-bit. This was chosen to fit a simple word-addressed byte array. The stack has
a maximum size of 1024. The machine also has an independent storage model; this is similar in
concept to the memory but rather than a byte array, it is a word- addressable word array. Unlike
memory, which is volatile, storage is nonvolatile and is maintained as part of the system state.
All locations in both storage and memory are well-defined initially as zero.

The machine does not follow the standard von Neumann architecture. Rather than storing
program code in generally-accessible memory or storage, it is stored separately in a virtual
ROM that can only be interacted with via a specific instruction. The machine can have
exceptional execution for several reasons, including stack underflows and invalid instructions.
Like the out-of-gas (OOG) exception, they do not leave state changes intact. Rather, the
machine halts immediately and reports the issue to the execution agent (either the transaction
processor or, recursively, the spawning execution environment) which will deal with it separately
(Wood, 2014).

The resulting implementation consists of a list of OP_CODEs whose execution requires a “price”
to be paid (Ethereum’s currency for the purpose is called “gas”). This way an incentive is

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

8

created for running nodes: a fee is paid to nodes for computing the contracts and confirming the
outcomes of their execution. This feature technically defines the Ethereum VM as implementing
an almost Turing-complete machine since its execution is conditioned by the availability of funds
for computation. This approach relies on the fact that each operation is executed at a constant
unit of speed.

On top of these OP_CODEs the “Solidity” language was developed as a high-level language
that compiles to OP_CODE sequences. Solidity aims to make it easier for people to program
“smart contracts”. But it is arguable that the Solidity higher-level language, widely present in all
Ethereum related literature, carries several problems: the shortcomings of its design can be
indirectly related to some well-known disasters provoked by flaws in published contracts. To
quickly summarise some flaws:

 there is no garbage collector nor manual memory management

 floating point numbers are not supported

 there are known security flaws in the compiler

 the syntax of loops and arrays is confusing

 every type is 256bits wide, including bytes

 there is no string manipulation support

 functions can return only statically sized arrays

To overcome the shortcomings and create some shared base of reliable implementations,
programmers using Solidity currently adopt “standard” token implementation libraries with basic
functions that are proven to be working reliably: known as ERC20, the standard is made for
tokens to be supported across different wallets and to be reliable.

Yet even with a recent update to a new version (ERC232) the typical code constructs that are
known to be working are full of checks (assert calls) to insure the reliability of the calling code.
For example, typical arithmetic operations need to be implemented in Solidity as:

 function times(uint a, uint b) constant private returns (uint) {
 uint c = a * b;
 assert(a == 0 || c / a == b);
 return c;
 }

 function minus(uint a, uint b) constant private returns (uint) {
 assert(b <= a);
 return a - b;
 }

 function plus(uint a, uint b) constant private returns (uint) {
 uint c = a + b;
 assert(c>=a);
 return c;
 }

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

9

It must be also noted that the EVM allows calling external contracts that can take over the
control flow and make changes to data that the calling function wasn’t expecting. This class of
bug can take many forms and all of major bugs that led to the DAO’s collapse (O’Hara, 2017)
were bugs of this sort.

Despite the shortcomings, nowadays Solidity is widely used: it is the most used “blockchain
language” supporting “smart-contracts” in the world.

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

10

2. Language Security
This chapter will quickly establish the underpinnings of a smart rule language in DECODE,
starting from its most theoretical assumptions, to conclude with specific requirements. The
chapter will concentrate on the recent corpus developed by research on language-theoretic
security" (LangSec). Here below we include a brief explanation condensed from the information
material of the LangSec.org project hosted at IEEE, which is informed by the collective
experience of the exploit development community, since exploitation is a practical exploration of
the space of unanticipated state, its prevention or containment.

“In a nutshell […] LangSec is the idea that many security issues can be avoided by applying a
standard process to input processing and protocol design: the acceptable input to a program
should be well-defined (i.e., via a grammar), as simple as possible (on the Chomsky scale of
syntactic complexity), and fully validated before use (by a dedicated parser of appropriate but
not excessive power in the Chomsky hierarchy of automata).” (Momot et al., 2016)

LangSec is a design and programming philosophy that focuses on formally correct and
verifiable input handling throughout all phases of the software development lifecycle. In doing
so, it offers a practical method of assurance of software free from broad and currently dominant
classes of bugs and vulnerabilities related to incorrect parsing and interpretation of messages
between software components (packets, protocol messages, file formats, function parameters,
etc.).

This design and programming paradigm begins with a description of valid inputs to a program
as a formal language (such as a grammar). The purpose of such a disciplined specification is to
cleanly separate the input-handling code and processing code. A LangSec-compliant design
properly transforms input-handling code into a recognizer for the input language; this recognizer
rejects non-conforming inputs and transforms conforming inputs to structured data (such as an
object or a tree structure, ready for type- or value-based pattern matching). The processing
code can then access the structured data (but not the raw inputs or parsers temporary data
artifacts) under a set of assumptions regarding the accepted inputs that are enforced by the
recognizer.

This approach leads to several advantages:

1. produce verifiable recognizers, free of typical classes of ad-hoc parsing bugs

2. produce verifiable, composable implementations of distributed systems that ensure
equivalent parsing of messages by all components and eliminate exploitable differences in
message interpretation by the elements of a distributed system

3. mitigate the common risks of ungoverned development by explicitly exposing the
processing dependencies on the parsed input.

As a design philosophy, LangSec focuses on a particular choice of verification trade-offs:
namely, correctness and computational equivalence of input processors.

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

11

2.1. Threats when developing a language

As one engages the task of developing a language there are four main threats to be identified,
well described in LangSec literature:

2.1.1. Ad-hoc notions of input validity

Formal verification of input handlers is impossible without formal language-theoretic
specification of their inputs, whether these inputs are packets, messages, protocol units, or file
formats. Therefore, design of an input-handling program must start with such a formal
specification. Once specified, the input language should be reduced to the least complex class
requiring the least computational power to recognize. Considering the tendency of hand-coded
programs to admit extra state and computation paths, computational power susceptible to
crafted inputs should be minimized whenever possible. Whenever the input language is allowed
to achieve Turing-complete power, input validation becomes undecidable; such situations
should be avoided. For example, checking ‘benignness’ of arbitrary Javascript or even an
HTML5+CSS page is a losing proposition.

2.1.2. Parser differentials

Mutual misinterpretation between system components. Verifiable composition is impossible
without the means of establishing parsing equivalence between different components of a
distributed system. Different interpretation of messages or data streams by components breaks
any assumptions that components adhere to a shared specification and so introduces
inconsistent state and unanticipated computation (Momot et al., 2016). In addition, it breaks any
security schemes in which equivalent parsing of messages is a formal requirement, such as the
contents of a certificate or of a signed message being interpreted identically, for example a
X.509 Certificate Signing Request as seen by a Certificate Authority vs. the signed certificates
as seen by the clients or signed app package contents as seen by the signature verifier versus
the same content as seen by the installer (as in the recent Android Master Key bug (Freeman,
2013)). An input language specification stronger than deterministic context-free makes the
problem of establishing parser equivalence undecidable. Such input languages and systems
whose trustworthiness is predicated on the component parser equivalence should be avoided.
Logical programming using Prolog for instance, or languages like Scheme derived from LISP, or
OCaml or Erlang would match then our requirements, but they aren’t as usable as desired. As a
partial solution to this problem the DECODE language parser (and all its components and
eventually linked shared libraries) should be self-contained and clearly versioned and hashed
and its hash verified before every computation.

2.1.3. Mixing of input recognition and processing

Mixing of basic input validation (“sanity checks”) and logically subsequent processing steps that
belong only after the integrity of the entire message has been established makes validation hard

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

12

or impossible. As a practical consequence, unanticipated reachable state exposed by such
premature optimization explodes. This explosion makes principled analysis of the possible
computation paths untenable. LangSec-style separation of the recognizer and processor code
creates a natural partitioning that allows for simpler specification-based verification and
management of code. In such designs, effective elimination of exploit-enabling implicit data
flows can be achieved by simple systems memory isolation primitives.

2.1.4. Language specification drift

A common practice encouraged by rapid software development is the unconstrained addition of
new features to software components and their corresponding reflection in input language
specifications. Expressing complex ideas in hastily written code is a hallmark of such
development practices. In essence, adding new input feature requirements to an already-
underspecified input language compounds the explosion of state and computational paths.

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

13

3. Smart-rules language

In light of our study of blockchain languages, use-cases and privacy by design guidelines in

DECODE, this section lists three functional requirements and three usability requirements
influencing the design patterns for our language.

The conclusion of this section is best described adopting once again the DSL terminology and
the patterns established by Fowler. The DECODE smart-rule language is an external DSL
implemented using a Syntax-Directed Translation. Its Semantic Model leads to coarse-grained
tasks to be executed on the network, perhaps following a Dependency Network approach.

A tempting alternative can be that of a Production Rule System, but this way we would hide too
much the internal processes in DECODE, which should be transparent and comprehensible to
anyone with a beginner knowledge of programming.

An addition to this approach can be that of equipping the language with tools for constraint
programming and even a context of Satisfiability Modulo Theories (Barrett et al., 2009) to check
satisfying Program Termination Proofs (Bonfante et al., 2001).

3.1. Functional requirements

On the basis of the design considerations made in the previous chapters, here are listed the
main requirements identified for the implementation of a smart-rule language in DECODE.

3.1.1. Deterministic

This is an important feature common to all blockchain language implementations in use: that the
language limits its operations to access only a fully deterministic environment. This means that,
in any possible moment in time, any node can join the network and start computing contracts
leading to results that are verifiable and confirmed by other nodes.

In other words, the environment accessed by the language is available to all nodes, there aren’t
variables that are “private” to a single node and may change the result by a change of their
value.

The deterministic trait must be common also to the DECODE blockchain language for smart-
rules, since it verifies a basic and necessary condition for blockchain based computing: that
other nodes can verify and sign the results, reproducing them in their own execution
environment. The computation leads to the same results that can be determined in different
conditions, because all nodes have access to the same information necessary to the
computation.

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

14

3.1.2. Trustless

We define as trustless a language (also known as untrusted language) that allows the virtual
machine to fence its execution, as in a “sandbox” or isolated execution environment, blocking
access to unauthorised parts of the system.

A language that can be run on a “permissionless” (public) blockchain is a language that can be
interpreted by any node. In any moment a new node may claim the capacity to do so. This
means that its parser, semantics and actions on the system must be designed to handle
unknowns: any deviance and malevolent code should not affect the system.

3.1.3. Solid

The language and the semantic model adopted by DECODE need to be capable of sandboxing
untrusted code and providing security partitioning. Any process of execution should be strictly
limited in what it can do. Any function or data passed to a node cannot break the sandbox in
ways the participants did not intend.

For sensitive data structures, the use of proxy objects must be adopted as a security guard, only
allowing the sandbox to call pre-approved methods and access pre-approved data.

3.2. Usability requirements

Here are listed the requirements emerging from an analysis of priorities about the human-
machine interaction scenarios emerging from DECODE.

3.2.1. Simple, graphical representation

A visual programming environment (VPE) facilitates participants to directly re-configure the rules
governing their data: this is highly desirable in DECODE, where such code must be transparent
and understandable. The event-based blocks graphical metaphor seems the most desirable for
the sort of processing in DECODE: it involves letting participants manipulate a series of
graphical elements (blocks) that snap onto one another and that execute sequential programs.

3.2.2. Test environment

A reliable test environment is a fundamental component for a language deployed in mission
critical situations, but also for a language dealing with the distribution of its computation and
wide adoption by communities of developers in different fields. Languages that improve the
developer’s experience when writing and testing code directly impact the quality of the code
produced.

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

15

For DECODE’s language implementation it is necessary to have a testing environment
designed into it and from the start to facilitate its growth at the same pace of the language itself.
Also, a more advanced framework for testing that goes beyond the simple usage of asserts is
desirable: while being very ambitious, the implementation of solid proof of termination
mechanisms that are internal to the language should be contemplated on the long term.

3.2.3. First-class data

This is a long-term requirement that should take into consideration the trade-off between
feasibility, security and convenience. A data type is considered first-class in a programming
language if instances of that type can be

 the value of a variable

 a member of an aggregate (array, list, etc.)

 an argument (input) to a procedure

 the value returned by a procedure

 used without having a name (being the value of a variable)

For example, numbers are first-class in every language. Text strings are first-class in many
languages, but not in C, in which the relevant first-class type is “pointer to a character”. In
DECODE it is desirable to establish data structures containing attributes and entitlements as
first-class data to be seamlessly processed by the language.

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

16

4. Conclusion
This document is a very dense representation of language patterns and requirements to be
adopted while implementing DECODE’s language. Its feasibility has been verified with an
extensive survey on available tools that can be used to implement this execution engine and are
compatible with the DECODE licensing model.

This conclusion provides a brief list of components that can be used.

4.1. Syntax-Directed Translation

Lua is an interpreted, cross-platform, embeddable, performant and low-footprint language. Lua’s
popularity is on the rise in the last couple of years (Costin, 2017). Simple design and efficient
usage of resources combined with its performance make it attractive for production web
applications, even to big organizations such as Wikipedia, CloudFlare and GitHub. In addition to
this, Lua is one of the preferred choices for programming embedded and IoT devices. This
context allows an assumption of a large and growing Lua codebase yet to be assessed. This
growing Lua codebase could be potentially driving production servers and an extremely large
number of devices, some perhaps with mission-critical function for example in automotive or
home-automation domains.

Lua stability has been extensively tested through a number of public applications including the
adoption by the gaming industry for untrusted language processing in “World of Warcraft”
scripting. It is ideal for implementing an external DSL using C or Python as a host language.

Lua is also tooled with a working VPE implementation for code visualisation in BLOCKS,
allowing the project to jump-start into an early phase of prototyping DECODE smart-rules in a
visual way and directly involving pilot participants.

4.2. Satisfiability Modulo theories

Satisfiability Modulo theories (SMT) is an area of automated deduction that studies methods for
checking the satisfiability of first-order formulas with respect to some logical theory of interest
(Barrett et al., 2009). It differs from general automated deduction in that the background theory
need not be finitely or even first-order axiomatizable, and specialized inference methods are
used for each theory. By being theory-specific and restricting their language to certain classes
of formulas (such as, typically but not exclusively, quantifier-free formulas), these specialized
methods can be implemented in solvers that are more efficient in practice than general-purpose
theorem provers.

While SMT techniques have been traditionally used to support deductive software verification,
they are now finding applications in other areas of computer science such as planning, model
checking and automated test generation. Typical theories of interest in these applications

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

17

include formalizations of arithmetic, arrays, bit vectors, algebraic datatypes, equality with
uninterpreted functions, and various combinations of these.

Constraint-satisfaction is crucial to software and hardware verification and static program
analysis (De Moura and Bjørner, 2011) among the other possible applications.

DECODE will benefit from including SMT capabilities into the design at an early stage: even if
not immediately exploited, their inclusion will keep the horizons for language development open
while permitting its application in mission critical roles. The best implementation to start from in
this experimentation seems to be the free and open source software “Yices SMT Solver”
published by the Computer Science Laboratory of the Stanford Research Institute (SRI
International).

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

18

5. Bibliography
Al-Bassam, M. et al. (2017) Chainspace: A sharded smart contracts platform. arXiv preprint
arXiv:1708.03778.

Aron, J. (2012) BitCoin software finds new life. New Scientist. 213 (2847), 20.

Back, A. et al. (2014) Enabling blockchain innovations with pegged sidechains. URL:
http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-
sidechains.

Barrett, C. W. et al. (2009) Satisfiability modulo theories. Handbook of satisfiability. 185825–
885.

Bocek, T. & Stiller, B. (2018) ‘Smart contracts–Blockchains in the wings’, in Digital marketplaces
unleashed. Springer. pp. 169–184.

Bonfante, G. et al. (2001) Algorithms with polynomial interpretation termination proof. Journal of
Functional Programming. 11 (1), 33–53.

Costin, A. (2017) Lua code: Security overview and practical approaches to static analysis.

De Moura, L. & Bjørner, N. (2011) Satisfiability modulo theories: Introduction and applications.
Communications of the ACM. 54 (9), 69–77.

Fowler, M. (2010) Domain-specific languages. Pearson Education.

Freeman, J. (2013) Exploit & fix android master key"; android bug superior to master key; yet
another android master key bug.

McCartney, J. (2002) Rethinking the computer music language: SuperCollider. Computer Music
Journal. 26 (4), 61–68.

Momot, F. et al. (2016) ‘The seven turrets of babel: A taxonomy of langsec errors and how to
expunge them’, in IEEE cybersecurity development, secdev 2016, boston, ma, usa, november
3-4, 2016. [Online]. 2016 IEEE. pp. 45–52. [online]. Available from:
https://doi.org/10.1109/SecDev.2016.019.

Nakamoto, S. (2008) Bitcoin: A peer-to-peer electronic cash system. Consulted. 12012.

O’Hara, K. (2017) Smart contracts-dumb idea. IEEE Internet Computing. 21 (2), 97–101.

Pizka, M. & Rehn, C. (2002) ‘Heaps and stacks in distributed shared memory’, in 16th
international parallel and distributed processing symposium (IPDPS 2002), 15-19 april 2002, fort
lauderdale, fl, usa, cd-rom/abstracts proceedings. [Online]. 2002 IEEE Computer Society.
[online]. Available from: https://doi.org/10.1109/IPDPS.2002.1016494.

Roio, D. et al. (2015) Design of social digital currency.

https://doi.org/10.1109/SecDev.2016.019
https://doi.org/10.1109/IPDPS.2002.1016494

H2020–ICT-2016-1 DECODE D3.3 Data Privacy and Smart Language
requirements, its initial set of smart rules
and related ontology

19

Sward, A. et al. (2017) Data insertion in bitcoin’s blockchain.

Wegner, P. et al. (2012) ‘Computational completeness of interaction machines and turing
machines’, in Andrei Voronkov (ed.) Turing-100 - the alan turing centenary, manchester, uk,
june 22-25, 2012. EPiC series in computing. 2012 EasyChair. pp. 405–414. [online]. Available
from: http://www.easychair.org/publications/paper/106520.

Willett, J. R. (2013) MasterCoin Complete Specification. [online]. Available from:
{https://github.com/mastercoin-MSC/spec}.

Wood, G. (2014) Ethereum: A secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper. 151.

http://www.easychair.org/publications/paper/106520

