
Page 0 of 20  Decode – D. Roio Dyne.org 

  

 

                          

 

 

 

 

Project no. 732546 

 
  Data Privacy and 

Smart Language 

requirements, its 

initial set of smart 

rules and related 

ontology 
 



 

 

H2020–ICT-2016-1                           DECODE         D3.3 Data Privacy and Smart Language        
requirements, its initial set of smart rules 
and related ontology 

1 

DECODE 
DEcentralised Citizens Owned Data Ecosystem 

 
D3.3 Data Privacy and Smart Language requirements, its initial set of smart rules and related ontology 

Version Number: 1.0 

Lead beneficiary: Dyne.org Foundation Amsterdam 

Due Date: November 2017 

Author(s): Denis Roio (Dyne.org) 

Editors and reviewers: James Barrit (TW), George Danezis (UCL), Ludovico Boratto (Eurecat), Paulus 
Meessen (RU), Mark de Villiers (TH) 

 

Dissemination level: 

PU Public    X 

PP Restricted to other programme participants (including the Commission Services)   

RE Restricted to a group specified by the consortium (including the Commission Services)   

CO Confidential, only for members of the consortium (including the Commission Services)  

 

 

 

 

 

 

 

 

 

Approved by: Francesca Bria, Chief Technology and Digital Innovation Officer, 
Barcelona City Hall (IMI) 

Date: 04/12/2017 

 

This report is currently awaiting approval from the EC and cannot be not considered to be a final 
version. 



 

 

H2020–ICT-2016-1                           DECODE         D3.3 Data Privacy and Smart Language        
requirements, its initial set of smart rules 
and related ontology 

2 

DECODE language design patterns 
 

Denis Roio, Dyne.org 

 

Monday, 04 December, 2017 

 

This document explains the nature of smart rules in DECODE. It establishes guidelines and requirements 
for the implementation of an execution engine for a new domain specific language. DECODE’s language 
is an external DSL implemented using a Syntax-Directed Translation. Its Semantic Model leads to coarse-
grained tasks to be executed by the nodes on the peer to peer network. This is a living document and its 
latest version can be found on decodeproject.eu. 
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Introduction 
The main way to communicate with a DECODE node and operate its functions is via a 
language, rather than an API. All read and write operations affecting entitlements and accessing 
attributes can be expressed in a smart-rule language, which we intend to design and develop to 
become a robust open standard for authorisation around personal data. The DECODE smart-
rule language will aim to naturally avoid complex constructions and define sets of 
transformations that can be then easily represented with visual metaphors; in terms of 
programming language it will be deterministic and side effect-free in order to better prove its 
correctness. 

At this stage of the research, this document is split in 3 sections: 

1. a brief “state of the art” analysis, considering existing blockchain-based languages and in 
particular the most popular “Solidity” supported by the Ethereum virtual machine. 

2. a brief enumeration of the characteristics of this implementation and an abstraction from it, 
to individuate the fundamental features a smart-rule language should have in the context of 
permissionless, distributed computing. 

3. a set of technical recommendations for the development of smart-rules in DECODE 

This document is not speculative, but is companion to an actual implementation being 
developed during the course of DECODE’s project: the “zenroom” (link). 

 

A new memory model 

In computing science the concepts of HEAP and STACK are well known and represent the 
different areas of memory in which a single computer can store code, address it while executing 
it and store data on which the code can read and write. With the advent of “virtual machines” 
(abstract computing machines like JVM or BEAM, not virtualised operating systems) the 
implementation of logic behind the HEAP and STACK became more abstract and not anymore 
bound to a specific hardware architecture, therefore leaving more space for the portability of 
code and creative memory management practices (like garbage collection). It is also thanks to 
the use of virtual machines that high level languages became closer to the way humans think, 
rather than the way machines work, benefitting creativity, awareness and auditability 
(McCartney, 2002). This is an important vector of innovation for the language implementation in 
DECODE, since it is desirable for this project to implement a language that is close to the way 
humans think. 

With the advent of distributed computing technology and blockchain implementations there is a 
growing necessity to conceive the HEAP and STACK differently (Pizka and Rehn, 2002), mostly 
because there are many more different conditions for memory bound to its persistence, 
read/write speed, mutability, distribution etc. 

 

https://decodeproject.github.io/lua-zenroom/
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The underpinning of this document, elaborated on the term “blockchain language”, is that a new 
“distributed ledger”, as collective and immutable memory space, can be addressed with code 
running on different machines. 

A “blockchain language” then is a language designed to interact with a “distributed ledger”. A 
distributed ledger is a log of “signed events” whose authenticity can be verified by any node 
being part of the network; taking part of a network can be regulated by permissions (in a so 
called “permissioned blockchain”) or completely open to any participant complying to the 
protocol (so called “permissionless blockchain”). 

This document intentionally leaves aside considerations about the consensus algorithm of a 
blockchain-based network, which are very specific issues concerning the implementation of a 
blockchain and are covered by other research tasks in DECODE. While assuming an ideal 
condition for fault tolerance will be provided by other research tasks in DECODE, this research 
will continue focusing on the function that the distributed ledger has for the distributed 
computation of a language, assuming the most interesting case of a permissionless blockchain 
(an open network) since that is the most ambitious research goal for DECODE as stated for the 
development of Chainspace (Al-Bassam et al., 2017). 
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1. Blockchain languages 
This section is a brief exploration of the main language implementations working on 
blockchains. Far from being an exhaustive overview, it highlights the characteristics of these 
implementations and most importantly the approach followed in building virtual machines that 
are based on assembler-like operation codes and languages that compile to these. 

The conclusion of this section is that the blockchain languages so far existing are designed with 
a product-oriented mindset, starting from the implementation of a virtual machine that can 
process OP_CODEs. Higher level languages build upon it, parsing higher level syntactics and 
semantics and compiling them into a series of OP_CODEs. This is the natural way most 
languages like ASM, C and C++ have evolved through the years. 

Arguably, a task-oriented mindset should be assumed when re-designing a new blockchain 
language for DECODE: that would be the equivalent of a human-centered research and design 
process. The opportunity for innovating the field lies in abandoning the OP_CODE approach 
and instead build an External Domain Specific Language (Fowler, 2010) using an existing 
grammar to do the Syntax-Directed Translation. The Semantic Model can be then a coarse-
grained implementation that can sync computations with blockchain-based deterministic 
conditionals. 

 

1.1. Bitcoin’s SCRIPT 

Starting with the “SCRIPT” implementation in Bitcoin (Nakamoto, 2008) and ending with the 
Ethereum Virtual Machine implementation, it is clear that blockchain technologies were 
developed with the concept of “distributed computation” in mind. The scenario is that of a 
network of computers that, at any point in time, can execute the same code on a part of the 
distributed ledger and that execution would yield to the same results, making the computation 
completely deterministic. 

The distributed computation is made by blockchain nodes that act as sort of “virtual machines” 
and process “operation codes” (OP_CODE) just like a computer does. These OP_CODES in 
fact resemble assembler language operations. 

In Bitcoin the so called SCRIPT implementation had an unfinished number of “OP_CODE” 
commands (operation codes) at the time of its popularisation and, around the 0.6 release, the 
feature was in large part deactivated to ensure the security of the network, since it was 
assessed by most developers involved that the Bitcoin implementation of SCRIPT was 
unfinished and represented threats to the network. Increasing the complexity of code that can 
be executed by nodes of an open network is always a risk, since code can contain arbitrary 
operations and commands that may lead to unpredictable results affecting both the single node 
and the whole network. The shortcomings of the SCRIPT in Bitcoin were partially addressed: its 
space for OP_RETURN (Roio et al., 2015) became the contested ground for payloads (Sward 
et al., 2017) that could be interpreted by other VMs, as well the limit was partially circumvented 
by moving more complex logic in touch with the Bitcoin blockchain (Aron, 2012), for instance 
using the techniques adopted by Mastercoin (Willett, 2013) and “sidechains” as Counterparty 
(Bocek and Stiller, 2018) or “pegged sidechains” (Back et al., 2014) implementations. All these 
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are implementations of VMs that run in parallel to Bitcoin, can “peg” their results on the main 
Bitcoin blockchain and still execute more complex operations in another space, where tokens 
and conditions can be created and affect different memory spaces and distributed ledgers. 

Languages implemented so far for this task are capable of executing single OP_CODEs: 
implementations are very much “machine-oriented” and focused on reproducing the behaviour 
of a turing-complete machine (Wegner et al., 2012) capable of executing generic computing 
tasks. 

 

1.2. The Ethereum VM 

The Ethereum Virtual Machine is arguably the most popular implementation of a language that 
can be computed by a distributed and decentralised network of virtual machines that have all 
their own HEAP and STACK, but all share the same immutable distributed ledger on which 
“global” values and the code (contracts) manipulating them can be inscribed and read from. 

Computation in the EVM is done using a stack-based bytecode language that is like a cross 
between Bitcoin Script, traditional assembly and Lisp (the Lisp part being due to the recursive 
message-sending functionality). A program in EVM is a sequence of opcodes, like this: 

PUSH1 0 CALLDATALOAD SLOAD NOT PUSH1 9 JUMPI STOP JUMPDEST PUSH1 32 
CALLDATALOAD PUSH1 0 CALLDATALOAD SSTORE 

The purpose of this particular contract is to serve as a name registry; anyone can send a 
message containing 64 bytes of data, 32 for the key and 32 for the value. The contract checks if 
the key has already been registered in storage, and if it has not been then the contract registers 
the value at that key. The address of the new contract is deterministic and calculated on the 
sending address and the number of times that the sending account has made a transaction 
before. 

The EVM is a simple stack-based architecture. The word size of the machine (and thus size of 
stack item) is 256-bit. This was chosen to fit a simple word-addressed byte array. The stack has 
a maximum size of 1024. The machine also has an independent storage model; this is similar in 
concept to the memory but rather than a byte array, it is a word- addressable word array. Unlike 
memory, which is volatile, storage is nonvolatile and is maintained as part of the system state. 
All locations in both storage and memory are well-defined initially as zero. 

The machine does not follow the standard von Neumann architecture. Rather than storing 
program code in generally-accessible memory or storage, it is stored separately in a virtual 
ROM that can only be interacted with via a specific instruction. The machine can have 
exceptional execution for several reasons, including stack underflows and invalid instructions. 
Like the out-of-gas (OOG) exception, they do not leave state changes intact. Rather, the 
machine halts immediately and reports the issue to the execution agent (either the transaction 
processor or, recursively, the spawning execution environment) which will deal with it separately 
(Wood, 2014). 

The resulting implementation consists of a list of OP_CODEs whose execution requires a “price” 
to be paid (Ethereum’s currency for the purpose is called “gas”). This way an incentive is 
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created for running nodes: a fee is paid to nodes for computing the contracts and confirming the 
outcomes of their execution. This feature technically defines the Ethereum VM as implementing 
an almost Turing-complete machine since its execution is conditioned by the availability of funds 
for computation. This approach relies on the fact that each operation is executed at a constant 
unit of speed. 

On top of these OP_CODEs the “Solidity” language was developed as a high-level language 
that compiles to OP_CODE sequences. Solidity aims to make it easier for people to program 
“smart contracts”. But it is arguable that the Solidity higher-level language, widely present in all 
Ethereum related literature, carries several problems: the shortcomings of its design can be 
indirectly related to some well-known disasters provoked by flaws in published contracts. To 
quickly summarise some flaws: 

 there is no garbage collector nor manual memory management 

 floating point numbers are not supported 

 there are known security flaws in the compiler 

 the syntax of loops and arrays is confusing 

 every type is 256bits wide, including bytes 

 there is no string manipulation support 

 functions can return only statically sized arrays 

To overcome the shortcomings and create some shared base of reliable implementations, 
programmers using Solidity currently adopt “standard” token implementation libraries with basic 
functions that are proven to be working reliably: known as ERC20, the standard is made for 
tokens to be supported across different wallets and to be reliable.  

Yet even with a recent update to a new version (ERC232) the typical code constructs that are 
known to be working are full of checks (assert calls) to insure the reliability of the calling code. 
For example, typical arithmetic operations need to be implemented in Solidity as: 

 
  function times(uint a, uint b) constant private returns (uint) { 
    uint c = a * b; 
    assert(a == 0 || c / a == b); 
    return c; 
  } 
 
  function minus(uint a, uint b) constant private returns (uint) { 
    assert(b <= a); 
    return a - b; 
  } 
 
  function plus(uint a, uint b) constant private returns (uint) { 
    uint c = a + b; 
    assert(c>=a); 
    return c; 
  } 
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It must be also noted that the EVM allows calling external contracts that can take over the 
control flow and make changes to data that the calling function wasn’t expecting. This class of 
bug can take many forms and all of major bugs that led to the DAO’s collapse (O’Hara, 2017) 
were bugs of this sort. 

Despite the shortcomings, nowadays Solidity is widely used: it is the most used “blockchain 
language” supporting “smart-contracts” in the world. 
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2. Language Security 
This chapter will quickly establish the underpinnings of a smart rule language in DECODE, 
starting from its most theoretical assumptions, to conclude with specific requirements. The 
chapter will concentrate on the recent corpus developed by research on language-theoretic 
security" (LangSec). Here below we include a brief explanation condensed from the information 
material of the LangSec.org project hosted at IEEE, which is informed by the collective 
experience of the exploit development community, since exploitation is a practical exploration of 
the space of unanticipated state, its prevention or containment. 

“In a nutshell […] LangSec is the idea that many security issues can be avoided by applying a 
standard process to input processing and protocol design: the acceptable input to a program 
should be well-defined (i.e., via a grammar), as simple as possible (on the Chomsky scale of 
syntactic complexity), and fully validated before use (by a dedicated parser of appropriate but 
not excessive power in the Chomsky hierarchy of automata).” (Momot et al., 2016) 

LangSec is a design and programming philosophy that focuses on formally correct and 
verifiable input handling throughout all phases of the software development lifecycle. In doing 
so, it offers a practical method of assurance of software free from broad and currently dominant 
classes of bugs and vulnerabilities related to incorrect parsing and interpretation of messages 
between software components (packets, protocol messages, file formats, function parameters, 
etc.). 

This design and programming paradigm begins with a description of valid inputs to a program 
as a formal language (such as a grammar). The purpose of such a disciplined specification is to 
cleanly separate the input-handling code and processing code. A LangSec-compliant design 
properly transforms input-handling code into a recognizer for the input language; this recognizer 
rejects non-conforming inputs and transforms conforming inputs to structured data (such as an 
object or a tree structure, ready for type- or value-based pattern matching). The processing 
code can then access the structured data (but not the raw inputs or parsers temporary data 
artifacts) under a set of assumptions regarding the accepted inputs that are enforced by the 
recognizer. 

This approach leads to several advantages: 

1. produce verifiable recognizers, free of typical classes of ad-hoc parsing bugs 

2. produce verifiable, composable implementations of distributed systems that ensure 
equivalent parsing of messages by all components and eliminate exploitable differences in 
message interpretation by the elements of a distributed system 

3. mitigate the common risks of ungoverned development by explicitly exposing the 
processing dependencies on the parsed input. 

As a design philosophy, LangSec focuses on a particular choice of verification trade-offs: 
namely, correctness and computational equivalence of input processors. 
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2.1. Threats when developing a language 

As one engages the task of developing a language there are four main threats to be identified, 
well described in LangSec literature: 

 

2.1.1. Ad-hoc notions of input validity 

Formal verification of input handlers is impossible without formal language-theoretic 
specification of their inputs, whether these inputs are packets, messages, protocol units, or file 
formats. Therefore, design of an input-handling program must start with such a formal 
specification. Once specified, the input language should be reduced to the least complex class 
requiring the least computational power to recognize. Considering the tendency of hand-coded 
programs to admit extra state and computation paths, computational power susceptible to 
crafted inputs should be minimized whenever possible. Whenever the input language is allowed 
to achieve Turing-complete power, input validation becomes undecidable; such situations 
should be avoided. For example, checking ‘benignness’ of arbitrary Javascript or even an 
HTML5+CSS page is a losing proposition. 

 

2.1.2. Parser differentials 

Mutual misinterpretation between system components. Verifiable composition is impossible 
without the means of establishing parsing equivalence between different components of a 
distributed system. Different interpretation of messages or data streams by components breaks 
any assumptions that components adhere to a shared specification and so introduces 
inconsistent state and unanticipated computation (Momot et al., 2016). In addition, it breaks any 
security schemes in which equivalent parsing of messages is a formal requirement, such as the 
contents of a certificate or of a signed message being interpreted identically, for example a 
X.509 Certificate Signing Request as seen by a Certificate Authority vs. the signed certificates 
as seen by the clients or signed app package contents as seen by the signature verifier versus 
the same content as seen by the installer (as in the recent Android Master Key bug (Freeman, 
2013)). An input language specification stronger than deterministic context-free makes the 
problem of establishing parser equivalence undecidable. Such input languages and systems 
whose trustworthiness is predicated on the component parser equivalence should be avoided. 
Logical programming using Prolog for instance, or languages like Scheme derived from LISP, or 
OCaml or Erlang would match then our requirements, but they aren’t as usable as desired. As a 
partial solution to this problem the DECODE language parser (and all its components and 
eventually linked shared libraries) should be self-contained and clearly versioned and hashed 
and its hash verified before every computation. 

 

2.1.3. Mixing of input recognition and processing 

Mixing of basic input validation (“sanity checks”) and logically subsequent processing steps that 
belong only after the integrity of the entire message has been established makes validation hard 
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or impossible. As a practical consequence, unanticipated reachable state exposed by such 
premature optimization explodes. This explosion makes principled analysis of the possible 
computation paths untenable. LangSec-style separation of the recognizer and processor code 
creates a natural partitioning that allows for simpler specification-based verification and 
management of code. In such designs, effective elimination of exploit-enabling implicit data 
flows can be achieved by simple systems memory isolation primitives. 

 

2.1.4. Language specification drift 

A common practice encouraged by rapid software development is the unconstrained addition of 
new features to software components and their corresponding reflection in input language 
specifications. Expressing complex ideas in hastily written code is a hallmark of such 
development practices. In essence, adding new input feature requirements to an already-
underspecified input language compounds the explosion of state and computational paths. 
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3. Smart-rules language 

In light of our study of blockchain languages, use-cases and privacy by design guidelines in 

DECODE, this section lists three functional requirements and three usability requirements 
influencing the design patterns for our language. 

The conclusion of this section is best described adopting once again the DSL terminology and 
the patterns established by Fowler. The DECODE smart-rule language is an external DSL 
implemented using a Syntax-Directed Translation. Its Semantic Model leads to coarse-grained 
tasks to be executed on the network, perhaps following a Dependency Network approach. 

A tempting alternative can be that of a Production Rule System, but this way we would hide too 
much the internal processes in DECODE, which should be transparent and comprehensible to 
anyone with a beginner knowledge of programming. 

An addition to this approach can be that of equipping the language with tools for constraint 
programming and even a context of Satisfiability Modulo Theories (Barrett et al., 2009) to check 
satisfying Program Termination Proofs (Bonfante et al., 2001). 

 

3.1. Functional requirements 

On the basis of the design considerations made in the previous chapters, here are listed the 
main requirements identified for the implementation of a smart-rule language in DECODE. 

 

3.1.1. Deterministic 

This is an important feature common to all blockchain language implementations in use: that the 
language limits its operations to access only a fully deterministic environment. This means that, 
in any possible moment in time, any node can join the network and start computing contracts 
leading to results that are verifiable and confirmed by other nodes. 

In other words, the environment accessed by the language is available to all nodes, there aren’t 
variables that are “private” to a single node and may change the result by a change of their 
value. 

The deterministic trait must be common also to the DECODE blockchain language for smart-
rules, since it verifies a basic and necessary condition for blockchain based computing: that 
other nodes can verify and sign the results, reproducing them in their own execution 
environment. The computation leads to the same results that can be determined in different 
conditions, because all nodes have access to the same information necessary to the 
computation. 
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3.1.2. Trustless 

We define as trustless a language (also known as untrusted language) that allows the virtual 
machine to fence its execution, as in a “sandbox” or isolated execution environment, blocking 
access to unauthorised parts of the system. 

A language that can be run on a “permissionless” (public) blockchain is a language that can be 
interpreted by any node. In any moment a new node may claim the capacity to do so. This 
means that its parser, semantics and actions on the system must be designed to handle 
unknowns: any deviance and malevolent code should not affect the system. 

 

3.1.3. Solid 

The language and the semantic model adopted by DECODE need to be capable of sandboxing 
untrusted code and providing security partitioning. Any process of execution should be strictly 
limited in what it can do. Any function or data passed to a node cannot break the sandbox in 
ways the participants did not intend. 

For sensitive data structures, the use of proxy objects must be adopted as a security guard, only 
allowing the sandbox to call pre-approved methods and access pre-approved data. 

 

3.2. Usability requirements 

Here are listed the requirements emerging from an analysis of priorities about the human-
machine interaction scenarios emerging from DECODE. 

 

3.2.1. Simple, graphical representation 

A visual programming environment (VPE) facilitates participants to directly re-configure the rules 
governing their data: this is highly desirable in DECODE, where such code must be transparent 
and understandable. The event-based blocks graphical metaphor seems the most desirable for 
the sort of processing in DECODE: it involves letting participants manipulate a series of 
graphical elements (blocks) that snap onto one another and that execute sequential programs. 

 

3.2.2. Test environment 

A reliable test environment is a fundamental component for a language deployed in mission 
critical situations, but also for a language dealing with the distribution of its computation and 
wide adoption by communities of developers in different fields. Languages that improve the 
developer’s experience when writing and testing code directly impact the quality of the code 
produced. 
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For DECODE’s language implementation it is necessary to have a testing environment 
designed into it and from the start to facilitate its growth at the same pace of the language itself. 
Also, a more advanced framework for testing that goes beyond the simple usage of asserts is 
desirable: while being very ambitious, the implementation of solid proof of termination 
mechanisms that are internal to the language should be contemplated on the long term. 

 

3.2.3. First-class data 

This is a long-term requirement that should take into consideration the trade-off between 
feasibility, security and convenience. A data type is considered first-class in a programming 
language if instances of that type can be 

 the value of a variable 

 a member of an aggregate (array, list, etc.) 

 an argument (input) to a procedure 

 the value returned by a procedure 

 used without having a name (being the value of a variable) 

For example, numbers are first-class in every language. Text strings are first-class in many 
languages, but not in C, in which the relevant first-class type is “pointer to a character”. In 
DECODE it is desirable to establish data structures containing attributes and entitlements as 
first-class data to be seamlessly processed by the language. 
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4. Conclusion 
This document is a very dense representation of language patterns and requirements to be 
adopted while implementing DECODE’s language. Its feasibility has been verified with an 
extensive survey on available tools that can be used to implement this execution engine and are 
compatible with the DECODE licensing model. 

This conclusion provides a brief list of components that can be used. 

 

4.1. Syntax-Directed Translation 

Lua is an interpreted, cross-platform, embeddable, performant and low-footprint language. Lua’s 
popularity is on the rise in the last couple of years (Costin, 2017). Simple design and efficient 
usage of resources combined with its performance make it attractive for production web 
applications, even to big organizations such as Wikipedia, CloudFlare and GitHub. In addition to 
this, Lua is one of the preferred choices for programming embedded and IoT devices. This 
context allows an assumption of a large and growing Lua codebase yet to be assessed. This 
growing Lua codebase could be potentially driving production servers and an extremely large 
number of devices, some perhaps with mission-critical function for example in automotive or 
home-automation domains. 

Lua stability has been extensively tested through a number of public applications including the 
adoption by the gaming industry for untrusted language processing in “World of Warcraft” 
scripting. It is ideal for implementing an external DSL using C or Python as a host language. 

Lua is also tooled with a working VPE implementation for code visualisation in BLOCKS, 
allowing the project to jump-start into an early phase of prototyping DECODE smart-rules in a 
visual way and directly involving pilot participants. 

 

4.2. Satisfiability Modulo theories 

Satisfiability Modulo theories (SMT) is an area of automated deduction that studies methods for 
checking the satisfiability of first-order formulas with respect to some logical theory of interest 
(Barrett et al., 2009). It differs from general automated deduction in that the background theory 
need not be finitely or even first-order axiomatizable, and specialized inference methods are 
used for each theory. By being theory-specific and restricting their language to certain classes 
of formulas (such as, typically but not exclusively, quantifier-free formulas), these specialized 
methods can be implemented in solvers that are more efficient in practice than general-purpose 
theorem provers. 

While SMT techniques have been traditionally used to support deductive software verification, 
they are now finding applications in other areas of computer science such as planning, model 
checking and automated test generation. Typical theories of interest in these applications 
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include formalizations of arithmetic, arrays, bit vectors, algebraic datatypes, equality with 
uninterpreted functions, and various combinations of these. 

Constraint-satisfaction is crucial to software and hardware verification and static program 
analysis (De Moura and Bjørner, 2011) among the other possible applications. 

DECODE will benefit from including SMT capabilities into the design at an early stage: even if 
not immediately exploited, their inclusion will keep the horizons for language development open 
while permitting its application in mission critical roles. The best implementation to start from in 
this experimentation seems to be the free and open source software “Yices SMT Solver” 
published by the Computer Science Laboratory of the Stanford Research Institute (SRI 
International). 
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