ZENROOM TECHNICAL WHITEPAPER

ARCHITECTURE, SECURITY, AND IMPLEMENTATION

Denis Roio
Dyne.org

Puria Nafisi Azizi
Dyne.org

Andrea D’Intino
Forkbomb B.V.

November 15, 2025

ABSTRACT

Zencode is a human-readable domain-specific language (DSL) for cryptographic operations, executed
by the Zenroom Virtual Machine in deterministic, isolated environments. Designed for zero-
trust architectures, Zencode enables CTOs and CISOs to implement privacy-by-design principles
with verifiable, auditable smart contracts that non-technical stakeholders can comprehend. This
whitepaper presents the evolution from the 2019 proof-of-concept to the current production-grade
implementation, detailing architectural decisions, security guarantees, and real-world deployments
in digital identity, verifiable credentials, and blockchain integration.

1 Executive Summary

Most organizations today face a critical contradiction in
their security infrastructure. While threat models evolve
toward zero-trust architectures and cryptographic agility
becomes mandatory for compliance, the tools available
to implement these principles remain locked in patterns
inherited from product-centric development more than
20 years ago. Smart contracts in production systems are
written in languages designed for compilers and virtual
machines, not for human comprehension or audit. The
gap between what security officers need to verify and
what developers can demonstrate grows wider with each
new regulation.

Zenroom addresses this contradiction through a differ-
ent starting point. Rather than building yet another
blockchain virtual machine or extending existing lan-
guages with cryptographic libraries, we designed a re-
stricted execution environment where the contract itself
can be read and understood by stakeholders who need to
trust it. The Zencode language that runs inside Zenroom
is not a simplified syntax layered on top of complexity, it
is the actual executable specification.

This distinction matters in practice. When your organi-
zation needs to implement W3C Verifiable Credentials
for digital identity, you can show the Zencode contract
to legal counsel, privacy officers, and auditors. They
read the same text that executes in production. When

regulations require you to transition from ECDSA to
post-quantum signatures, the migration path is visible
in human-readable statements, not buried in dependency
chains and compiler optimizations.

The technical implementation reflects eight years of pro-
duction deployment, not laboratory research. Zenroom
has zero external dependencies by design. The entire
virtual machine, cryptographic primitives, and language
parser compile to under 3MB across every major platform:
iOS and Android mobile, WebAssembly browsers, server
Linux and Windows, embedded ARM Cortex and ESP32
chips. This footprint is not an optimization target, it is a
security requirement. Attack surface minimization starts
with what you choose not to include.

Our cryptographic capabilities span the current transition
period in the industry. Native support for NIST P-256,
secp256k1, BLS12-381, Ed25519 covers existing infrastruc-
ture integration. Post-quantum implementations of ML-
KEM (Kyber) and ML-DSA (Dilithium) prepare for the
upcoming mandates. BBS+ signatures enable selective dis-
closure and zero-knowledge proofs for privacy-preserving
credentials. This range is not feature creep, it reflects the
reality that organizations must maintain multiple cryp-
tographic generations simultaneously during transitions
that span years, not quarters.

Current production deployments demonstrate scope be-
yond pilot projects. The CREDIMI implementation pro-

Dyne.org

Z @ DYNE.ORG

vides EUDI-ARF wallet certification infrastructure for the
European Digital Identity framework. DIDROOM oper-
ates as production W3C DID and Verifiable Credential
infrastructure. The Global Passport Project processes iden-
tity verification at scale. These are not use cases or proto-
types, they are running systems that would cost signifi-
cantly more to implement and audit using conventional
approaches.

For technical decision-makers, three aspects distinguish
Zenroom from alternatives:

(1) Deterministic execution is guaranteed by the virtual
machine design, not promised through careful coding
practices. The same Zencode contract produces iden-
tical cryptographic outputs across all platforms, every
time. This is verifiable.

(2) Isolation is enforced at the VM level. Zenroom has
no access to filesystem, network, or calling process
memory. Malicious contracts cannot break sandbox
boundaries because those boundaries are not imple-
mented through runtime checks, they are structural.

@ Language-theoretic security principles prevent entire
classes of parser differential attacks. The Zencode
grammar is intentionally restricted to avoid Turing-
complete ambiguity. Input validation happens before
processing, not during, following formal separation
that most languages ignore.

Organizations adopting Zenroom typically cite reduced
audit costs and compressed integration timelines as im-
mediate value. The longer-term value emerges in cryp-
tographic agility. When algorithm transitions become
mandatory, whether due to quantum computing threats
or regulatory requirements, the migration is a contract
update visible to all stakeholders, not a infrastructure
replacement project requiring specialized consultants.

The decision to adopt Zenroom is ultimately a choice
about where complexity lives in your security infras-
tructure. You can push it into increasingly sophisticated
toolchains and frameworks that require specialists to au-
dit, or you can contain it inside a small, auditable VM that
executes contracts anyone can read. Both approaches
have costs. The first compounds over time. The second
does not.

2 Introduction: The Algorithmic
Sovereignty Challenge

2.1 The Trust Problem in Modern Computing

We are operating systems that most participants cannot
read. The code executing decisions about resource allo-
cation, access control, and identity verification runs in
environments designed to optimize machine efficiency,
not human understanding. This creates an asymmetry
that compounds with scale. As more infrastructure moves
toward automated decision-making through smart con-

tracts and algorithmic governance, the gap between those
who can verify system behavior and those who must trust
it widens.

This asymmetry is not primarily technical. Every organi-
zation employing developers has staff capable of reading
code. The problem is structural: most production systems
depend on toolchains, frameworks, and runtime environ-
ments complex enough that verification requires special-
ists. A security audit of a Solidity smart contract must
account for the compiler version, the EVM implementa-
tion, gas optimization patterns, and the interpretation of
ambiguous language specifications. The contract source
code is only the starting point for understanding what
actually executes.

The situation worsens under distributed architectures
where multiple implementations must reach consensus on
contract execution results. Parser differentials between
implementations create exploitable inconsistencies. Dif-
ferent organizations run different versions of the same
virtual machine, apply different optimizations, and inter-
pret edge cases differently. The 2016 DAO exploit demon-
strated this at considerable cost. Subsequent incidents
continue to validate that complexity enables exploitation.

2.2 Why Human-Readable Smart Contracts
Matter

The term smart contract implies two things that rarely
coexist in practice: machine executability and human com-
prehensibility. Most blockchain languages optimize for
the first and treat the second as a documentation problem.
Developers write in high-level languages that compile
to opcodes, then separately document what the contract
purports to do. Auditors review both the source and the
compiled output, but cannot guarantee equivalence with-
out trusting the compiler.

This separation introduces risk that extends beyond tech-
nical audit. Legal frameworks for contract enforcement
assume all parties can examine contract terms. Regula-
tory compliance requires demonstrating to non-technical
authorities what data processing occurs and under what
conditions. Privacy by design principles mandate that
individuals understand how systems handle their infor-
mation. None of these requirements can be satisfied by
showing stakeholders assembly code or pointing to docu-
mentation that might not match implementation.

The response in much of the industry has been to build
increasingly sophisticated tooling: formal verification
frameworks, automated testing suites, static analysis en-
gines. These tools are valuable but they address symptoms
rather than causes. They attempt to verify complex sys-
tems rather than questioning whether the complexity is
necessary. Each new tool adds dependencies, increases the
specialist knowledge required, and expands the trusted
computing base.

A different approach starts by constraining what smart
contracts can express. If the language is restricted enough,

Dyne.org

Z @ DYNE.ORG

human readability and machine executability can con-
verge. The contract text itself becomes the executable
specification. Verification means reading and understand-
ing the contract, not analyzing compilation artifacts. This
requires accepting limitations on what the language can
do, but those limitations are precisely what make verifica-
tion tractable.

2.3 'The Cost of Cryptographic Complexity

Organizations implementing cryptographic systems face
a timeline problem. Current infrastructure relies on algo-
rithms that function adequately today but carry known
future risks. NIST has published timelines for transition-
ing to post-quantum cryptography. The European Union
mandates cryptographic agility in its cybersecurity frame-
works. Industry standards bodies recommend maintain-
ing multiple algorithm generations simultaneously.

These mandates create concrete costs. Supporting mul-
tiple cryptographic implementations means multiple li-
braries, multiple sets of dependencies, multiple testing and
audit cycles. Each algorithm requires specialists familiar
with its particular security assumptions and implemen-
tation pitfalls. When vulnerabilities emerge in widely-
used libraries, the response involves tracking dependency
chains through multiple layers of abstraction.

The conventional approach treats each cryptographic ca-
pability as a separate component integrated through APIs.
You have an ECDSA library for signatures, an AES library
for encryption, a different library for key derivation, an-
other for random number generation. Each comes from
different maintainers, follows different conventions, gets
updated on different schedules. The integration code that
binds these components becomes its own maintenance
burden and potential vulnerability surface.

Production systems must also handle transitions between
algorithms. When SHA-1 became insecure for certificates,
organizations could not simply flip a switch. They had
to maintain dual infrastructure, coordinate with partners
on transition schedules, verify that all components prop-
erly handled both algorithms during the migration period.
Similar transitions are coming for asymmetric cryptog-
raphy as quantum computing advances. Organizations
that handled one algorithm migration know the resource
requirements. Having to handle multiple such migrations
simultaneously, which is the current trajectory, scales
costs considerably.

2.4 Zenroom’s Mission and Design Philosophy

Zenroom emerged from research into how distributed
systems can make decisions that participants can ver-
ify without requiring specialized expertise. The DECODE
project for the European Union investigated whether com-
munities could maintain technological sovereignty while
using sophisticated cryptographic tools. The question was
not whether experts could implement secure systems, but

whether non-experts could audit and trust what experts
built.

This question led to three design principles that distin-
guish Zenroom from other approaches:

(1) The contract language must be readable by stakehold-
ers with no programming experience. This is not about
making syntax slightly more friendly or adding better
comments. The contract text itself, as written, must
communicate its purpose and operations to someone
familiar with the domain but not with coding.

(2) The execution environment must contain no hidden
complexity. What you see in the contract is what exe-
cutes. No compilation steps that could introduce be-
havior not visible in source. No runtime optimizations
that could change outcomes. No external dependen-
cies that could behave differently across installations.

@ Security must be structural, not procedural. The envi-
ronment should make entire classes of vulnerabilities
impossible by design rather than depending on de-
velopers following best practices. If the VM has no
file system access, contracts cannot have file system
vulnerabilities. If the parser rejects ambiguous state-
ments, contracts cannot contain parser differential
exploits.

These principles impose constraints that some will find
limiting. Zencode is deliberately not Turing complete.
It cannot express arbitrary computations. The crypto-
graphic primitives are fixed at compile time, not loadable
at runtime. The execution model is strictly sequential
with no concurrent operations. Each of these constraints
closes attack surfaces and simplifies verification.

The eight years since the initial DECODE implementation
have validated this approach in production environments
that traditional smart contract platforms struggle to ad-
dress. Digital identity systems require privacy-preserving
credential verification. Supply chain tracking needs cryp-
tographic guarantees without exposing business logic.
Municipal governance demands transparency without re-
quiring citizens to understand assembly code. These use
cases share a requirement: the stakeholders who must
trust the system cannot be expected to trust developers
by reputation. They need to verify by inspection.

Zenroom’s current deployment across European digital
identity infrastructure, global passport verification, and
blockchain integration demonstrates that constrained lan-
guages can address real-world requirements. The question
for organizations evaluating Zenroom is not whether it
can express every possible computation, but whether its
constraints align with actual security requirements better
than unconstrained alternatives.

Dyne.org

Z @ DYNE.ORG

3 Threat Model and Security
Requirements

3.1 Attack Surface Analysis

The attack surface of a cryptographic system extends be-
yond the primitives themselves. Most exploits in produc-
tion occur not in the core algorithms but in the layers
surrounding them: parsers, memory management, state
machines, input validation, compilation pipelines, and the
integration between components. Each of these layers
introduces opportunities for adversaries to inject unex-
pected state or trigger undefined behavior.

Zenroom’s threat model starts from the assumption that
contracts may be malicious. This is not paranoia but a
requirement for any system executing untrusted code.
In distributed architectures, you cannot vet who writes
contracts or predict their intentions. The execution en-
vironment must therefore be hostile to exploitation by
design. Traditional approaches attempt to sandbox mali-
cious behavior through runtime checks and permission
systems. Zenroom eliminates attack vectors structurally
before execution begins.

Consider the attack surface dimensions:

Input processing: Every data structure entering Zen-
room passes through schema validation before any con-
tract logic touches it. The schemas are declarative specifi-
cations written in the same readable format as contracts.
A malformed input that violates its schema never reaches
the contract execution phase. This is recognition before
processing, a core tenet of language-theoretic security
that most systems violate.

Parser implementation: The Zencode parser is a finite
state machine with explicit transitions between Given,
When, and Then phases. Each phase has defined read
and write permissions on memory regions. Invalid state
transitions are structurally impossible because the state
machine definition prevents them. This differs from run-
time permission checks which depend on correct imple-
mentation of every check in every code path.

Memory access: Zenroom implements three isolated
memory compartments: IN for input data, ACK for com-
putation workspace, and OUT for results. Contracts in
the Given phase can read IN but cannot write to it. The
When phase operates on ACK with no direct access to raw
input. The Then phase writes to OUT but cannot modify
ACK retroactively. These boundaries are enforced by the
VM memory model, not by application logic that could
contain mistakes.

External dependencies: Zero external dependencies
means the trusted computing base is exactly the Zenroom
binary. No dynamic library loading that could introduce
compromised code. No network access that could leak
data or receive commands. No filesystem operations that
could persist state or read configuration files. The absence

of these capabilities is architectural, verified at compile
time, not disabled at runtime.

Compilation and distribution: Zencode contracts are
not compiled. What executes is what you read. There
is no intermediate representation that could differ from
source. No optimization phase that could introduce tim-
ing variations. No linking step that could pull in different
versions of shared libraries. The contract text maps di-
rectly to function calls in the VM, eliminating an entire
class of supply chain attacks.

This attack surface analysis reveals where Zenroom differs
from conventional approaches. Rather than protecting
against attacks through layered defenses that each could
fail, Zenroom removes the surfaces that would enable
attacks. The principle is simple: if a component cannot
express a vulnerability, you do not need to defend against
that vulnerability.

3.2 Zero-Trust Architecture Principles

Zero-trust architecture assumes that no component is
inherently trustworthy. Network position, authentication
credentials, and prior good behavior do not grant trust.
Every transaction must be verified, every input validated,
every execution isolated. These principles map directly
to Zenroom’s design.

Never trust input: Zenroom treats all input as hostile un-
til proven otherwise. The schema validation phase forces
explicit specification of what constitutes valid input. If
your contract expects a public key, the schema defines the
exact encoding, length constraints, and curve membership
requirements. An input that merely looks like a public
key but fails point-on-curve validation never enters the
computation phase. This approach follows the zero-trust
principle that nothing is assumed safe merely because it

has the right shape.

Isolation between components: In distributed sys-
tems, components from different trust domains must in-
teract. Zero-trust requires that no component can affect
another’s internal state except through defined interfaces.
Zenroom implements this through process isolation. Each
contract execution runs in a fresh VM instance with no
shared memory, no inter-process communication, and
no persistent state between executions. One malicious
contract cannot compromise subsequent executions.

Least privilege: Zero-trust mandates that components
have only the minimum capabilities required for their
function. Zenroom’s VM has no privileges beyond mem-
ory allocation and computation. It cannot open files, cre-
ate network connections, spawn processes, or access sys-
tem resources. The host application provides data through
defined input channels and receives results through out-
put channels. The VM cannot request additional privileges
or escalate its capabilities.

Verification at every step: Zero-trust architecture re-
quires continuous verification, not authentication at entry

Dyne.org

Z @ DYNE.ORG

followed by implicit trust. Zenroom enforces this through
its phase-based execution model. Data validated in the
Given phase is tagged with metadata about its validation
status. The When phase can only operate on validated
data. The Then phase outputs results with cryptographic
proof of their provenance. Each phase verifies precondi-
tions before proceeding.

Determinism as security property: Zero-trust in dis-
tributed systems requires that all participants can verify
results independently. Zenroom’s deterministic execution
serves this requirement. The same contract with the same
inputs produces identical outputs on every platform, ev-
ery time. This is not a performance optimization but a
security property. If execution were non-deterministic,
participants could not verify each other’s results without
trusting their honesty.

These principles are not implemented through configura-
tion or policy. They are structural properties of the VM
design. An organization deploying Zenroom does not
need to configure zero-trust behavior or train developers
to follow zero-trust practices. The architecture enforces
it.

3.3 Isolation and Sandboxing Requirements

Effective sandboxing requires more than preventing file
system and network access. A truly isolated execution
environment must protect the host from memory cor-
ruption, infinite loops, resource exhaustion, side-channel
leaks, and covert channels. Conventional sandboxing ap-
proaches use operating system mechanisms like seccomp,
SELinux, or containerization. These are valuable layers
but they depend on correct OS implementation and con-
figuration. Zenroom implements isolation at the VM level,
independent of host platform capabilities.

Memory isolation: Zenroom allocates a fixed memory
pool at initialization and never requests additional mem-
ory during contract execution. All allocations come from
this pool managed by an embedded memory manager.
The VM cannot access memory outside this pool. Buffer
overflows cannot escape to host memory because the VM
has no pointers to host memory. Use-after-free vulnera-
bilities cannot affect host state because the VM’s memory
space is completely separate.

Computational bounds: Contracts run with defined
computational limits. Zenroom enforces a maximum it-
eration count and maximum memory usage specified at
initialization. These bounds prevent resource exhaustion
attacks. A malicious contract that attempts infinite loops
or exponential memory consumption hits the limit and
terminates cleanly. The limits are not advisory, they are
enforced by the VM’s execution engine.

No dynamic code execution: The VM does not support
eval or similar dynamic code execution mechanisms. All
operations are defined at contract parse time. This pre-
vents code injection attacks entirely. A contract cannot

construct code strings and execute them. All execution
paths are visible in the contract text.

Side-channel resistance: Complete side-channel resis-
tance is difficult to achieve in software running on general-
purpose hardware. Zenroom’s approach is to minimize
timing variation in cryptographic operations through
constant-time implementations where feasible and to pro-
vide clear documentation of what guarantees exist. The
deterministic execution model helps here because timing
differences between platforms are not hidden, they are
measurable and documented.

State wiping: Zenroom clears sensitive data from mem-
ory on contract termination using explicit wiping func-
tions. This reduces the window for memory scraping
attacks. The fixed memory pool simplifies wiping because
the VM knows exactly which memory regions to clear.

The isolation mechanisms work together to create defense
in depth. Even if one mechanism failed, the others con-
tain damage. More importantly, the isolation is verifiable.
You can inspect the VM initialization code and confirm
that it requests no OS privileges, opens no file descriptors,
and creates no network sockets. The absence of capabili-
ties is easier to verify than the correct implementation of
permission checks.

3.4 Deterministic Execution as Security Feature

Determinism is typically discussed as a reliability feature
for distributed systems. Nodes must produce identical
results to reach consensus. This is accurate but incomplete.
Determinism is also a security feature that prevents subtle
attacks and enables verification.

Preventing parser differentials: In systems with multi-
ple implementations, subtle differences in parsing can cre-
ate security vulnerabilities. An attacker crafts input that
one implementation interprets as benign while another
interprets as malicious. Both implementations accept the
input but process it differently. The attacker exploits this
differential to bypass security checks. Zenroom elimi-
nates this threat through deterministic parsing. There is
one parser implementation. All platforms run identical
code from the same source. Parser differentials cannot
exist.

Enabling verification: Deterministic execution allows
participants in a distributed system to verify each other’s
work by re-executing the same contract and comparing
results. Non-deterministic execution requires trusting
that other participants executed correctly because you
cannot reproduce their results. Determinism converts
trust into verification.

Reproducible audits: Security audits of non-
deterministic systems must account for execution
variance. Auditors cannot be certain that the specific
execution path they analyzed will occur in production.
Deterministic execution means audit results apply

Dyne.org

Z @ DYNE.ORG

directly to production behavior. What you audit is what
executes.

Eliminating race conditions: Concurrent execution cre-
ates race conditions where program behavior depends on
timing. These are notoriously difficult to test and debug.
Zenroom’s strictly sequential execution model eliminates
race conditions entirely. Contract execution has no con-
currency, no threads, no async operations. This constraint
may seem limiting but it prevents an entire class of vul-
nerabilities.

Consistent random number generation: Crypto-
graphic operations require randomness but determinis-
tic execution seems to preclude random behavior. Zen-
room resolves this through seedable deterministic random
number generation. The same seed produces the same se-
quence of random numbers. For cryptographic operations
requiring true randomness, the caller provides entropy as
an explicit input. This makes randomness sources visible
and auditable rather than hidden in OS RNG implementa-
tions.

The determinism guarantee is testable. You can execute
the same contract on different platforms and verify byte-
identical outputs. This is not a theoretical property but a
measurable characteristic of every Zenroom deployment.

3.5 Memory Safety and Side-Channel Resistance

Memory safety vulnerabilities account for a large fraction
of exploits in systems software. Buffer overflows, use-
after-free, double-free, null pointer dereferences, and simi-
lar errors remain common despite decades of research into
prevention. Zenroom addresses memory safety through
a combination of safe implementation language, bounded
allocations, and explicit lifetime management.

Implementation language choice: Zenroom’s core is
implemented in C with Lua as the high-level scripting
layer. C is not memory-safe by default but its behavior is
well-specified and auditable. The cryptographic primitives
use the AMCL library which has been extensively audited.
The Lua VM provides automatic memory management
with garbage collection for the contract execution layer.
This combination allows manual control where perfor-
mance matters while providing safety where complexity
resides.

Bounded memory model: The three-compartment
memory model (IN-ACK-OUT) enforces clear ownership
semantics. Data cannot leak between compartments. The
Given phase copies validated input into ACK, it does not
pass references that could allow contracts to modify raw
input. The Then phase copies results to OUT, preventing
contracts from modifying computation state after out-
put generation. These copies have performance costs but
eliminate aliasing bugs.

Garbage collection: Lua’s garbage collector reclaims
memory automatically in the contract execution layer.
This prevents use-after-free and double-free bugs that

plague manual memory management. The collector is de-
terministic in the sense that collection runs at predictable
points in execution, not triggered by memory pressure
that varies between platforms.

Side-channel considerations: Complete side-channel
resistance requires hardware support that general-
purpose systems lack. Zenroom’s approach is pragmatic:
use constant-time implementations for sensitive opera-
tions where possible, document which operations have
timing variations, and provide guidance on deployment
patterns that mitigate observable channels.

The cryptographic primitives from AMCL include
constant-time big integer arithmetic to resist timing at-
tacks. The Zencode interpreter’s statement execution time
varies based on contract structure but this variation does
not leak key material because the interpreter operates on
public contract text, not on secret values.

Cache-based side channels are difficult to eliminate in soft-
ware. Zenroom mitigates these through data-independent
control flow in cryptographic operations. The signature
verification code executes the same sequence of opera-
tions regardless of whether verification succeeds or fails.
This prevents attackers from learning about keys through
cache timing differences.

Memory safety and side-channel resistance exist on a
spectrum. Zenroom’s position on this spectrum is con-
servative. We implement protections that are verifiable
and do not depend on compiler optimizations or runtime
behavior that could change. Where complete protection is
not achievable, we document the limitations so operators
can make informed deployment decisions.

4 Language-Theoretic Security
Foundation

Language-theoretic security, as formalized by researchers
at IEEE and supported by DARPA’s work on resilient soft-
ware systems, provides a framework for understanding
why most software vulnerabilities exist and how to pre-
vent them systematically. The core insight is that security
failures in input processing stem from the gap between
what inputs a program should accept and what inputs it ac-
tually processes. Most programs have an informal notion
of valid input implemented through scattered validation
checks. This approach inevitably leads to exploitable edge
cases.

The LangSec community has documented patterns of fail-
ure across decades of exploits. Web servers parse HTTP
headers inconsistently. Certificate validators mishandle
ASN.1 encoding. Image processors trust format metadata.
PDF readers execute embedded code. File archive tools
follow symlinks. Each exploit represents a case where
the program processed input that should have been re-
jected but was not, because validation was incomplete,
incorrectly ordered, or simply absent in some code path.

Dyne.org

Z @ DYNE.ORG

Zenroom’s design applies LangSec principles from the
foundation. The Zencode grammar is specified formally.
The parser is a recognizer that either accepts or rejects
inputs based on this grammar. Processing happens only
after recognition succeeds. This separation is enforced
structurally through the phase-based execution model.
You cannot write a Zencode contract that processes un-
validated input because unvalidated data never reaches
the processing phase.

4.1 The Four Threats in Language Design

The LangSec community identifies four categories of
threats that arise from poor language design. Each rep-
resents a way that implementations diverge from specifi-
cations, creating exploitable inconsistencies. Zenroom’s
architecture addresses each threat explicitly.

4.1.1 Ad-hoc Input Validity

Most software does not formally specify what constitutes
valid input. Instead, validation is implemented through
checks scattered across the codebase. A function might
verify that a string length is positive. Another function
checks for null terminators. A third assumes the string is
valid UTF-8. None of these checks constitute a complete
specification of valid input. The combination of checks
was never verified to be sufficient. New code paths added
during maintenance may bypass checks. The result is that
programs accept inputs their designers never intended.

Zenroom addresses this through declarative schema val-
idation. Before any contract executes, all inputs must
match declared schemas. A schema specifies the complete
structure of valid input: field names, types, encoding,
constraints. The schema language is the same human-
readable format as contracts. An auditor reviewing a
Zencode implementation sees explicitly what inputs are
accepted.

The schemas are not documentation that might diverge
from implementation. They are executed specifications.
The validator parses input according to the schema and
constructs typed data structures. If parsing fails at any
point, execution halts. The contract code receives only
data that exactly matches the schema. This eliminates the
class of vulnerabilities where attackers craft inputs that
pass some validation checks but violate assumptions in
processing code.

Consider a concrete example. A contract processes digital
signatures. The schema specifies that the public key must
be a point on a particular elliptic curve, encoded in com-
pressed format, exactly 33 bytes. The validator checks
point-on-curve membership cryptographically. An input
that is 33 bytes but not a valid curve point is rejected
before the contract sees it. The contract author does not
need to implement this check. The contract author does
not need to remember to implement this check. The check
is automatic because it is part of the schema specification.

4.1.2 Parser Differentials

Systems with multiple implementations of the same speci-
fication create opportunities for parser differential attacks.
An attacker crafts input that one implementation inter-
prets differently than another. Both implementations be-
lieve they are correctly following the specification but
subtle ambiguities allow different interpretations. The
attacker exploits this difference to bypass security checks.

The classic example is certificate validation. A certificate
authority sees a domain name in a certificate signing re-
quest and verifies that the requester controls that domain.
The CA’s parser interprets the domain name one way.
Later, clients validate the issued certificate using different
parsers that interpret the domain name differently. The
attacker obtains a certificate for a domain they do not con-
trol because the CA and clients disagree on what domain
the certificate specifies.

Parser differentials have affected TLS implementations,
web browsers, email systems, and blockchain consensus
protocols. They are difficult to detect because each imple-
mentation appears correct in isolation. The vulnerability
emerges from the interaction between implementations.

Zenroom eliminates parser differentials by having exactly
one parser implementation. Zencode contracts execute
on the Zenroom VM. There is no alternative implementa-
tion to disagree with. All platforms run the same parser
compiled from the same source code. Different hardware
architectures and operating systems are handled through
platform-specific compilation but the parser logic is iden-
tical.

This approach has a cost. Organizations cannot imple-
ment their own Zencode parsers for integration purposes.
They must use the Zenroom VM or accept that their imple-
mentation might not match the canonical behavior. This
restriction is intentional. Allowing multiple implementa-
tions would reintroduce the parser differential threat that
the single-implementation architecture eliminates.

The deterministic execution guarantee extends this pro-
tection to the entire processing pipeline. Not only does
parsing produce identical results, all subsequent compu-
tation produces identical results. Two parties executing
the same contract with the same inputs can verify that
they reached the same conclusion by comparing outputs.
If outputs differ, one party deviated from the specification
or inputs differed.

4.1.3 Recognition-Processing Separation

Most programs mix input validation with processing.
Code reads input, checks a property, processes based on
that property, reads more input, checks another property,
processes further. This interleaving makes it difficult to
reason about what inputs the program accepts. It also
creates race conditions where input changes between vali-
dation and use, or where one part of the program validates

Dyne.org

Z @ DYNE.ORG

input that another part later processes without revalida-
tion.

The LangSec principle of recognition before processing
requires clean separation. The recognizer determines
whether input is valid according to a formal grammar.
If recognition succeeds, the recognizer produces a data
structure representing the parsed input. Only this data
structure is passed to processing code. The processor
never sees raw input. This separation ensures that pro-
cessing operates only on validated data.

Zenroom implements this separation through the Given-
When-Then phase structure. The Given phase is recogni-
tion. Schemas define valid input structure. The validator
parses input and constructs typed objects in the ACK
memory compartment. The raw input in the IN compart-
ment is read-only during this phase. Invalid input causes
execution to halt in the Given phase before any processing
begins.

The When phase is processing. It operates on the typed
objects created during recognition. It has no access to raw
input. It cannot parse new input or reinterpret existing
input differently. All processing operates on data that has
already been validated.

The Then phase is output rendering. It takes computation
results and formats them for output. It does not perform
validation or processing. It is a pure transformation from
internal representation to external format.

This separation is enforced by the VM memory model.
The Given phase has read-only access to IN and write
access to ACK. The When phase has read-write access
to ACK only. The Then phase has read access to ACK
and write access to OUT. A contract cannot bypass these
restrictions because they are implemented by the VM, not
by contract code that could contain mistakes.

The separation also simplifies security analysis. Auditors
can verify that the Given phase implements correct vali-
dation by examining schemas. They can verify that the
When phase implements correct processing by examin-
ing contract logic. They do not need to trace complex
control flows to ensure that validation always occurs be-
fore processing because the phase structure enforces this
ordering.

4.1.4 Specification Drift Prevention

Software evolves. New features are added. Edge cases are
discovered and handled. Performance is optimized. Each
change risks divergence between the implementation and
any specification that exists. If the specification is infor-
mal or lives in documentation separate from code, drift is
inevitable. Developers update code without updating doc-
umentation. Tests cover implementation behavior that
may not match original intent.

The result is that specifications become unreliable over
time. What the system does and what the specification
says it does diverge. Security properties that were veri-

fied against the specification may no longer hold for the
implementation. This drift is not malicious. It emerges
from the normal evolution of complex systems where
specifications and implementations are separate artifacts
maintained through separate processes.

Zenroom addresses specification drift through the
LangSec approach of making the language specification
the implementation. Zencode is specified as a grammar.
The parser implements this grammar directly through
syntax-directed translation. There is no intermediate spec-
ification document that could drift. The grammar is the
specification.

When new Zencode statements are added, they must be
defined in the grammar. The parser must be extended to
recognize them. The implementation of new functional-
ity requires explicit grammar extension. This coupling
prevents drift. You cannot add functionality without up-
dating the specification because the specification is the
grammar that the parser enforces.

Zencode contracts are also specifications. A contract de-
scribes what operations to perform on what data. The
contract text is the specification of the computation. There
is no separate design document that describes what the
contract should do. The contract is both specification and
implementation. This eliminates specification drift at the
contract level.

The approach has limitations. It works when the specifica-
tion can be expressed as a grammar and when processing
can be implemented through syntax-directed translation.
Not all systems fit this model. But for the domain Zen-
room targets, cryptographic operations on structured data,
the approach is well-suited. The specifications we need to
write are precisely the kind that map naturally to gram-
mars and schemas.

4.2 Non-Turing Complete by Design

Zencode is deliberately not Turing complete. It cannot
express arbitrary computations. There is no general re-
cursion. There is no unbounded iteration. Loops have
maximum iteration counts specified at VM initialization.
This limitation is not an oversight but a design choice
with security implications.

Turing completeness means a language can express any
computable function given sufficient time and memory.
This generality is valuable for general-purpose program-
ming but it comes with costs. Turing complete languages
have the halting problem. You cannot determine in gen-
eral whether a program will terminate or run forever. This
makes resource exhaustion attacks trivial. An attacker
writes a contract that appears benign but contains an infi-
nite loop. The VM executing this contract cannot detect
that the loop is infinite without actually running it forever.

Turing incomplete languages can guarantee termination.
Zencode does this through several mechanisms:

Dyne.org

Z @ DYNE.ORG

Bounded iteration: The foreach construct allows itera-
tion over collections but the maximum iteration count is
fixed at VM initialization. A contract cannot loop more
than this maximum number of times. The VM tracks
iterations and terminates execution if the limit is reached.

No general recursion: Zencode does not support re-
cursive function calls. Each statement executes once per
traversal of the contract. There is no mechanism for a
statement to invoke itself directly or indirectly.

Acyclic control flow: The branch construct for condi-
tional execution does not support backward jumps. Con-
trol flows forward through the contract. Once a section
executes, it does not execute again in the same contract
execution.

These restrictions ensure that every Zencode contract
terminates in bounded time. The execution time is pro-
portional to the contract size and the maximum iteration
count. You can compute an upper bound on execution
time before running a contract. This makes denial-of-
service through resource exhaustion much harder. An
attacker cannot craft a contract that appears short but
executes for an unbounded time.

The restriction to non-Turing complete computation also
simplifies analysis. Many verification techniques work
only on restricted computational models. Model checking,
static analysis, and symbolic execution all become more
tractable when the language cannot express arbitrary com-
putation. Zenroom does not currently implement these
verification techniques but the language design does not
preclude them.

The practical impact of non-Turing completeness is less
limiting than it might appear. Most cryptographic op-
erations are not recursive. Signature creation, encryp-
tion, hash computation, credential verification all follow
straightforward algorithms with known termination prop-
erties. The computations that Zencode needs to express
fit naturally within the bounded model.

There are computations you cannot express in Zencode.
You cannot implement a parser for an arbitrary context-
free language. You cannot write an interpreter for another
language. You cannot implement search algorithms with
unbounded depth. If your use case requires these capabil-
ities, Zencode is not suitable. For the domain of crypto-
graphic operations on structured data, the limitations are
rarely binding.

4.3 Formal Grammar and Syntax-Directed
Translation

Zencode is specified as a formal grammar using a syntax-
directed translation scheme. The grammar defines valid
Zencode contracts. The translation scheme maps gram-
matical constructs to VM operations. This formalization
serves multiple purposes: it provides a precise specifica-
tion of the language, it enables parser generation from the

grammar, and it makes the language amenable to formal
analysis.

The grammar is context-free with some context-sensitive
restrictions enforced during semantic analysis. Context-
free grammars sit in the middle of the Chomsky hierarchy.
They are more expressive than regular languages but less
expressive than context-sensitive languages. This posi-
tioning is intentional. Context-free grammars are well-
understood, parser generators for them are mature, and
the parsing algorithms are efficient.

The context-free backbone of Zencode handles the state-
ment structure. A contract is a sequence of statements.
Each statement begins with a keyword (Given, When,
Then, If, Foreach) followed by a pattern. Patterns contain
literal text and variable placeholders marked by single
quotes. The parser matches statement text against regis-
tered patterns and extracts variable values.

Context-sensitive restrictions enforce phase ordering and
memory access rules. A contract must begin with sce-
nario declaration. Given statements must precede When
statements. When statements must precede Then state-
ments. These rules cannot be expressed in pure context-
free grammar but are enforced during parsing through
state machine transitions.

The syntax-directed translation maps each recognized
statement to a function call. When the parser matches a
statement pattern, it invokes the corresponding function
with extracted variables as arguments. This translation
is direct. There is no intermediate representation. The
parser output is a sequence of function calls to be executed.
This directness eliminates a source of bugs. Optimizers
and code generators introduce complexity where bugs
hide. Zenroom avoids this complexity through simple
translation.

The formalization also enables precise specification of
language extensions. New Zencode scenarios are added
by registering new statement patterns and their corre-
sponding functions. The pattern registration is explicit
and checked for ambiguity. If two patterns could match
the same statement, the parser reports an error at defi-
nition time, not at execution time when the ambiguity
could cause security issues.

The grammar approach also makes Zencode parseable by
tools beyond the Zenroom VM. Static analysis tools can
parse contracts without executing them. Documentation
generators can extract statement patterns and produce
reference materials automatically. The formal grammar
is not hidden inside parser implementation code but is
explicitly specified in a form that tools can consume.

This formalization does not make Zencode a heavyweight
academic language. The grammar is simple enough that
humans can read contracts and understand what they do.
The formalization exists to ensure that human understand-
ing matches machine execution, not to impose complexity.

Dyne.org

Z @ DYNE.ORG

The goal is comprehensibility backed by rigor, not rigor
for its own sake.

5 The Zenroom Virtual Machine
Architecture

The Zenroom Virtual Machine is not a general-purpose
computing environment. It is a process VM designed
specifically to execute cryptographic contracts in hostile
environments where the code, the data, or both cannot
be trusted. This specialization allows architectural deci-
sions that would be inappropriate for general computation
but are essential for security-critical cryptographic opera-
tions.

The VM architecture reflects eight years of production
deployment feedback. Early versions focused on proving
the concept of human-readable cryptographic contracts.
Current versions address the operational requirements of
systems processing real user credentials, financial trans-
actions, and identity verification. The architecture has
evolved but the core principles remain unchanged: isola-
tion, determinism, and verifiability.

5.1 Process VM Design Principles

Zenroom implements a process virtual machine rather
than a system VM. This distinction matters. System VMs
like VMware or VirtualBox virtualize entire operating
systems. Process VMs like the JVM or Zenroom virtu-
alize single applications. System VMs provide isolation
through hardware virtualization and hypervisors. Process
VMs provide isolation through language-level constraints
and runtime checks.

The process VM approach offers specific advantages for
cryptographic contract execution:

Startup time: A system VM boots an operating system,
initializing device drivers, filesystems, and network stacks.
This takes seconds or minutes. A process VM initializes
a runtime environment, loading only the components
needed for contract execution. Zenroom starts in millisec-
onds. For systems processing thousands of contracts per
second, this difference is not a detail but a requirement.

Resource footprint: System VMs allocate gigabytes of
memory and virtual disk space. Process VMs allocate
megabytes. Zenroom’s entire binary including crypto-
graphic primitives, language parser, and VM runtime com-
piles to under 3MB. This allows deployment on resource-
constrained devices like mobile phones and embedded
systems where system VM approaches are not feasible.

Attack surface: System VMs must virtualize hardware
with all its complexity: interrupt handling, DMA, mem-
ory management units. Process VMs virtualize language
execution with controlled semantics. Every feature a sys-
tem VM provides is potential attack surface. Zenroom
provides only what cryptographic contracts need: mem-

ory allocation, computation, and defined input-output
channels.

Determinism: System VMs execute operating systems
designed for interactive use. Timing, scheduling, and re-
source allocation vary based on system load. Process VMs
can enforce deterministic execution because they control
the entire execution environment. Zenroom guarantees
that the same contract with the same inputs produces
identical outputs across all platforms.

The process VM approach has costs. You cannot run arbi-
trary operating systems or applications inside Zenroom.
You cannot access hardware devices or network resources.
These limitations are intentional. They are features, not
bugs. A cryptographic contract that needs network ac-
cess or hardware interaction is a contract that has violated
isolation boundaries.

5.2 Memory Model: IN-ACK-OUT
Compartmentalization

Zenroom divides memory into three isolated compart-
ments corresponding to the three execution phases. This
compartmentalization is not a programming convenience
but a security mechanism enforcing separation of con-
cerns.

IN compartment: Holds raw input data as received from
the calling application. During the Given phase, the parser
reads from IN to validate and decode input. The IN com-
partment is read-only after initialization. Contract code
cannot modify raw input. This prevents an entire class
of attacks where malicious code modifies input during
validation to bypass checks.

The IN compartment contains data passed through the
keys and data parameters when invoking Zenroom. These
inputs are typically JSON documents but Zenroom also
accepts CBOR and MessagePack encodings. The parser
does not trust the encoding declaration. It validates struc-
ture, checks schemas, and rejects malformed input before
any processing begins.

ACK compartment: Holds validated, typed data struc-
tures created during the Given phase and modified during
the When phase. This is the working memory where
contract logic operates. The ACK compartment is read-
write during When phase execution. Contract statements
can create new objects, modify existing ones, and delete
objects no longer needed.

The transition from IN to ACK involves validation and
type conversion. A string representing a public key in
IN becomes a validated elliptic curve point in ACK. A
JSON array of numbers in IN becomes a typed array of big
integers in ACK. This conversion enforces data schemas
and ensures that processing operates only on validated
data.

OUT compartment: Holds output data formatted for
the calling application. During the Then phase, contract
statements copy computation results from ACK to OUT,

10

Dyne.

org Z @ DYNE.ORG

applying encoding and formatting. The OUT compart-
ment is write-only during Then phase. Previous output
cannot be read or modified once written. This prevents
contracts from examining output and modifying behavior
based on what was already produced.

The compartmentalization is enforced by the VM runtime.
Zencode statements are mapped to functions that have
different access permissions in different phases. A Given
phase function receives read access to IN and write access
to ACK. A When phase function receives read-write access
to ACK only. A Then phase function receives read access
to ACK and write access to OUT. These permissions are
not checked at runtime but are structural properties of
how functions are registered in the VM.

This memory model prevents several attack patterns:

Time-of-check to time-of-use (TOCTOU): In systems
where validation and processing share memory, attackers
can modify data between validation and use. Zenroom’s
model makes this impossible because validated data is
copied from IN to ACK. Subsequent changes to IN do not
affect ACK.

Output tampering: In systems where output accumu-
lates in writable memory, contracts can examine partial
output and modify subsequent output to create inconsis-
tencies. Zenroom’s write-only OUT compartment pre-
vents this.

State leakage: In systems where memory persists be-
tween executions, data from one contract can leak to
subsequent contracts. Zenroom wipes all compartments
on termination and starts fresh for each execution.

The compartmentalization does impose overhead. Data
is copied between compartments rather than passed by
reference. This copying has performance cost but the cost
is predictable and bounded. The security benefits out-
weigh the performance impact for the use cases Zenroom
targets.

5.3 State Machine and Phase Transitions

Zencode execution is controlled by a finite state ma-
chine that enforces phase ordering and valid statement
sequences. The state machine is not a runtime optimiza-
tion but a security mechanism that prevents malformed
contracts from executing undefined behavior.

The state machine tracks the current execution phase and
validates that each statement is permitted in that phase.
The states are:

« init: Initial state before any contract execution

rule: Processing rule directives

scenario: Loading scenario modules
+ given: Validating and loading input
when: Processing and transforming data

if: Conditional execution branch

11

whenif: Processing inside conditional branch
thenif: Output inside conditional branch
endif: End of conditional branch

foreach: Loop iteration

whenforeach: Processing inside loop
endforeach: End of loop

then: Formatting and printing output

Valid transitions are defined explicitly. A contract in the
given state can transition to when or then but not back
to rule. A contract in the when state can transition to if,
foreach, or then but not to given. Attempts to transition
invalidly halt execution with an error.

The state machine also tracks nesting depth for control
structures. If blocks and foreach loops can nest but only
to implementation-defined limits. The default maximum
nesting is configurable but the mechanism for enforcing
limits is not. When a contract exceeds nesting limits,
execution halts. This prevents stack overflow attacks and
resource exhaustion.

Each state transition triggers validation hooks. When
transitioning from given to when, the VM verifies that
all required input has been loaded and validated. When
transitioning to then, the VM ensures that output oper-
ations are permitted. These hooks catch contract errors
early rather than allowing execution to proceed to an
inconsistent state.

The state machine implementation uses a lightweight li-
brary that generates explicit transition functions. This
is not table-driven state machine with runtime dispatch
overhead. Each transition is a direct function call with in-
lined validation. The state machine adds minimal runtime
cost while providing strong execution guarantees.

The state machine prevents several categories of contract
errors:

Phase violations: Contracts that attempt to load input in
the When phase or perform cryptographic operations in
the Given phase are rejected. Phase separation is enforced
mechanically.

Unbalanced control structures: Contracts with if
blocks lacking endif or foreach loops lacking endforeach
are detected during parsing before execution begins.

Infinite loops: The state machine tracks iteration count
and terminates contracts that exceed the configured max-
imum. This is checked on every loop iteration, not after
the fact.

5.4 No External Dependencies: Attack Surface
Minimization

Zenroom has zero external runtime dependencies. The
binary is statically linked. It does not dynamically load
libraries at runtime. It does not call external programs.

Dyne.

org Z @ DYNE.ORG

It does not make system calls beyond the minimal set
required for memory allocation and process termination.

This is not just aggressive static linking. It is a conscious
decision about trust boundaries. Every external depen-
dency is code you must trust. Libraries can contain vul-
nerabilities. System calls can have unexpected behavior.
Runtime linking can be intercepted. Zenroom eliminates
these risks by eliminating the dependencies.

The cryptographic primitives use Apache Milagro Crypto
Library (AMCL) compiled directly into the Zenroom bi-
nary. AMCL is not a dynamically linked library but source
code included in the build. This ensures that the version of
AMCL is fixed at compile time and cannot vary between
deployments. Different organizations running Zenroom
5.0 are running identical cryptographic code, not different
versions of libraries pulled from system package man-
agers.

The Lua VM that executes Zencode is similarly embedded.
Zenroom uses Lua 5.4 compiled from source. It does not
use the system Lua installation. This avoids version mis-
matches and ensures that Zencode semantics are consis-
tent across platforms. Lua’s garbage collector, string han-
dling, and numeric operations behave identically whether
Zenroom runs on Android or Linux or WebAssembly.

The zero dependency approach has consequences:

Binary size: Statically linking all dependencies produces
larger binaries than dynamic linking. Zenroom is 3MB
rather than the few hundred kilobytes a dynamically
linked binary might be. This is a conscious tradeoff. Pre-
dictability is worth the space cost.

Update complexity: Security updates to dependencies
require rebuilding Zenroom rather than updating system
libraries. This is more work but it is also more controlled.
You decide when to adopt updates rather than having
them imposed by operating system package updates.

Platform portability: Without external dependencies,
porting to new platforms requires only a C compiler and
basic POSIX support. Zenroom runs on platforms where
installing shared libraries would be difficult or impossible.

The minimal system call interface deserves specific at-
tention. Zenroom makes no filesystem operations, no
network operations, no process creation, no signal han-
dling. On Linux, it can run under seccomp to enforce
these restrictions at the kernel level. The seccomp profile
permits only memory allocation, terminal I/O, and exit.
Any attempt to call forbidden system calls terminates the
process immediately.

This restriction is verifiable. You can inspect the Zenroom
source and confirm that no filesystem access occurs. You
can run it under system call tracing (strace on Linux) and
verify that only permitted calls are made. The absence of
capability is easier to verify than the correct implementa-
tion of permission checks.

12

5.5 Deterministic Random Number Generation

Cryptographic operations require randomness. Key gen-
eration needs random seeds. Nonces need random val-
ues. Padding schemes need random bytes. Yet Zenroom
guarantees deterministic execution. These requirements
appear contradictory but are reconciled through explicit
randomness management.

Zenroom uses a cryptographically secure pseudorandom
number generator (CSPRNG) based on SHA-512. The gen-
erator is deterministic: given the same seed, it produces
the same sequence of random bytes. This allows deter-
ministic contract execution while still providing crypto-
graphically strong randomness.

The seed can be provided in three ways:

External seed: The calling application provides entropy
through a configuration parameter. This entropy seeds
the CSPRNG before contract execution begins. Two exe-
cutions with the same seed produce identical results.

Platform entropy: If no external seed is provided, Zen-
room reads from the platform entropy source (urandom
on Unix, CryptGenRandom on Windows). This provides
non-deterministic randomness suitable for production use
but prevents reproducible execution.

Contract-specified seed: Zencode contracts can derive
keys from passwords or other input data. The KDF op-
erations use the input as a seed, making key generation
deterministic for the same input.

The CSPRNG state is private to each Zenroom execution.
One contract execution cannot observe or influence the
CSPRNG state of subsequent executions. The state is
wiped on process termination along with all other mem-

ory.

For operations requiring public verifiable randomness,
Zenroom supports deterministic derivation from contract
inputs. Signature schemes use RFC 6979 deterministic
ECDSA, where the nonce is derived from the message and
private key rather than generated randomly. This makes
signatures deterministic and eliminates nonce reuse vul-
nerabilities.

The approach to randomness reflects a broader principle:
make the sources of non-determinism explicit and con-
trollable. If execution varies between runs, that variation
should be traceable to explicit inputs, not hidden sources
of entropy. This principle aids debugging, testing, and
verification.

5.6 Garbage Collection and Memory Management

Zenroom uses two memory management strategies de-
pending on the execution layer. The C implementation
layer uses manual memory management with explicit al-
location and deallocation. The Lua execution layer uses
automatic garbage collection. This hybrid approach bal-
ances performance, safety, and predictability.

Dyne.

org Z @ DYNE.ORG

The C layer manages cryptographic primitives and VM in-
frastructure. These components require careful memory
handling because they process sensitive data. Crypto-
graphic keys must be wiped after use. Temporary buffers
must not leak. Manual management allows explicit con-
trol over memory lifetimes and contents.

The C memory manager is a fixed-size pool allocator. Zen-
room allocates a memory pool at initialization sized based
on VM configuration. All subsequent allocations come
from this pool. The pool is never expanded during execu-
tion. If the pool is exhausted, allocation fails and execu-
tion halts with an error. This prevents memory exhaustion
attacks and makes memory usage predictable.

The Lua layer manages contract data structures. Lua pro-
vides automatic garbage collection using an incremental
mark-and-sweep collector. The collector runs periodically
during contract execution, reclaiming memory from ob-
jects no longer referenced. This frees contract authors
from manual memory management while maintaining
safety.

The garbage collector is deterministic in the sense that
collection runs at predictable points in execution. The
collector is triggered when memory usage exceeds thresh-
olds. These thresholds are fixed at VM configuration time.
Given the same input and the same VM configuration,
garbage collection occurs at the same points in execution
across all platforms.

Memory wiping occurs at multiple points:

After cryptographic operations: Functions that create
or use keys explicitly wipe their stack frames and tem-
porary buffers before returning. This limits the window
where sensitive data exists in memory.

After phase transitions: When transitioning from Given
to When or When to Then, the VM can optionally wipe
the previous compartment. This is configurable because
wiping has performance cost.

On process termination: The entire memory pool is
wiped when Zenroom exits. This prevents memory scrap-
ing attacks that might recover sensitive data from process
memory after termination.

The memory management approach does not prevent all
possible side channels. Garbage collection timing varies
based on allocation patterns and collection could leak
information about computation. Wiping memory pre-
vents recovery of values but does not prevent timing
analysis during computation. These limitations are doc-
umented. Zenroom makes no claims about resistance to
side-channel attacks by sophisticated adversaries with
physical access.

6 The Zencode Language

Zencode is a domain-specific language for cryptographic
operations that reads like structured English. This is not

13

marketing language. Contracts written in Zencode can
be read and understood by stakeholders with no program-
ming experience. The syntax is constrained enough to be
unambiguous while remaining natural enough to be com-
prehensible. This balance is the result of careful design
and eight years of refinement based on production use.

The language design started with a question: what would
a cryptographic contract look like if it had to be readable
in a courtroom or regulatory hearing? Not pseudocode
that requires translation. Not documentation that might
diverge from implementation. The actual executable code,
readable by non-technical stakeholders. This constraint
shaped everything about Zencode.

6.1 Behavior-Driven Development Syntax

Zencode adopts the syntax of Behavior-Driven Develop-
ment (BDD), specifically the Given-When-Then structure
popularized by Cucumber and similar testing frameworks.
BDD syntax was designed to bridge technical and non-
technical stakeholders in software projects. Developers
write executable specifications that business analysts can
read and verify. This alignment of interests makes BDD
syntax well-suited for cryptographic contracts where le-
gal, compliance, and technical concerns intersect.

The BDD influence is visible in statement structure. Zen-
code contracts consist of statements beginning with key-
words: Given, When, Then, And. These keywords orga-
nize statements into phases corresponding to contract
execution stages. The structure is rigid by design. Flexibil-
ity in statement ordering would require complex grammar
and ambiguous parsing. Rigidity enables simple parsing
and clear semantics.

Consider a minimal Zencode contract:

Given I have a 'string' named 'message’
When I create the hash of 'message’
Then print the 'hash'

This contract can be read by someone unfamiliar with
programming. The Given statement declares input. The
When statement performs computation. The Then state-
ment specifies output. The contract maps directly to its
purpose: hash a message and return the result.

The BDD syntax provides scaffolding for statement com-
position. The And keyword allows multiple statements in
a phase without repeating the phase keyword:

Given I have a 'string' named 'message’
And T have a 'string' named 'salt’
When I create the hash of 'message’
And I append 'salt' to 'hash'

Then print all data

This avoids repetitive Given statements while maintaining
clear phase boundaries. The And keyword is syntactic
sugar. Internally, "And I have” is processed identically to

Dyne.

org Z @ DYNE.ORG

“Given I have”. The distinction exists for human readabil-
ity, not parser requirements.

The BDD syntax also establishes conventions for variable
references. Variables are enclosed in single quotes. This
makes variable names visually distinct from statement
keywords and clearly marks where data flows between
statements. The choice of single quotes rather than dollar
signs or other programming conventions maintains the
natural language appearance while providing unambigu-
ous parsing.

6.2 The Given-When-Then Paradigm

The three-phase structure is not arbitrary. It maps to the
natural flow of computation: input, processing, output.
More importantly, it maps to the security requirements
of cryptographic contract execution.

Given phase: Input validation and loading. Every object
entering contract execution must be declared and vali-
dated in this phase. The Given phase corresponds to the
recognition phase in LangSec terminology. Raw input is
parsed according to declared schemas, type-checked, and
converted to internal representations. Invalid input halts
execution before processing begins.

The Given phase enforces explicit declaration. You cannot
process data you have not loaded. You cannot load data
without specifying its type and encoding. This explicitness
prevents an entire class of vulnerabilities where implicit
assumptions about input lead to unexpected behavior.

Given statements declare what exists rather than creating
new objects. “Given I have a ’string’ named ‘message’
states that the input contains a string called message. If
the input does not contain such a string, execution fails.
This declaration-before-use pattern catches errors early
and makes contract requirements explicit.

When phase: Computation and transformation. All data
manipulation happens in this phase. Cryptographic op-
erations, arithmetic, string manipulation, object creation,
and control flow all occur in When statements. The When
phase operates on validated data from the Given phase.
It cannot access raw input or modify the output being
constructed.

The When phase allows object creation and modification.
Unlike Given which declares existing objects, When cre-
ates new objects through computation. "When I create
the hash of 'message’ generates a new object called hash
from existing data. The distinction between declaration
and creation clarifies data flow and makes contract logic
easier to follow.

When statements can be conditional or iterative. If blocks
allow branching based on runtime conditions. Foreach
blocks allow iteration over collections. These control
structures nest within the When phase but maintain phase
semantics. Code inside an if block in When cannot per-
form Given-phase loading or Then-phase output.

14

Then phase: Output formatting and printing. This phase
takes computation results from When and formats them
for the calling application. Then statements select what
data to output and how to encode it. “Then print the
’hash’™ outputs the hash object. "Then print all data” out-
puts everything in the computation workspace.

The Then phase is write-only with respect to output. Once
data is written to output, it cannot be read back or mod-
ified. This prevents contracts from examining partial
output and changing behavior based on what has been
printed. Output is accumulated and returned atomically
when contract execution completes successfully.

The three-phase structure enforces separation of concerns
at the language level. You cannot mix input validation
with computation or computation with output formatting.
Each phase has a defined purpose and limited scope. This
constraint simplifies reasoning about contract behavior
and prevents subtle bugs that emerge when concerns mix.

6.3 Advanced Control Flow: Branching and
Iteration

Zencode is not a straight-line language. Contracts can
branch on conditions and iterate over collections. These
control structures introduce complexity but that complex-
ity is bounded and explicit.

Conditional execution:

If I verify the 'signature’
When I create the 'credential’
Then print the 'credential’
Endif

The If statement evaluates a condition. If true, the state-
ments between If and Endif execute. If false, they are
skipped. The condition must be a statement that returns
a boolean result. In this example, signature verification
either succeeds or fails. The credential is created only if
verification succeeds.

If blocks can contain When and Then statements. The
phase structure is maintained within branches. You can-
not put Given statements inside an If block because input
validation cannot be conditional. Either the input is valid
or it is not. Conditional validation would create ambigu-
ous contract semantics.

If blocks can nest but only to implementation-defined
depth. The default maximum nesting is configurable at
VM initialization. Deep nesting is typically a sign of com-
plex logic better expressed differently. The nesting limit
prevents stack overflow and makes contract complexity
visible.

Bounded iteration:

Given I have a 'string array' named 'messages’
Foreach 'message' in 'messages'

When I create the hash of 'message’
Endforeach

Dyne.

org Z @ DYNE.ORG

Then print all data

The Foreach statement iterates over elements of a collec-
tion. For each element, the loop body executes with the
element bound to a variable. The loop terminates when
all elements have been processed or when the maximum
iteration count is reached.

The maximum iteration count is set at VM initialization
and cannot be changed at runtime. This prevents infinite
loops and makes loop termination decidable. If a contract
requires more iterations than the maximum, execution
halts with an error. This is a limitation but it is a delib-
erate one. Unbounded iteration would make Zencode
Turing complete and bring all the verification problems
that entails.

Foreach loops can contain If blocks and If blocks can
contain Foreach loops. The nesting is explicit in the syntax
and bounded by configuration. The state machine tracks
nesting depth and enforces limits.

The control structures are constrained in ways that make
verification tractable. No backward jumps means control
flow is acyclic. No goto or arbitrary branching means
the control flow graph is simple. No break or continue
means loop bodies always complete or fail entirely. These
constraints limit expressiveness but they make contract
behavior predictable.

6.4 Declarative Schema Validation

Every data object in Zencode has a schema. The schema
defines the structure, encoding, and constraints of the ob-
ject. Schemas are declarative specifications that the VM
enforces automatically. Contract authors declare schemas
in Given statements. The VM validates input against
schemas and rejects anything that does not match.

Simple schemas:

Given I have a 'string' named 'username'’
Given I have a 'number' named 'age'
Given I have a 'hex' named 'publicKey'

These statements declare simple objects with basic
schemas. A string is UTF-8 text. A number is a floating-
point value. A hex is binary data encoded as hexadecimal.
The VM validates that the input object has the declared
encoding and converts it to internal representation.

The encoding declaration serves two purposes. It tells
the VM how to decode input and it documents what the
contract expects. An auditor reading the contract sees
explicitly that publicKey must be hex-encoded. This is not
hidden in implementation code or inferred from context.

Array schemas:

Given I have a 'string array' named 'names’
Given I have a 'number array' named 'values'

15

Arrays have homogeneous element types. All elements of
a string array must be strings. All elements of a number
array must be numbers. The VM validates each element
against the declared type and rejects arrays with mixed

types.

This homogeneity constraint simplifies processing. Code
that iterates over a string array knows every element
is a string. No runtime type checking is needed. The
constraint also catches errors where mixed-type data is
passed inadvertently.

Dictionary schemas:

Given I have a 'string dictionary' named 'configuration'

Dictionaries are key-value maps. The schema declares
the value type. All values in a string dictionary must
be strings. Keys are always strings. Dictionaries allow
flexible data structures while maintaining type safety.

Cryptographic schemas:

Cryptographic objects have complex internal structures.
A public key is not just binary data but a specific mathe-
matical object with properties like point-on-curve mem-
bership. Cryptographic schemas encode these require-
ments.

Given I have my 'keyring'
Given I have a 'verifiable credential' named 'diploma

The keyring schema is defined by the ECDH scenario. It
specifies the structure of cryptographic keys for different
algorithms. The verifiable credential schema is defined
by the W3C scenario. It specifies the structure of W3C
Verifiable Credentials including signatures, proofs, and
metadata.

These schemas are scenario-specific. Loading a keyring
requires declaring a scenario that defines the keyring
structure. Scenarios are Zencode modules that register
statement patterns and schema definitions. The modu-
larity allows extending Zencode with new cryptographic
schemes without modifying the core language.

Schema validation is not optional. Every object must
match its declared schema. The VM validates on input
and on object creation. When a When statement creates
a new object, the VM validates that the result matches
the expected schema for that operation. This validation
catches implementation errors where cryptographic oper-
ations produce malformed output.

The declarative schemas serve as executable documenta-
tion. Reading a contract’s Given statements shows ex-
actly what input structure the contract expects. Reading a
When statement that creates an object shows what schema
the result will have. The schemas are not comments that
might be wrong. They are enforced specifications that the
VM checks.

Dyne.

org Z @ DYNE.ORG

6.5 Error Handling and Execution Guarantees

Zencode contracts either succeed completely or fail com-
pletely. There is no partial success. If any statement fails,
the entire contract fails and no output is produced. This
all-or-nothing semantics simplifies error handling and
provides clear execution guarantees.

When a statement fails, execution halts immediately. The
VM does not attempt recovery or continue execution. It re-
turns an error message describing what failed and where.
The error message includes the line number of the failing
statement and the reason for failure. This makes debug-
ging tractable.

Error messages are structured and consistent. They fol-
low a format that makes parsing and automated handling
possible:

[' Zencode line 12 pattern not found:
Given I have a 'nonexistent' named 'object’

The message identifies the line number, the type of er-
ror, and the problematic statement. Applications calling
Zenroom can parse these messages and take appropriate
action. The structured format also helps humans diagnose
problems quickly.

The execution guarantees are straightforward:

Atomicity: A contract either completes fully or produces
no output. There are no partial results. This matches
transaction semantics in databases and makes contract
execution composable.

Determinism: The same contract with the same input
produces the same output every time. No hidden state, no
timing dependencies, no platform-specific behavior. This
makes contract execution reproducible and verifiable.

Isolation: One contract execution cannot affect another.
No shared state, no side effects, no persistent data. Each
execution starts fresh and ends clean.

Termination: Every contract terminates in bounded time.
No infinite loops, no unbounded recursion, no resource
exhaustion. The bounds are configurable but they are
enforced.

These guarantees are not best-effort or probabilistic. They
are structural properties of the VM and language design.
Applications can rely on them for system design and se-
curity analysis.

6.6 Pattern Matching and Statement Resolution

Zencode statements are resolved through pattern match-
ing against a registry of known patterns. Each scenario
registers patterns that map statement text to implemen-
tation functions. The parser matches input statements
against registered patterns and invokes the correspond-
ing functions.

Pattern structure:

16

A pattern consists of literal text and variable placeholders:
When I create the hash of "'

The literal text is "When I create the hash of”. The variable
placeholder is marked by single quotes. When the parser
encounters a statement matching this pattern, it extracts
the variable value and passes it to the implementation
function.

Patterns can have multiple variables:
When I create the result of '' + "'

The parser extracts both variable values and passes them
as arguments. The order of arguments matches the order
in the pattern.

Pattern normalization:

Before matching, statements are normalized. Articles (a,
an, the) are removed. Pronouns (I) are removed. Multi-
ple spaces are collapsed to single spaces. The string is
converted to lowercase. This normalization makes pat-
terns more forgiving of minor phrasing variations while
keeping the grammar unambiguous.

For example, these statements all match the same pattern:

When I create the hash of 'message’
When create hash of 'message’
when I CREATE the HASH of 'message’

The normalization removes stylistic differences while pre-
serving semantic content. This makes Zencode more nat-
ural to write without introducing ambiguity.

Pattern disambiguation:

If multiple patterns could match the same statement, the
parser reports an error at pattern registration time, not
at execution time. Ambiguous grammars are rejected
during scenario loading before any contracts execute. This
ensures that every statement has exactly one meaning.

Disambiguation happens through explicit pattern defini-
tions. Scenario developers must ensure their patterns do
not overlap with existing patterns. If a new scenario in-
troduces ambiguity, the scenario loading fails with a clear
error message indicating which patterns conflict.

Extensibility through scenarios:

New statements are added by writing scenarios that reg-
ister new patterns. A scenario is a Lua module that calls
registration functions:

Given(”I have a 'string' named ''”, function(name)
-- implementation

end)

This registers a Given-phase pattern and associates it with
an implementation function. When the parser encounters
a matching statement, it calls the function with extracted
variables.

Dyne.

org Z @ DYNE.ORG

Scenarios can register multiple patterns for the same op-
eration to provide synonyms:

Given(”I have a 'string' named ''”, load_ string)
Given(”I have a 'string' called ''”, load_ string)

Both patterns invoke the same function. This allows nat-
ural phrasing variations without duplicating implemen-
tation. The synonyms are explicit in the scenario code,
making the equivalence visible to anyone reading the
implementation.

The pattern matching approach makes Zencode extensible
without modifying the core language. New cryptographic
schemes, new data structures, new operations all extend
through scenarios rather than language changes. This al-
lows domain experts to add functionality while preserving
the core guarantees of the language and VM.

7 Cryptographic Capabilities

Zenroom provides cryptographic primitives through the
Apache Milagro Crypto Library (AMCL) and additional
implementations for post-quantum algorithms and ad-
vanced schemes. The cryptographic capabilities are not a
feature checklist but a carefully selected set of operations
required by production systems implementing digital iden-
tity, verifiable credentials, and blockchain integration.

The selection reflects current cryptographic transitions.
Organizations must support legacy algorithms for exist-
ing infrastructure while preparing for post-quantum mi-
gration and implementing privacy-preserving techniques
for credential systems. Zenroom provides this range not
through optional plugins but as integrated functionality
verified as a unit.

7.1 Primitives and Curve Support

7.1.1 Elliptic Curves: NIST P-256, secp256k1,
BLS12-381, Ed25519

Elliptic curve cryptography provides the foundation for
most modern public-key operations. Zenroom supports
multiple curves chosen for specific use cases rather than
attempting comprehensive coverage.

NIST P-256: The secp256r1 curve mandated by FIPS stan-
dards and widely deployed in enterprise systems. Orga-
nizations with compliance requirements for federal stan-
dards need P-256 support. The curve is well-studied and
implemented in hardware security modules and trusted
platform modules. Zenroom’s P-256 implementation in-
teroperates with systems using ECDSA signatures and
ECDH key exchange following NIST specifications.

secp256k1: The curve used by Bitcoin and Ethereum.
Blockchain applications require secp256k1 for transac-
tion signing and address derivation. The curve has re-
ceived extensive cryptanalysis from the cryptocurrency
community. Zenroom implements deterministic ECDSA

17

signatures following RFC 6979 to eliminate nonce reuse
vulnerabilities that have compromised Bitcoin wallets.

BLS12-381: A pairing-friendly curve enabling advanced
cryptographic schemes. The curve supports BLS signa-
tures with efficient aggregation, making it suitable for
consensus protocols and threshold signatures. Zenroom
uses BLS12-381 for verifiable random functions, aggregate
signatures, and as the foundation for BBS+ credentials
with selective disclosure.

Ed25519: The Edwards curve variant of Curve25519 pro-
viding fast signature operations with strong security guar-
antees. Ed25519 signatures are deterministic by design
and resistant to side-channel attacks in software imple-
mentations. The curve is widely deployed in SSH, TLS, and
messaging protocols. Zenroom’s Ed25519 implementa-
tion follows the original specification without extensions
or modifications.

Each curve is implemented through AMCL with constant-
time operations for sensitive computations. Point multi-
plication uses algorithms resistant to timing attacks. Point
validation checks ensure that inputs represent valid curve
points before cryptographic operations. These checks
prevent invalid curve attacks where adversaries provide
points not on the declared curve to extract key material.

The multi-curve support creates implementation complex-
ity. Each curve requires separate code paths for arithmetic
operations. Zenroom addresses this through a factory
pattern where curve-specific operations are registered
at initialization. Contracts specify which curve to use
through scenario declarations. The VM validates that all
operations in a contract use compatible curves and rejects
mixed-curve operations.

7.1.2 Pairing-Based Cryptography

Pairing-friendly curves like BLS12-381 support bilinear
pairings: mathematical operations that map pairs of el-
liptic curve points to elements of a finite field. Pairings
enable cryptographic schemes impossible with traditional
elliptic curves.

Zenroom implements pairings for several applications:

BLS signatures: Short signatures that can be efficiently
aggregated. Multiple signatures on different messages
by different signers can be combined into a single signa-
ture verified in one operation. This reduces bandwidth
and verification time in consensus protocols where many
participants sign the same data.

Threshold signatures: A signature scheme where sign-
ing requires cooperation among multiple parties. A
threshold of participants must collaborate to produce a
valid signature but any subset larger than the threshold
can sign. This enables distributed trust without single
points of failure.

Verifiable random functions: Functions that produce
random outputs with proofs that the output was correctly

Dyne.

org Z @ DYNE.ORG

computed. VRFs are used in consensus protocols for
leader election and in credential systems for unlinkable
pseudonyms.

Pairing operations are computationally expensive com-
pared to standard elliptic curve operations. A single pair-
ing computation takes longer than dozens of point mul-
tiplications. Zenroom contracts using pairings must ac-
count for this cost. The bounded execution model limits
how many pairing operations a contract can perform, pre-
venting resource exhaustion but also constraining what
schemes are practical.

7.2 Post-Quantum Cryptography

Current elliptic curve cryptography will be vulnerable to
quantum computers once such computers reach sufficient
scale. NIST has standardized post-quantum algorithms
and mandated transition timelines. Zenroom implements
the NIST selections to prepare for this transition.

7.2.1 ML-KEM (Kyber) Key Encapsulation

ML-KEM, previously known as Kyber during the NIST
competition, provides key encapsulation using lattice-
based cryptography. The mechanism allows establishing
shared secrets resistant to quantum attack. ML-KEM-768
provides security roughly equivalent to AES-192 against
both classical and quantum adversaries.

Zenroom implements ML-KEM for hybrid key exchange.
A contract can establish a shared secret using both ECDH
and ML-KEM, combining them such that breaking ei-
ther scheme is required to compromise the session. This
hedges against both premature quantum computers and
undiscovered weaknesses in lattice assumptions.

The ML-KEM implementation follows the NIST specifica-
tion exactly. The parameter sets, encoding formats, and
algorithmic steps match the standard. This ensures in-
teroperability with other ML-KEM implementations and
simplifies security analysis by auditors familiar with the
standard.

ML-KEM operations are significantly slower than ECDH.
Key generation, encapsulation, and decapsulation all take
longer and produce larger outputs. A ML-KEM-768 public
key is approximately 1.2KB compared to 33 bytes for a
compressed P-256 point. Contracts using ML-KEM must
account for these size and performance characteristics.

7.2.2 ML-DSA (Dilithium) Signatures

ML-DSA, formerly Dilithium, provides digital signatures
using lattice-based cryptography. The scheme offers post-
quantum security with relatively small signatures com-
pared to other post-quantum signature schemes. ML-DSA-
65 signatures are approximately 3KB, much larger than 64-
byte ECDSA signatures but smaller than the tens of kilo-
bytes produced by some hash-based signature schemes.

18

Zenroom implements ML-DSA for signing operations that
must remain secure against quantum adversaries. The im-
plementation supports both randomized and deterministic
variants. Deterministic signing derives randomness from
the message and secret key, eliminating dependence on
random number generation quality at signing time.

ML-DSA verification is reasonably fast but signing is slow
compared to ECDSA. A contract that signs many messages
may hit computational limits. The bounded execution
model prevents runaway computation but also means
that bulk signing operations may require splitting across
multiple contract executions.

7.2.3 NTRU

NTRU is a lattice-based cryptosystem providing both en-
cryption and key exchange. NTRU has a longer history
than newer NIST selections, having been proposed in
1996 and extensively analyzed. Some organizations prefer
NTRU’s longer track record over newer schemes.

Zenroom’s NTRU implementation provides encryption
rather than key encapsulation. A contract can encrypt
data to a NTRU public key and decrypt with the corre-
sponding private key. The encryption produces larger
ciphertexts than symmetric encryption but avoids the key
distribution problem.

NTRU was not selected by NIST in the most recent stan-
dardization round, which considered other lattice schemes
superior. Zenroom includes NTRU primarily for compat-
ibility with existing systems that deployed it before the
NIST selections were finalized. New deployments should
consider ML-KEM and ML-DSA instead unless specific
requirements mandate NTRU.

7.3 Advanced Signature Schemes
7.3.1 BBS+ Zero-Knowledge Proofs

BBS+ is a signature scheme enabling selective disclosure.
A signer creates a signature over multiple attributes. The
signature holder can prove knowledge of a valid signa-
ture while revealing only a subset of attributes. The proof
reveals nothing about unrevealed attributes and is unlink-
able: multiple proofs cannot be correlated to the same
signature.

Zenroom implements BBS+ for verifiable credential sys-
tems. A credential issuer signs a set of claims about a
subject. The subject can later prove specific claims to a
verifier without revealing other claims or enabling track-
ing. For example, a credential containing name, birthdate,
address, and citizenship can prove citizenship without
revealing the other attributes.

The BBS+ implementation follows the scheme published
by Dan Boneh, Xavier Boyen, and Hovav Shacham with
extensions for multi-message signing. Signing and veri-
fication use BLS12-381 pairings. A signature is a single
group element regardless of how many attributes it covers.

Dyne.

org Z @ DYNE.ORG

Selective disclosure proofs are zero-knowledge proofs of
knowledge of a signature on committed values.

BBS+ provides strong privacy guarantees but requires
careful protocol design. The credential issuer must not
embed tracking identifiers in the signature. The verifier
must not request attribute combinations unique to a single
individual. These operational security concerns are not
addressed by the cryptography alone but require proper
system design.

7.3.2 Schnorr Signatures

Schnorr signatures provide a simpler and more elegant
signature scheme than ECDSA. The signatures have secu-
rity proofs in the random oracle model and enable efficient
multi-signatures where multiple signers jointly sign a mes-
sage. Schnorr signatures were patented until 2008 which
delayed adoption, but the patents expired and Schnorr is
now widely implemented.

Zenroom supports Schnorr signatures on multiple curves
including secp256k1 and Ed25519. The secp256k1 im-
plementation is relevant for Bitcoin where Schnorr sig-
natures were adopted in the Taproot upgrade. Ed25519
is fundamentally a Schnorr signature variant, and Zen-
room’s implementation supports both the standard Ed-
DSA variant and variants for specific protocols.

Schnorr multi-signatures enable interesting applications.
Multiple parties can jointly sign without requiring a sin-
gle party to collect all signatures and aggregate them.
The signing protocol is interactive but results in a signa-
ture indistinguishable from a single-party signature. This
provides privacy and efficiency benefits for multi-party
authorization.

7.3.3 Deterministic ECDSA

Standard ECDSA signature generation requires a random
nonce for each signature. If the nonce is predictable or
reused, the private key can be recovered from signatures.
Many ECDSA vulnerabilities in production systems re-
sulted from poor nonce generation. The PlayStation 3
jailbreak, numerous Bitcoin wallet compromises, and var-
ious other incidents all exploited nonce failures.

RFC 6979 specifies deterministic ECDSA where the nonce
is derived from the message and private key using HMAC-
DRBG. This eliminates dependence on random number
generation at signing time. The signatures are identical
to standard ECDSA and verify with the same algorithms.
Only signature generation differs.

Zenroom implements deterministic ECDSA for all sup-
ported curves. Contracts do not choose between random
and deterministic variants. Deterministic generation is
always used. This eliminates an entire vulnerability class
without requiring contract authors to understand nonce
generation security.

Deterministic ECDSA has one subtle concern: side-
channel attacks may be easier when signature genera-

19

tion is deterministic because adversaries can replay the
same signature generation and observe timing differences.
Zenroom mitigates this through constant-time implemen-
tations of sensitive operations but makes no claims about
resistance to sophisticated side-channel adversaries with
physical access.

7.4 Zero-Knowledge Proof Systems

Beyond BBS+ selective disclosure, Zenroom supports sev-
eral zero-knowledge proof constructions for specific ap-
plications.

Schnorr proofs of knowledge: A prover can demon-
strate knowledge of a discrete logarithm without revealing
it. These proofs are used in authentication protocols and
as building blocks for more complex proofs. Zenroom pro-
vides Schnorr proof primitives that contracts can combine
into application-specific protocols.

Range proofs: A prover can demonstrate that a commit-
ted value lies within a specific range without revealing
the exact value. Range proofs are used in confidential
transactions where amounts must be proven non-negative
without revealing transaction values. Zenroom’s range
proof implementation uses Bulletproofs for logarithmic
proof size.

Set membership proofs: A prover can demonstrate that
a committed value belongs to a specific set without re-
vealing which element. These proofs enable credential
systems where the holder proves possession of a creden-
tial from an authorized issuer without revealing which
credential.

The zero-knowledge implementations are not general-
purpose proving systems like SNARKs or STARKs. Those
systems require trusted setups or enormous proof sizes un-
suitable for the constraint environments Zenroom targets.
The implemented proofs are specialized constructions
with well-understood security properties and practical
performance characteristics.

7.5 Credential and Identity Cryptography

Zenroom implements cryptographic primitives specif-
ically for digital identity and verifiable credential sys-
tems. These are not generic primitives but purpose-built
schemes for credential issuance, presentation, and verifi-
cation.

Coconut credentials: A threshold credential scheme
where credential issuance is distributed among multiple
authorities. No single authority can track credential usage
and threshold signing means credentials remain valid even
if some authorities go offline. Coconut combines BLS
signatures with zero-knowledge proofs to provide privacy-
preserving credentials with selective disclosure.

W3C Verifiable Credentials: Cryptographic support
for the W3C Verifiable Credentials specification includ-
ing JSON-LD signatures with Ed25519 and ECDSA, JWT-

Dyne.org

Z @ DYNE.ORG

encoded credentials, and selective disclosure using BBS+.
The implementation handles credential schema validation,
proof verification, and revocation checking.

Decentralized Identifiers (DIDs): Cryptographic op-
erations for did:dyne and compatibility with other DID
methods. This includes key rotation, DID document up-
dates, and proof of control over DIDs. The implementation
integrates with the W3C DID specification and supports
multiple proof formats.

SD-JWT: Selective disclosure for JSON Web Tokens using
hash-based disclosure. The issuer creates a JWT with
salted hashes of claims. The holder selectively reveals
claims by providing the salt and original value. Verifiers
check that revealed claims hash correctly. This provides
simpler selective disclosure than BBS+ without requiring
pairing-based cryptography.

These credential schemes are complex protocols, not sim-
ple signature operations. They require carefully designed
data flows and state management. Zenroom’s scenario
system encapsulates this complexity behind readable Zen-
code statements. A contract can issue or verify a cre-
dential without implementing the underlying protocol
details.

8 Scenarios: Production-Ready
Implementations

Scenarios are Zencode modules that implement domain-
specific functionality. Each scenario provides statements,
schemas, and cryptographic operations for a particular
application area. Scenarios are not example code or tu-
torials but production implementations that have been
deployed at scale.

The scenario architecture allows extending Zencode with-
out modifying the core VM or language. New crypto-
graphic schemes, new data formats, new protocol inte-
grations all happen through scenarios. This modularity
has practical benefits: domain experts can implement sce-
narios while the VM maintainers focus on security and
stability. An organization needing custom cryptography
can develop a private scenario without forking Zenroom.

8.1 W3C Verifiable Credentials and DIDs

The W3C scenario implements the Verifiable Credentials
and Decentralized Identifiers specifications. These are not
toy implementations for demos but complete support for
credential issuance, presentation, and verification follow-
ing the official specifications.

Credential issuance:

A contract can create a verifiable credential containing
claims about a subject. The issuer signs the credential
using their private key. The signature algorithm can be
Ed25519, ECDSA, or BBS+ depending on requirements.
Ed25519 and ECDSA produce simple signatures. BBS+

enables selective disclosure where the holder later reveals
only specific claims.

The credential structure follows W3C specification: con-
text declarations, credential type, issuance date, expiration
date, credential subject with claims, and cryptographic
proof. Zencode statements handle schema validation, en-
suring credentials match their declared type and contain
required fields.

Credential presentation:

A holder presents credentials to verifiers. For creden-
tials signed with Ed25519 or ECDSA, presentation means
providing the complete credential. The verifier checks
the signature and validates against issuer’s public key.
For BBS+ credentials, presentation can be selective. The
holder creates a zero-knowledge proof revealing chosen
claims while hiding others. The proof is unlinkable: mul-
tiple presentations cannot be correlated.

Zencode contracts specify which claims to reveal. The VM
generates the cryptographic proof automatically. The con-
tract author does not implement zero-knowledge proof
protocols. They write statements like "When I create se-
lective disclosure of ’credential’ revealing ’claim1’ and
"claim2’”. The underlying complexity is encapsulated in
the scenario implementation.

DID operations:

DIDs are decentralized identifiers that do not depend on
centralized registries. A DID resolves to a DID document
containing public keys, service endpoints, and authen-
tication methods. The W3C scenario supports creating
DIDs, generating DID documents, and proving control
over DIDs through cryptographic challenges.

The did:dyne method is implemented natively. This
method uses deterministic generation where the DID iden-
tifier is derived from the public key. No blockchain or
distributed ledger is required. The DID document is cryp-
tographically linked to the identifier. Anyone can verify
the DID document matches the identifier without external
lookups.

Support for other DID methods varies. Methods requir-
ing blockchain interaction or external resolver services
cannot be fully implemented within Zenroom because
the VM has no network access. The scenario provides the
cryptographic operations (key management, signing, ver-
ification) but integration with external systems requires
the calling application to handle network communication.

Revocation:

Credential revocation is supported through status lists.
An issuer publishes a revocation list as a credential. Each
bit in a bitstring represents a credential’s revocation status.
Verifiers check the status list before accepting a credential.
This approach is specified in the W3C Status List 2021
specification.

20

Dyne.

org Z @ DYNE.ORG

Zenroom can verify credentials against status lists but
cannot publish status lists to external systems. The call-
ing application must handle distribution. This is a conse-
quence of isolation: the VM cannot write to filesystems
or make network requests. The division of responsibility
is explicit in the architecture.

8.2 Blockchain Integration

Blockchain scenarios provide cryptographic operations
for transaction signing, address derivation, and message
verification. These are not full blockchain node implemen-
tations. Zenroom does not maintain blockchain state or
validate consensus. It provides the cryptographic primi-
tives applications need to interact with blockchains.

8.2.1 Bitcoin and UTXO Model

The Bitcoin scenario implements operations for transac-
tion creation and signing. Bitcoin uses the UTXO (Un-
spent Transaction Output) model where transactions con-
sume previous outputs and create new outputs. Trans-
action signing follows Bitcoin’s complex rules for script
evaluation and signature encoding.

Address derivation:

Zenroom generates Bitcoin addresses from public keys.
Multiple address formats are supported: legacy P2PKH,
P2SH, and native SegWit (bech32). The implementation
handles encoding conversions and checksum validation
for each format. Addresses are derived deterministically
from keys, allowing key management systems to regener-
ate addresses without storing them.

Hierarchical Deterministic (HD) wallet support follows
BIP32 and BIP44 specifications. A contract can derive
child keys from a master key using derivation paths. This
enables wallet implementations where a single seed gen-
erates many addresses. The derivation is deterministic
and follows industry-standard paths for Bitcoin mainnet
and testnet.

Transaction signing:

Bitcoin transaction signing is complex because transac-
tions can have multiple inputs with different signing re-
quirements. Each input references a previous output with
a script defining spending conditions. Common scripts
require ECDSA signatures over specific transaction data.

Zenroom computes transaction hashes according to Bit-
coin’s serialization rules including handling for SegWit
transactions. The contract provides transaction data and
keys. The scenario computes what data to sign for each
input, generates signatures, and formats them according
to Bitcoin script requirements.

The implementation supports standard transaction types
but not arbitrary scripts. Complex scripts involving time-
locks, multisignature schemes, or custom opcodes may
require application-specific handling. The scenario pro-

21

vides building blocks that applications compose into full
transaction construction.

Message signing:

Bitcoin message signing uses a format distinct from trans-
action signing. A message is prefixed with a magic string,
hashed, and signed. The signature includes a recovery
byte allowing public key recovery from signature alone.
This format is used for proving address ownership without
creating transactions.

8.2.2 Ethereum and EVM Compatibility

The Ethereum scenario implements operations for
Ethereum transaction signing and smart contract interac-
tion. Ethereum’s account-based model differs from Bit-
coin’s UTXO model. Transactions transfer value between
accounts or invoke contract code.

Transaction signing:

Ethereum transactions include nonce, gas parameters, re-
cipient address, value, and optional data payload. The
transaction is serialized using RLP (Recursive Length Pre-
fix) encoding, hashed with Keccak-256, and signed with
ECDSA on secp256kl. The signature includes a recov-
ery byte and chain ID to prevent replay attacks across
different Ethereum networks.

Zenroom computes transaction hashes and produces sig-
natures. It does not maintain account state or calculate
gas costs. The calling application must query blockchain
state to determine appropriate nonce and gas values. This
separation is deliberate: maintaining state would require
network access and persistent storage that violate isola-
tion guarantees.

EIP-712 typed data signing;:

Ethereum applications use EIP-712 for structured data
signing. Rather than signing raw bytes, applications sign
typed data structures with domain separation. This pre-
vents signature reuse across different applications and
makes signed data human-readable in wallet interfaces.

The scenario implements EIP-712 encoding: domain sep-
arator construction, type hashing, and structured data
encoding. A contract specifies data types and values. The
scenario generates the correct hash for signing. This sup-
ports decentralized exchange orders, token permits, and
other off-chain signed messages.

Smart contract verification:

Zenroom can verify data produced by Ethereum smart
contracts when that data is provided as input. For exam-
ple, a contract might verify Merkle proofs from Ethereum
storage or validate signatures produced by on-chain opera-
tions. What Zenroom cannot do is query Ethereum nodes
or verify blockchain state directly. It processes provided
data but does not fetch data from external sources.

Dyne.org

Z @ DYNE.ORG

8.2.3 Smart Contract Verification

Beyond transaction operations, blockchain scenarios pro-
vide tools for verifying cryptographic proofs associated
with smart contracts. These are patterns that appear
across multiple blockchain platforms.

Merkle proofs:

Smart contracts often commit to large datasets using
Merkle trees and provide proofs that specific data belongs
to the committed set. Zenroom verifies Merkle inclusion
proofs: given a Merkle root, a data element, and a proof
path, verify that the element is included in the tree.

This enables applications where blockchain contracts com-
mit to off-chain data. A contract publishes a Merkle root
on-chain. Users download data off-chain and verify inclu-
sion proofs. The verification happens in Zenroom without
querying the blockchain. The application provides the
Merkle root, data, and proof as inputs.

Signature aggregation:

Some blockchain protocols use signature aggregation to
compress proofs. Multiple signatures are combined into a
single aggregate signature. BLS signatures support this
efficiently. Zenroom verifies aggregate signatures given
the aggregate, the messages, and public keys.

This pattern appears in consensus protocols where valida-
tors sign blocks and their signatures are aggregated. Light
clients verify aggregates without checking individual sig-
natures. Zenroom provides the cryptographic verification
without implementing full consensus protocol logic.

8.3 JWT/JWS/SD-JWT Token Management

The JOSE scenario implements JSON Object Signing and
Encryption standards used widely for authentication to-
kens, API authorization, and federated identity. JWT
(JSON Web Tokens) are ubiquitous in web applications.
Zenroom provides production-grade implementation of
JWT creation and verification.

JWT creation:

A contract creates a JWT by specifying claims and select-
ing a signature algorithm. Supported algorithms include
EdDSA, ECDSA with multiple curves, and RSA. The sce-
nario handles JSON serialization, Base64URL encoding,
and signature generation. The output is a standard JWT
that any compliant implementation can verify.

JWTs typically encode user identity and permissions for
API access. An authentication service creates tokens after
login. APIs verify tokens on each request. Zenroom can
serve either role: creating tokens in authentication flows
or verifying tokens in API gateways.

JWS verification:

JSON Web Signatures extend JWT with additional sig-
nature options. A JWS can have detached payloads or
multiple signatures. Zenroom verifies JWS structures:

parse header, decode payload, verify signature matches.
The implementation validates algorithm parameters and
rejects weak algorithms or malformed structures.

The scenario protects against common JWT vulnerabil-
ities. It does not accept “none” algorithm. It validates
algorithm matches expected key type. It checks token
expiration and not-before claims. These checks prevent
attacks that have compromised production systems using
JWT libraries with poor defaults.

SD-JWT selective disclosure:

Selective Disclosure JWT is a specification enabling
holder-initiated selective disclosure without zero-
knowledge proofs. The issuer creates a JWT where some
claims are salted hashes. The holder receives claim values
and salts. To present the token, the holder includes
chosen claims and salts. The verifier checks hashes match
disclosed values.

SD-JWT provides simpler selective disclosure than BBS+
because it uses only hashing, not pairings. The tradeoff is
that disclosure reveals unique identifiers: multiple presen-
tations can be linked if the issuer included tracking data.
For use cases where linkability is acceptable, SD-JWT
offers easier implementation.

Zenroom implements both issuing and verifying SD-JWT.
A contract creating an SD-JWT specifies which claims
to make selectively disclosable. The scenario generates
hashes and packages salt values for the holder. A verifying
contract receives the SD-JWT and disclosed claims and
validates hashes.

8.4 Coconut Credentials and Selective Disclosure

Coconut is a threshold credential scheme developed specif-
ically for the DECODE project. Unlike W3C creden-
tials which are general-purpose, Coconut optimizes for
privacy-preserving selective disclosure with threshold is-
suance. The scenario implements the complete Coconut
protocol.

Threshold issuance:

Credentials are issued by multiple authorities. No single
authority can issue a credential alone. This distributes
trust and prevents single-party tracking. A subject re-
quests credential issuance from n authorities. Each au-
thority independently verifies the request and produces a
partial credential. The subject combines t partial creden-
tials into a full credential, where t is the threshold.

The threshold property means credentials remain valid if
authorities go offline or become uncooperative. As long
as t authorities remain honest and available, the system
functions. This resilience matters for production systems
where availability is critical.

Zenroom implements the authority side (verifying re-
quests and producing partial credentials) and the subject
side (combining partial credentials). The communication
between subject and authorities happens outside Zen-

22

Dyne.

org Z @ DYNE.ORG

room. The scenario provides cryptographic operations
while the application handles network protocols.

Selective disclosure:

Coconut credentials contain attributes as committed val-
ues. The holder proves knowledge of a valid credential and
reveals chosen attributes. The proof is zero-knowledge:
unrevealed attributes remain hidden. The proof is unlink-
able: multiple presentations cannot be correlated even if
the verifier colludes with issuers.

A Zencode contract specifies which attributes to reveal.
The scenario generates the zero-knowledge proof auto-
matically. The implementation uses Schnorr proofs and
BLS signatures on BLS12-381. The cryptographic com-
plexity is hidden behind statements like "When I create
credential presentation revealing ’attribute1”

Verification:

Verifiers receive presentations containing revealed at-
tributes and zero-knowledge proofs. Verification checks:
the proof is valid, the credential was issued by autho-
rized authorities (verified through public keys), and the
revealed attributes are correctly opened. Verification does
not reveal unrevealed attributes or enable tracking.

The scenario handles verification mechanics. A contract
declares which authorities are trusted (their public keys)
and which attributes were revealed. The scenario validates
the presentation. The contract receives a boolean result:
verification succeeded or failed.

8.5 PVSS and Threshold Cryptography

PVSS (Publicly Verifiable Secret Sharing) enables distribut-
ing secrets among multiple parties with public verifiability.
This is foundation for threshold cryptography where op-
erations require cooperation among multiple parties. The
scenario implements Feldman VSS and PVSS construc-
tions.

Secret sharing:

A dealer distributes a secret among n participants such
that any t participants can reconstruct the secret but fewer
than t learn nothing. The shares are generated using
Shamir secret sharing with polynomial evaluation. Each
participant receives one share.

The publicly verifiable property means anyone can verify
shares are correctly generated without learning the secret.
Verification uses commitments to polynomial coefficients.
Participants check their share matches the commitments.
This prevents a malicious dealer from distributing invalid
shares.

Zenroom implements the dealer role (generating shares
and commitments) and participant role (verifying shares
and reconstructing secrets). The scenario supports using
PVSS for key generation where no single party knows the
private key but threshold subsets can jointly sign.

Threshold signatures:

23

After PVSS establishes shared secrets, participants can
jointly produce signatures without reconstructing the pri-
vate key. Each participant produces a signature share
using their share of the signing key. Combining threshold
shares produces a valid signature.

This pattern enables distributed signing where no single
party can sign alone but legitimate combinations of parties
can. The scenario implements threshold signing for BLS
signatures. The signature is identical to a single-party
signature, maintaining privacy about the threshold nature
of signing.

Distributed key generation:

PVSS enables generating keys where no party knows the
full private key. Each party runs PVSS as dealer distribut-
ing random shares. The final key is the sum of contribu-
tions. The public key is computable from commitments.
No party learns the private key.

This construction is used in distributed custody systems
where key compromise requires threshold collusion. Zen-
room provides the cryptographic operations. Applications
must handle network communication among participants
during the interactive protocol.

9 Security Audit and Verification

Security verification of cryptographic software requires
more than code review. Static analysis catches certain bug
classes but misses others. Formal verification proves prop-
erties about models that may not match implementation.
Real security confidence comes from multiple verification
approaches applied systematically. Zenroom uses testing,
fuzzing, determinism validation, and adversarial scenarios
to build confidence in implementation correctness.

The testing approach is pragmatic rather than theoretical.
We do not claim formal proof of security. Such proofs
would apply to mathematical models, not the C and Lua
implementation running on actual hardware. Instead we
test extensively, document limitations honestly, and pro-
vide mechanisms for organizations to verify behavior in
their specific deployment contexts.

9.1 Testing Methodology

Zenroom’s test suite spans multiple categories reflecting
different verification goals. Unit tests verify individual
functions. Integration tests verify scenario implementa-
tions. Determinism tests verify identical behavior across
platforms. Vector tests verify cryptographic correctness
against published test vectors. Each category serves dis-
tinct purposes and catches different bug classes.

Unit tests:

Core VM functionality is tested at the function level. Mem-
ory allocation, string handling, encoding conversions, and
data structure operations all have dedicated tests. These
tests run quickly and provide immediate feedback during

Dyne.org

Z @ DYNE.ORG

development. When a change breaks basic functionality,
unit tests catch it before deeper integration issues emerge.

The unit tests are written in Lua using Zenroom’s em-
bedded Lua environment. This tests the VM in its actual
deployment configuration, not through special testing in-
terfaces. If the tests pass, the same code paths work in
production contracts.

Integration tests:

Scenario implementations are tested through complete
contract execution. A test creates input data, executes a
contract using that data, and verifies output matches ex-
pected results. These tests verify that scenarios correctly
implement their specifications.

Integration tests use the BATS (Bash Automated Testing
System) framework. Each test is a shell script that invokes
Zenroom with specific inputs and checks outputs. This
testing approach is simple and portable. The same tests
run on development machines, continuous integration
servers, and production platforms.

Cryptographic vector tests:

Standard cryptographic test vectors verify implementa-
tion correctness. NIST provides test vectors for algorithms
like SHA-256, AES, and elliptic curve operations. The IETF
provides vectors for protocols like ECDH and EdDSA. Test
vectors from academic papers verify newer schemes like
BBS+ and Coconut credentials.

Vector tests are critical because cryptographic implemen-
tation errors often produce outputs that appear correct
but are cryptographically weak. A signature algorithm
with an implementation error might produce signatures
that verify with the same implementation but not with
others. Vector tests catch these interoperability failures
by comparing against independent implementations.

Determinism validation:

Deterministic execution is verified by running the same
contract multiple times and comparing outputs byte-for-
byte. Tests run contracts with fixed random seeds to
ensure random number generation is deterministic. Tests
run on different platforms (Linux, macOS, Windows) to
verify cross-platform determinism. Tests run with differ-
ent memory configurations to verify garbage collection
does not introduce non-determinism.

Determinism tests have found bugs that other testing
would miss. Early versions had a bug where dictionary it-
eration order varied based on hash function behavior that
differed between architectures. Unit tests did not catch
this because they ran on a single platform. Determinism
tests comparing x86 and ARM outputs found the issue
immediately.

Performance regression tests:

Cryptographic operations have expected performance
characteristics. Signature generation and verification
should complete in milliseconds. Pairing operations take

longer but still bound to reasonable time. Performance
tests detect implementation changes that accidentally in-
troduce computational overhead.

These tests are not about optimizing speed but about de-
tecting regressions. A change that makes signature ver-
ification 10x slower probably introduced a bug, not just
inefficiency. Performance tests catch these issues during
development rather than after deployment.

9.2 Fuzzing and Adversarial Testing

Fuzzing feeds malformed or unexpected inputs to software
and monitors for crashes or undefined behavior. For cryp-
tographic software, fuzzing tests parser robustness, input
validation, and error handling. Zenroom uses multiple
fuzzing approaches targeting different components.

Parser fuzzing:

The Zencode parser is fuzzed with randomly mutated
contracts. Valid contracts are generated and then mu-
tated: keywords are changed, quotes are removed, state-
ments are duplicated or reordered. The fuzzer monitors
whether the parser gracefully rejects invalid input or
crashes. Parser crashes indicate bugs that could be ex-
ploited through malicious contracts.

Parser fuzzing has found issues in statement pattern
matching and error message generation. These bugs did
not affect correct contracts but could be triggered by mal-
formed input. Fixing them improves robustness for pro-
duction deployment where input may be hostile.

Input data fuzzing:

Contracts expect input data in specific formats. The
fuzzer generates data that violates these expectations:
wrong types, missing fields, excessively large values, neg-
ative numbers where positive expected. Schema valida-
tion should reject invalid data before contracts process it.
Fuzzing verifies this rejection is robust.

Input fuzzing revealed cases where schema validation
was incomplete. Some encoding validators did not check
for overlong encodings. Some array validators did not
enforce maximum length. These issues were fixed before
affecting production deployments.

Cryptographic primitive fuzzing:

Lower-level cryptographic functions are fuzzed with ran-
dom inputs. Point addition on elliptic curves is fuzzed
with invalid points. Signature verification is fuzzed with
malformed signatures. Hash functions are fuzzed with
extreme input sizes. These tests verify that cryptographic
code handles edge cases correctly.

Cryptographic fuzzing uses specialized tools like libFuzzer
that instrument code to track code coverage and guide
fuzzing toward unexplored paths. This approach finds
edge cases that random fuzzing would miss.

Adversarial contract testing:

24

Dyne.

org Z @ DYNE.ORG

Beyond random fuzzing, specific adversarial scenarios
test known attack patterns. Contracts that attempt to
exhaust memory through excessive allocation. Contracts
that attempt to bypass phase restrictions. Contracts that
attempt timing attacks by measuring execution duration
of cryptographic operations. These scenarios verify that
security mechanisms actually work under attack.

Adversarial testing revealed the importance of computa-
tional bounds. Early versions allowed contracts to create
arbitrarily large arrays. An adversary could craft a con-
tract that appeared simple but generated gigabytes of
output. The current iteration and memory limits prevent
this class of attack.

9.3 Memory Safety Validation

Memory safety vulnerabilities like buffer overflows and
use-after-free bugs are common in C code. Zenroom is
implemented in C for performance and portability but
C provides no automatic memory safety. Verification
approaches detect memory errors during testing before
they appear in production.

Address Sanitizer:

AddressSanitizer (ASan) is a compiler instrumentation
tool that detects memory errors at runtime. Zenroom
builds with ASan enabled run tests that would crash or be-
have unpredictably if memory errors exist. ASan catches
buffer overflows, use-after-free, double-free, and similar
errors.

All tests run under ASan during continuous integration.
This catches memory errors in new code before merges.
The performance overhead of ASan makes it unsuitable
for production but acceptable for testing.

Valgrind:

Valgrind is a runtime analysis tool that detects memory
leaks, invalid reads and writes, and use of uninitialized
memory. Valgrind is slower than ASan but catches addi-
tional error classes. Zenroom tests run under Valgrind
periodically to verify memory management correctness.

Valgrind testing found memory leaks in error handling
paths. Normal contract execution freed all allocations
but error paths skipped cleanup. These leaks did not af-
fect short-lived executions but would accumulate in long-
running processes. The leaks are now fixed.

Static analysis:

Static analysis tools like Clang Static Analyzer examine
code without executing it, finding potential bugs through
code path analysis. Static analysis complements runtime
testing by finding issues in code paths that tests might
not exercise.

Static analysis found potential null pointer dereferences in
error handling and missing checks for allocation failure.
Not all static analysis warnings indicate real bugs but
investigating them improves code quality and robustness.

25

Manual code review:

Automated tools do not catch all errors. Manual code
review by multiple developers verifies that code follows
security guidelines, handles errors properly, and imple-
ments algorithms correctly. Cryptographic implemen-
tations receive extra scrutiny because implementation
errors can completely break security.

Code review focuses on security-critical components:
cryptographic primitives, memory management, parser
validation, and VM isolation boundaries. Changes to these
components require review by maintainers familiar with
their security requirements.

9.4 Known Limitations and Mitigations

No software is perfectly secure. Claiming otherwise
would be dishonest. Zenroom has known limitations
that organizations should understand when evaluating de-
ployment. These limitations are documented rather than
hidden and mitigations are provided where possible.

Side-channel resistance:

Zenroom’s cryptographic implementations use constant-
time algorithms where feasible but complete side-channel
resistance requires hardware support that general-
purpose systems lack. Timing attacks that measure execu-
tion duration may leak information about cryptographic
keys. Cache-based attacks may leak information through
memory access patterns.

Organizations concerned about side-channel attacks
should deploy Zenroom on hardware with appropriate
protections. Use HSMs for key operations that require
highest security. Deploy in environments where adver-
saries cannot measure timing or observe cache behav-
ior. These operational mitigations are more effective than
software-only approaches.

Quantum computing;:

Current elliptic curve cryptography will be vulnerable
when large-scale quantum computers exist. Zenroom
provides post-quantum algorithms (ML-KEM, ML-DSA)
to prepare for this transition but these are newer and
less tested than traditional cryptography. Organizations
should assess their timeline for quantum risk and adopt
post-quantum algorithms when risk models justify the
change.

Hybrid approaches combine traditional and post-quantum
cryptography. A key exchange using both ECDH and ML-
KEM is secure if either remains unbroken. This hedges
against both premature quantum computers and undis-
covered weaknesses in lattice assumptions.

Implementation bugs:

Despite testing, bugs remain in any complex software.
Zenroom’s approach is to minimize trusted code, isolate
components, and provide rapid update mechanisms. The
zero-dependency architecture means updates do not de-

Dyne.

org Z @ DYNE.ORG

pend on external maintainers. Organizations can apply
patches quickly when vulnerabilities are discovered.

The small codebase aids security. The entire VM and cryp-
tographic library compile to under 3MB. This is orders of
magnitude smaller than typical application stacks. Smaller
code is easier to audit and contains fewer places for bugs
to hide.

Cryptographic assumptions:

All cryptography depends on mathematical assumptions
about hard problems. Elliptic curve cryptography as-
sumes discrete logarithms are hard. Pairings assume spe-
cific problems in extension fields are hard. Post-quantum
schemes assume lattice problems are hard. If these as-
sumptions are wrong, the cryptography fails.

Zenroom cannot prevent cryptographic assumptions from
being invalidated. What it provides is cryptographic
agility: the ability to replace algorithms when necessary.
When a weakness is found in a cryptographic scheme,
organizations can update to new algorithms without re-
placing their entire infrastructure.

9.5 Incident Response and Updates

Security vulnerabilities will be discovered. The question
is not if but when and how the response is handled. Zen-
room’s incident response prioritizes rapid remediation,
clear communication, and verifiable fixes.

Vulnerability reporting:

Security vulnerabilities should be reported privately to
allow fixing before public disclosure. Zenroom maintains
a security contact and responds to reports within 48 hours.
Reporters receive acknowledgment and updates on reme-
diation progress. Responsible disclosure periods allow
time for fixes and deployment before public announce-
ment.

Public disclosure happens after fixes are available. Secu-
rity advisories describe the vulnerability, affected versions,
and remediation steps. Advisories include enough detail
for organizations to assess impact without providing ex-
ploitation instructions for attackers.

Update distribution:

Security updates are distributed through the same chan-
nels as regular releases: GitHub releases, package man-
agers, and direct download from the Zenroom website. Or-
ganizations should subscribe to security announcements
to receive notification of critical updates.

The zero-dependency architecture simplifies updates. Or-
ganizations deploy a single binary without worrying
about library version compatibility. Testing an update
verifies the new binary works correctly. Rollback means
deploying the old binary. This simplicity enables rapid
response when vulnerabilities require immediate patches.

Version verification:

26

Each Zenroom release is cryptographically signed. Orga-
nizations can verify that binaries are authentic and un-
modified. The signing key is published through multiple
channels. Verification prevents attackers from distribut-
ing backdoored versions.

Deterministic builds allow additional verification. Orga-
nizations can compile Zenroom from source and verify
the resulting binary matches the official release. Byte-for-
byte reproducibility means successful compilation proves
the binary corresponds to the public source code.

Lessons learned:

After incidents, post-mortems analyze what went wrong
and how to prevent similar issues. These analyses im-
prove testing, strengthen code review, and enhance se-
curity practices. The goal is not to avoid blame but to
systematically improve security through learning from
mistakes.

10 Deployment and Integration

Zenroom deployment spans embedded devices with kilo-
bytes of RAM to cloud servers with gigabytes. This range
is possible because the VM imposes minimal requirements:
a C compiler, basic POSIX functions, and memory allo-
cation. No threading, no dynamic linking, no filesystem
access, no network stack. Platforms meeting these mini-
mal requirements can run Zenroom.

The portability is not theoretical. Production deployments
run on iOS phones, Android devices, Raspberry Pi boards,
ESP32 microcontrollers, Linux servers, Windows desk-
tops, and WebAssembly in browsers. The same VM source
compiles for all these targets with platform-specific com-
pilation flags but no code changes.

10.1 Platform Portability
10.1.1 Mobile: iOS and Android

Mobile deployments face constraints that desktop deploy-
ments ignore. Limited memory requires careful allocation.
Background execution restrictions limit long-running op-
erations. Operating system updates can break binary com-
patibility. Zenroom’s design addresses these constraints.

iOS:

i0S applications link Zenroom as a static library. The
library is compiled with Xcode targeting specific iOS ver-
sions. The compilation produces universal binaries sup-
porting multiple ARM architectures: armé64 for recent
devices, armv7 for older devices, simulator builds for de-
velopment.

iOS memory constraints are handled through fixed mem-
ory pool configuration. Applications set maximum mem-
ory at initialization based on available resources. The VM
operates within this limit or fails cleanly. iOS does not
allow applications to handle out-of-memory conditions

Dyne.

org Z @ DYNE.ORG

gracefully. Setting appropriate limits prevents system
kills.

iOS security features like Address Space Layout Random-
ization (ASLR) and code signing work transparently with
Zenroom. The static library is included in the applica-
tion bundle and signed with the application. No special
handling is required.

Android:

Android applications can use Zenroom through JNI (Java
Native Interface) or NDK (Native Development Kit) di-
rectly. The JNI approach provides Java classes wrapping
Zenroom functions. Applications call Java methods which
invoke native code. The NDK approach links Zenroom as
a native library loaded at runtime.

Android builds target multiple ABIs: armeabi-v7a, armé4-
v8a, x86, x86_64. The build system produces separate
binaries for each ABI. Android package managers select
the appropriate binary for the device architecture. This
multi-ABI support ensures compatibility across the An-
droid ecosystem.

Android memory management differs from iOS. The sys-
tem can request applications release memory when pres-
sure is high. Zenroom’s fixed pool approach means mem-
ory usage is predictable. Applications can communicate
available memory to the system accurately.

10.1.2 Server: Linux, Windows, macOS

Server deployments typically have abundant resources
compared to mobile but face different challenges: multiple
simultaneous executions, long-running processes, diverse
deployment environments.

Linux:

Linux is the primary development platform and most com-
mon deployment target. Zenroom builds with gcc or clang
using standard POSIX APIs. The resulting binary has no
dependencies beyond libc. Static linking is supported for
deployments where even libc compatibility is a concern.

Linux security features integrate well with Zenroom. Sec-
comp profiles restrict system calls to the minimal set Zen-
room requires. SELinux policies can confine Zenroom
processes. Namespaces and cgroups provide additional
isolation in containerized deployments.

The Linux build supports both x86_64 and various ARM
architectures. Cloud providers increasingly offer ARM in-
stances with better performance-per-watt than x86. Zen-
room runs identically on both architectures due to careful
attention to platform-specific behavior.

Windows:

Windows builds use MinGW or Visual Studio. The
MinGW approach produces binaries compatible with stan-
dard Windows deployment. The Visual Studio approach
integrates better with Windows development toolchains
but requires additional build dependencies.

27

Windows system call interfaces differ significantly from
POSIX. Zenroom abstracts these differences through
platform-specific compilation units. The same VM logic
runs but OS interaction uses Windows APIs rather than
POSIX.

Windows deployment often requires digitally signed bina-
ries for enterprise distribution. Zenroom releases include
signed binaries. Organizations can verify signatures be-
fore deployment and some Windows security policies
require signature verification.

macOS:

macOS builds are similar to Linux but with Apple-specific
considerations. The system requires code signing for no-
tarization. Applications downloaded from outside the
App Store must be notarized or users receive security
warnings.

macOS security features like System Integrity Protection
and Gatekeeper work with Zenroom if binaries are prop-
erly signed. Unsigned development builds work but trig-
ger security prompts. Production deployments should use
signed binaries.

Apple Silicon (ARM) and Intel (x86) both run Zenroom.
Universal binaries containing both architectures simplify
distribution. The same binary runs on either architecture
with Rosetta translation if needed, though native execu-
tion is preferred.

10.1.3 Embedded: ARM Cortex, ESP32

Embedded deployments operate under extreme resource
constraints. Devices may have 256KB of RAM and 1MB
of flash storage. These constraints require careful config-
uration but Zenroom can operate successfully.

ARM Cortex-M:

Cortex-M microcontrollers are common in IoT devices.
These are bare-metal environments without operating
systems. Zenroom builds for Cortex-M use specialized
toolchains like arm-none-eabi-gcc. The build produces
firmware images flashed to device storage.

Cortex-M deployment requires minimal libc support.
Newlib or similar minimal C libraries provide required
functions. Memory allocation uses static pools rather
than dynamic allocation. The fixed memory model fits
embedded constraints naturally.

Cryptographic operations on Cortex-M are slower than on
application processors but remain practical. A signature
verification takes milliseconds rather than microseconds.
For many IoT applications this is acceptable. Device au-
thentication happens infrequently and users tolerate brief
delays.

ESP32:

ESP32 microcontrollers from Espressif combine ARM
cores with WiFi and Bluetooth. These are common in
IoT projects. Zenroom builds for ESP32 use the ESP-IDF

Dyne.org

Z @ DYNE.ORG

framework and Xtensa or RISC-V toolchains depending
on chip variant.

ESP32 has more resources than Cortex-M: typically 512KB
RAM and 4MB flash. This allows more complex contracts
and larger data processing. ESP32 can perform crypto-
graphic operations needed for device authentication and
secure communication.

ESP32 deployment often uses RTOS (Real-Time Operating
System) like FreeRTOS. Zenroom runs as a task under the
RTOS. Multiple contracts can execute concurrently in dif-
ferent tasks though each executes deterministically. The
RTOS handles task scheduling while Zenroom provides
cryptographic operations.

10.1.4 Browser: WebAssembly

WebAssembly enables Zenroom execution in web
browsers without plugins. The JavaScript API provides
cryptographic operations directly in the browser. This
enables applications where sensitive data never leaves the
client device.

Compilation:

WebAssembly builds use Emscripten to compile C source
to WASM bytecode. The resulting module loads in any
modern browser. The module size is approximately 500KB
compressed, acceptable for web deployment. Loading is
asynchronous to avoid blocking browser rendering.

The WASM module exposes JavaScript functions wrap-
ping Zenroom API calls. JavaScript code invokes these
functions to execute contracts. Input and output are
JavaScript objects converted to JSON for Zenroom pro-
cessing. This provides natural integration with web appli-
cation code.

Limitations:

WebAssembly sandboxing prevents system calls that Zen-
room does not use anyway. File access, network access,
and direct memory access are all prohibited. These re-
strictions match Zenroom’s isolation requirements. The
browser sandbox provides additional security layer.

WASM memory management differs from native plat-
forms. The heap is a linear memory block grown by the
module. Zenroom’s fixed pool allocation maps to WASM
linear memory. The JavaScript environment handles mem-
ory allocation for the WASM module.

WebAssembly performance is typically 50-70% of native
code. Cryptographic operations in WASM are slower than
native but remain practical. Browser-based credential
presentation taking 100ms rather than 50ms is acceptable.
Users perceive both as instantaneous.

10.2 Language Bindings

Language bindings allow applications written in high-
level languages to invoke Zenroom without writing C

code. Each binding provides idiomatic interfaces for its
language while wrapping the same underlying VM.

10.2.1 JavaScript/Node.js

JavaScript bindings support both browser (through
WASM) and Node.js (through native modules). The API is
consistent across environments. Applications can target
both with the same code.

The bindings use promises for asynchronous execution.
Contract execution returns a promise that resolves with
output or rejects with errors. This matches JavaScript
conventions for asynchronous operations. Error handling
uses try-catch blocks with structured error objects.

Node.js bindings use N-API for native module integra-
tion. N-API provides ABI stability across Node.js ver-
sions. Modules compiled for one Node.js version work
with subsequent versions. This simplifies distribution and
maintenance.

10.2.2 Python

Python bindings use ctypes to load Zenroom as a shared
library. Functions are declared with appropriate signa-
tures and called from Python code. The bindings handle
data conversion between Python objects and C types.

The API is synchronous following Python conventions.
Asynchronous execution can be implemented at applica-
tion level using threads or async frameworks. The binding
focuses on correct data marshalling and error handling
rather than imposing execution model.

Python bindings support both CPython and PyPy. Mem-
ory management integrates with Python’s garbage collec-
tor. Buffers allocated by Zenroom are freed when Python
objects are collected. This prevents memory leaks from
improper cleanup.

10.2.3 Rust

Rust bindings use FFI (Foreign Function Interface) to call
Zenroom C functions. The bindings provide safe Rust
interfaces wrapping unsafe FFI calls. Rust’s ownership
system ensures memory safety at the binding boundary.

The bindings handle conversion between Rust types and C
types. Strings are converted to null-terminated C strings.
Buffers are passed as raw pointers with explicit lengths.
The bindings manage allocation and deallocation to pre-
vent leaks.

Error handling uses Rust’s Result type. Functions return
Result containing either success value or error informa-
tion. This integrates naturally with Rust error handling
patterns. The question mark operator propagates errors
through call chains.

28

Dyne.

org Z @ DYNE.ORG

10.2.4 Golang

Go bindings use cgo to call C functions. The bindings
declare C function signatures in Go source files. The Go
compiler generates glue code for type conversion and
calling conventions.

Memory management requires care in cgo. Go’s garbage
collector does not track C allocations. The bindings ex-
plicitly free C memory when Go objects are finalized. Fi-
nalizers are registered on Go objects holding C resources.

The bindings provide synchronous and concurrent APIs.
Synchronous calls block until execution completes. Con-
current calls use goroutines and channels for asyn-
chronous execution. This matches Go concurrency pat-
terns while maintaining Zenroom’s deterministic execu-
tion per contract.

10.3 API Design and Best Practices

The Zenroom API is designed for simplicity and safety.
The core API has three functions: execute a contract given
data and keys, return output or errors, clean up resources.
This minimal surface area reduces integration complexity.

Input handling;:

Inputs are provided as byte buffers containing JSON,
CBOR, or MessagePack. The calling application serial-
izes data to these formats. Zenroom parses them during
contract execution. This separation means the API does
not need to understand application data structures.

Binary data is base64-encoded within JSON. This avoids
encoding issues when passing binary through text-based
formats. Applications can pass cryptographic keys and
signatures without specialized handling. The base64 en-
coding overhead is acceptable for the sizes Zenroom pro-
cesses.

Output handling:

Output is returned as a byte buffer containing JSON. The
calling application parses this buffer to extract results.
Structured errors are returned in the same format. An
execution error produces JSON describing what failed and
where.

The JSON output is deterministically ordered. Object keys
are sorted alphabetically. This makes output suitable for
hashing or signature generation. Two executions produc-
ing identical results produce byte-identical JSON.

Resource management:

Memory allocated by Zenroom must be freed by the call-
ing application. The API provides explicit free functions.
Failing to free memory causes leaks. Language bindings
handle this automatically through finalizers or destruc-
tors.

Some platforms have automatic cleanup. Mobile applica-
tions terminating release all memory. Server applications
running long-term must manage cleanup explicitly. The

29

binding documentation specifies cleanup requirements
for each platform.

Thread safety:

Each Zenroom execution is independent. Multiple threads
can execute different contracts concurrently. The VM has
no shared global state. This parallelism scales to available
CPU cores without locks or contention.

The same contract executed simultaneously in different
threads produces identical outputs. Thread execution or-
der does not affect determinism. Applications can par-
allelize contract execution without worrying about race
conditions.

10.4 Performance Characteristics

Performance depends on contract complexity, input size,
and platform capabilities. General patterns exist that help
organizations plan deployments.

Contract parsing;:

Parsing a contract takes microseconds to low milliseconds
depending on contract length. Parsing is one-time cost
at contract load. Some applications compile contracts
once and execute many times. Others parse fresh for
each execution accepting the overhead for operational
simplicity.

Cryptographic operations:

Operation performance varies by algorithm and platform:

« ECDSA signature generation: 1-5ms on modern CPUs,
10-50ms on embedded

ECDSA signature verification: 2-10ms on modern
CPUs, 20-100ms on embedded

Ed25519 signature generation: 0.1-0.5ms on modern
CPUs, 1-5ms on embedded

Ed25519 signature verification: 0.2-1ms on modern
CPUs, 2-10ms on embedded

BLS signature verification: 5-20ms on modern CPUs,
pairing operations are expensive

ML-KEM key generation: 10-50ms depending on secu-
rity parameter

ML-DSA signature generation:
quantum operations are slower

50-200ms, post-

These ranges reflect typical performance. Actual timing
depends on specific platforms, compiler optimizations,
and thermal conditions on mobile devices.

Memory usage:

Memory usage grows with contract complexity and data
size. A simple contract processing 1KB of data uses ap-
proximately 1MB total including VM overhead. Complex
contracts with large arrays or many cryptographic opera-
tions may use 10MB or more. The fixed pool allocation
makes memory usage predictable and configurable.

Dyne.

org Z @ DYNE.ORG

Scalability:

Single-threaded performance is sufficient for many appli-
cations. A server processing 1000 transactions per second
with 5ms average execution time needs only 5 concurrent
executions. Thread-level parallelism handles this easily.
Applications with higher throughput requirements can
scale horizontally, running multiple Zenroom processes
across multiple servers.

11 Real-World Applications and Case
Studies

Production deployments provide evidence that designs
work under real conditions. Pilot projects demonstrate
concepts. Production systems prove viability at scale with
actual users, real data, and operational requirements. Zen-
room deployments span government digital identity, fi-
nancial infrastructure, and distributed systems. These are
not demonstrations but operational systems.

The case studies that follow are not marketing claims but
documented implementations. Each has source code, de-
ployment documentation, and operational history. Orga-
nizations evaluating Zenroom can examine these systems
and contact operators for references.

11.1 EUDI-ARF Wallet Certification (CREDIMI)

The European Digital Identity framework (EUDI) estab-
lishes requirements for digital identity wallets across
EU member states. The Architecture Reference Frame-
work (ARF) specifies technical and security requirements.
CREDIMI provides certification infrastructure ensuring
wallets meet these requirements.

Technical architecture:

CREDIMI uses Zenroom for cryptographic operations in
the certification process. Wallet implementations present
credentials for verification. The certification system veri-
fies credentials against schemas, validates cryptographic
signatures, and checks compliance with ARF specifica-
tions.

The system processes W3C Verifiable Credentials us-
ing multiple signature schemes. Legacy credentials use
ECDSA or EdDSA signatures. Modern credentials use
BBS+ for selective disclosure. The certification process
verifies that wallets correctly implement each scheme and
properly handle edge cases.

Zenroom’s deterministic execution is critical here. Certifi-
cation results must be reproducible. An auditor reviewing
a certification decision must obtain identical results when
re-executing verification contracts. This reproducibility
is required by the ARF but difficult to achieve with non-
deterministic systems.

Operational requirements:

30

Certification processes credentials from multiple member
states with different implementations. Interoperability
testing verifies that credentials issued by one state’s sys-
tem can be verified by another’s. Zenroom’s strict schema
validation catches incompatibilities that would cause pro-
duction failures.

The system operates under high assurance requirements.
Code undergoes security review. Deployments follow
hardening guidelines. Operational procedures document
incident response. These requirements match enterprise
security practices and Zenroom’s design supports them
naturally.

Deployment scale:

CREDIMI certification infrastructure processes thousands
of credentials during testing cycles. The throughput re-
quirements are modest by server standards but the cor-
rectness requirements are absolute. A false positive in
certification could allow non-compliant wallets into pro-
duction. A false negative could reject compliant wallets
causing project delays.

The deterministic execution and comprehensive testing
give confidence in certification results. When a credential
fails verification, the error message specifies exactly what
failed. This diagnostic capability reduces debugging time
and improves interoperability.

11.2 Digital Identity Infrastructure (DIDROOM)

DIDROOM implements W3C Decentralized Identifier and
Verifiable Credential specifications as production infras-
tructure. Organizations use DIDROOM to issue, manage,
and verify credentials for employee identity, customer
authentication, and service access control.

System architecture:

DIDROOM provides three components: issuer service,
holder wallet, and verifier service. Each uses Zenroom for
cryptographic operations. The issuer creates credentials
signed with organizational keys. The holder stores cre-
dentials and creates presentations. The verifier validates
presentations against issuer public keys.

The system supports multiple credential formats. Simple
credentials use JSON-LD with EdDSA signatures. Privacy-
preserving credentials use BBS+ for selective disclosure.
The holder wallet allows users to choose which attributes
to reveal during presentation. The same credential can be
presented differently to different verifiers.

DID management uses did:dyne method implemented in
Zenroom. Organizations generate DIDs deterministically
from keys. DID documents are signed and published. Up-
dates to DID documents (key rotation, service endpoint
changes) are authenticated through control proofs gener-
ated by Zenroom contracts.

Privacy characteristics:

Dyne.

org Z @ DYNE.ORG

Selective disclosure prevents verifiers from learning un-
necessary information. An age verification credential
containing birthdate, address, and citizenship can prove
age without revealing other attributes. The BBS+ imple-
mentation ensures the proof is unlinkable: multiple pre-
sentations to the same verifier cannot be correlated.

Unlinkability is verified through testing. The test suite
generates multiple presentations from the same credential
and verifies that presentation proofs contain no common
elements. This testing validates that the cryptographic
implementation achieves privacy properties claimed by
the protocol.

Integration patterns:

DIDROOM integrates with existing identity systems. Or-
ganizations with LDAP directories or OAuth providers can
use DIDROOM as credential issuance layer. Employees
authenticate through existing systems. The issuer ser-
vice creates verifiable credentials based on authenticated
attributes. Employees use these credentials for external
service access without involving the corporate authenti-
cation system.

This integration pattern separates authentication from au-
thorization. Employees prove identity to external services
through credentials without the services contacting the
employer. This reduces coupling and improves privacy.
Employers do not learn which services employees access.

11.3 Global Passport Project

The Global Passport Project implements digital passport
verification for immigration and border control. The sys-
tem verifies passport authenticity, validates holder iden-
tity, and checks travel authorization without requiring
central database lookups.

Cryptographic verification:

Modern passports contain chips with digital signatures
from issuing governments. The signature covers biometric
data and passport details. Verification requires checking
the signature against government public keys and validat-
ing the certificate chain to a trust anchor.

Zenroom performs signature verification using algorithms
specified in ICAO Doc 9303 (the standard for machine-
readable travel documents). The system supports RSA
and ECDSA signatures on multiple curves. Public key
infrastructure uses X.509 certificates with country-specific
parameters.

The verification contracts are human-readable. Border
control personnel can examine contracts and understand
verification logic. This transparency supports audit re-
quirements and builds confidence in automated systems.
When verification fails, the error message indicates which
check failed: invalid signature, expired certificate, revoked
credential.

Offline operation:

31

Border control points may have limited connectivity. The
system operates offline using pre-distributed public key
lists. Public keys are distributed through secure channels
and updated periodically. The verification contract checks
signatures against local public key database without net-
work access.

This offline capability is enabled by Zenroom’s isolation.
The VM has no network access so contracts designed for
online operation cannot accidentally work offline and vice
versa. The architecture forces explicit design decisions
about connectivity requirements.

Performance requirements:

Immigration lines require processing passengers in sec-
onds. The system must verify passport chips, check bio-
metric matching, and validate travel authorization quickly
enough to avoid delays. Cryptographic verification using
Zenroom takes single-digit milliseconds. The limiting fac-
tor is chip communication and biometric processing, not
cryptographic operations.

The deterministic execution helps debugging. When ver-
ification is slower than expected, performance testing
with instrumentation shows exactly which operations
take time. The deterministic behavior means performance
issues are reproducible and root causes are identifiable.

11.4 Hyperledger Sawtooth Integration (Sawroom)

Sawroom integrates Zenroom with Hyperledger Saw-
tooth, a blockchain platform for enterprise applications.
The integration allows Sawtooth transaction families to
use Zenroom for transaction validation and state updates.
This brings Zencode’s readable contracts to blockchain
applications.

Transaction family implementation:

Sawtooth transaction families define application logic for
specific use cases. A supply chain transaction family im-
plements operations for tracking goods. A financial trans-
action family implements payment and settlement opera-
tions. Each family has validation rules and state transition
logic.

Sawroom implements transaction families using Zencode
contracts. Transaction validation is specified as readable
contracts. Auditors can review validation logic without
understanding blockchain internals. The contract reads
transaction payload, validates according to business rules,
and computes state updates.

The integration preserves Zenroom’s isolation. Transac-
tion processors run Zenroom in subprocess with transac-
tion data passed as input. Zenroom executes validation
contract and returns verdict. The transaction processor
applies state updates if validation succeeds. Malicious
transactions cannot compromise the node because Zen-
room has no access to node resources.

Consensus integration:

Dyne.

org Z @ DYNE.ORG

Blockchain consensus requires deterministic transaction
execution. Validators must reach identical conclusions
about transaction validity. Zenroom’s deterministic exe-
cution aligns perfectly with this requirement. Validators
run identical contracts on identical inputs and produce
identical outputs.

The determinism is verified through testing across the
Sawtooth network. Nodes run on different platforms:
Linux on x86, Linux on ARM, containerized deployments.
All nodes must reach consensus on transaction validity.
The cross-platform determinism testing that validates Zen-
room also validates consensus.

Smart contract transparency:

Traditional blockchain smart contracts are opaque to non-
developers. Zencode contracts executing in Sawroom are
readable by business stakeholders. A supply chain con-
tract specifying custody transfer rules can be reviewed by
lawyers and logistics managers. The contract is simulta-
neously specification and implementation.

This transparency affects governance. Changing con-
tract logic requires proposing new Zencode contracts.
Stakeholders review proposals and vote on adoption.
The review process is accessible to non-technical partici-
pants because contracts are readable. This democratizes
blockchain governance beyond developer communities.

11.5 Municipal Digital Democracy (DECODE
Project)

The DECODE project for the European Union investi-
gated technologies for digital democracy. Municipal gov-
ernments in Amsterdam and Barcelona piloted systems
where citizens participate in collective decisions through
cryptographic petition systems and participatory budget-
ing. Zenroom provided cryptographic operations ensur-
ing privacy and integrity.

Petition signing;:

Citizens sign petitions supporting or opposing munici-
pal policies. Signatures must be verifiable (proving real
citizens signed) but anonymous (preventing tracking of
citizen political activity). Standard digital signatures fail
because signatures are linkable: collecting signature lists
enables tracking who signs what.

DECODE implemented blind signature petitions using
cryptography from Coconut credentials. Citizens ob-
tain credentials from the municipality proving citizenship.
Credentials are blinded so the municipality does not learn
which citizen holds which credential. Citizens use creden-
tials to sign petitions. Signatures prove valid citizenship
without revealing identity.

Zenroom implements the blind signature protocol. The
readable contracts allow citizens to audit the cryptog-
raphy protecting their privacy. Trust does not require
believing experts. The contracts explicitly show that the
municipality cannot link signatures to citizens.

32

Participatory budgeting;:

Municipalities allocate budget to projects based on citizen
votes. Voting must be private (no one learns how individ-
uals voted) and verifiable (anyone can verify the count
is correct). The system uses cryptographic voting where
votes are encrypted but the tally is publicly computable.

The voting contracts use additive homomorphic encryp-
tion. Votes are encrypted. The encrypted votes are ho-
momorphically summed. The sum is decrypted revealing
only the tally, not individual votes. Zenroom computes
vote encryption and tally verification. The contracts show
explicitly what information is revealed and what remains
private.

Real-world deployment:

The Barcelona and Amsterdam pilots involved thousands
of citizens making decisions on real municipal budget
allocation and policy questions. The systems operated
under political pressure and public scrutiny. Technical
failures would undermine trust in digital democracy.

Zenroom’s stability and transparency proved essential.
When citizens questioned how the system worked, con-
tracts could be shown and explained. When verification
was needed, any participant could re-execute contracts
and verify results. The human-readable nature of Zencode
made the cryptography accessible to political discourse
rather than confined to technical circles.

Lessons learned:

Digital democracy requires more than correct cryptogra-
phy. Citizens must trust the system. Trust requires trans-
parency and accessibility. Zencode’s readable contracts
provided transparency that proprietary systems could not
match. The open source nature allowed independent audit
by civil society organizations.

The project demonstrated that complex cryptographic pro-
tocols can be deployed at municipal scale. The constraints
of democratic legitimacy align with Zenroom’s design phi-
losophy: transparency, verifiability, and accessible audit.
These same principles serve enterprise and government
applications where stakeholders demand accountability.

12 Comparative Analysis

Technical decisions require understanding tradeoffs. No
technology is universally superior. Each approach op-
timizes for different priorities. This section compares
Zenroom and Zencode against alternatives that organi-
zations commonly evaluate. The comparisons focus on
measurable differences rather than subjective preferences.

12.1 Zencode vs. Solidity

Solidity is the dominant language for Ethereum smart
contracts. Organizations building blockchain applications
often evaluate whether to use Solidity on Ethereum or
alternative approaches. The comparison is not apples-to-

Dyne.

org Z @ DYNE.ORG

apples because the systems target different architectures,
but decision points emerge.

Readability:

Solidity syntax resembles JavaScript. Developers familiar
with C-style languages can read Solidity code. However,
understanding what Solidity code does requires under-
standing EVM semantics, gas costs, storage layouts, and
calling conventions. A function that appears simple may
have subtle behaviors from reentrancy, delegate calls, or
storage access patterns.

Zencode syntax is English-like statements. Non-
developers can read contracts and understand high-level
logic. However, Zencode is not Turing complete. Arbi-
trary computation requires dropping to Lua. The readabil-
ity advantage is real for the operations Zencode supports
but disappears for computation it cannot express.

Execution model:

Solidity executes on blockchain networks. Execution is
public and permanent. Every node in the network exe-
cutes every contract. This provides strong consistency
and censorship resistance but makes privacy difficult and
imposes gas costs that grow with network activity.

Zencode executes in isolated VM instances. Execution is
private to the calling application. No network is involved.
This provides privacy and predictable costs but requires
application-level distribution for multi-party scenarios.
Organizations wanting blockchain properties must com-
bine Zenroom with separate blockchain infrastructure.

Development ecosystem:

Solidity has extensive tooling: IDEs, debuggers, testing
frameworks, formal verification tools. The Ethereum
ecosystem includes libraries, standards, and established
patterns. Developers can find examples and Stack Over-
flow answers for common problems.

Zencode ecosystem is smaller. Tooling focuses on con-
tract execution rather than development environments.
The scenario system provides reusable components but
fewer third-party libraries exist. Organizations may need
to implement domain-specific functionality rather than
importing existing packages.

When to choose which:

Choose Solidity for applications requiring public
blockchain properties: global state, censorship resistance,
network effects from existing deployments. Accept gas
costs, public execution, and EVM complexity.

Choose Zencode for applications requiring private cryp-
tographic operations, readable contracts for audit, or exe-
cution outside blockchain context. Accept limitations on
computation and smaller ecosystem.

Many applications need both. Blockchain for coordina-
tion and Zenroom for private computation. Sawroom

33

demonstrates this pattern: Zencode for readable business
logic, Sawtooth for distributed consensus.

12.2 Zencode vs. Traditional Scripting

Organizations with cryptographic requirements could use
Python, JavaScript, or other scripting languages with cryp-
tographic libraries. Why would they choose Zencode
instead?

Cryptographic correctness:

Traditional languages with crypto libraries require devel-
opers to use libraries correctly. APIs have parameters that
must be set appropriately. Algorithms have modes that
must be chosen carefully. Padding schemes have security
implications. The libraries provide building blocks but
developers must assemble them correctly.

Zencode provides high-level operations that encapsulate
correct usage. Signing a credential uses appropriate algo-
rithms, encodings, and serialization automatically. Devel-
opers specify what to sign, not how to implement signing.
This reduces implementation errors but limits flexibility
for non-standard cryptography.

Determinism:

Traditional scripting languages are not deterministic. Dic-
tionary iteration order varies. Floating-point behavior dif-
fers across platforms. Random number generation pulls
from OS sources. Code executing on different machines
produces different outputs even with identical inputs.

Zencode execution is deterministic by design. The same
contract with the same inputs produces identical outputs
on all platforms. This enables distributed verification
but requires constraints that traditional languages do not
impose.

Isolation:

Traditional scripts run with the permissions of the invok-
ing process. They can read files, make network requests,
spawn subprocesses. This flexibility enables wide appli-
cability but creates security concerns when executing
untrusted code.

Zencode execution is isolated by the VM. Contracts cannot
access external resources. This security enables executing
contracts from untrusted sources but prevents operations
requiring system access.

Auditability:

Traditional scripts are auditable if reviewers understand
the language and libraries. Cryptographic code reviews
require specialists familiar with implementation pitfalls.
The audit must verify not just logic correctness but cryp-
tographic correctness.

Zencode contracts are auditable by non-specialists for
high-level logic. The contract shows what operations
execute but encapsulates implementation details. Audi-
tors verify business logic matches requirements. Crypto-

Dyne.

org Z @ DYNE.ORG

graphic correctness is verified once in the VM implemen-
tation rather than per-contract.

When to choose which:

Choose traditional scripting for general-purpose compu-
tation, integration with existing systems, or operations
requiring system access. Accept responsibility for cor-
rect cryptographic implementation and platform-specific
behavior.

Choose Zencode for cryptographic operations requiring
determinism, isolation, or audit by non-specialists. Accept
limitations on general computation and system interac-
tion.

12.3 Zencode vs. Formal Verification Languages

Formal verification languages like F*, Dafny, or Coq prove
program properties mathematically. Some cryptographic
implementations use formal verification to ensure correct-
ness. How does Zencode compare to formally verified
approaches?

Assurance level:

Formal verification provides mathematical proof that code
meets specifications. Proofs are checked mechanically.
If the specification captures security properties and the
proof is valid, the implementation is correct with respect
to the specification.

Zencode provides no formal proofs. Correctness is estab-
lished through testing, code review, and production use.
Bugs may exist that testing has not found. This is lower
assurance than formal verification.

Specification complexity:

Formal verification requires writing specifications in for-
mal logic. Specifications must be precise enough for me-
chanical checking. Writing specifications is specialized
work requiring expertise in formal methods.

Zencode contracts are executable specifications. Writing
contracts requires understanding Zencode syntax but not
formal logic. The contracts are specifications and imple-
mentations simultaneously. This accessibility comes at
the cost of lower assurance.

Verification effort:

Formally verifying cryptographic implementations re-
quires substantial effort. A verified implementation might
take months or years to develop. The verification effort
exceeds the implementation effort.

Zencode implementation is conventional software devel-
opment with extensive testing. Development timelines
are typical for systems software. The lack of formal verifi-
cation means less certainty but faster development.
Applicability:

Formal verification applies best to fixed algorithms with
clear specifications. A verified implementation of AES

34

or SHA-256 provides high assurance. Verifying complex
protocols or business logic is more difficult.

Zencode contracts implement business logic and protocol
flows. The logic changes as requirements evolve. For-
mal verification would require reverification after each
change. Testing-based verification allows incremental
changes with regression testing.

When to choose which:

Choose formal verification for cryptographic primitives
in highest-assurance applications. Accept significant de-
velopment time and specialized expertise requirements.

Choose Zencode for application-level cryptographic op-
erations where formal verification effort is impractical.
Rely on testing, auditing, and production experience for
assurance.

Note that Zencode contracts use formally verified primi-
tives where available. The AMCL library includes some
verified components. Zencode provides accessible inter-
face while underlying implementation may have formal
assurance.

12.4 Total Cost of Ownership Analysis

Cost considerations extend beyond licensing fees. To-
tal cost of ownership includes development, deployment,
maintenance, training, and audit. How do costs compare
across alternatives?

Development costs:

Solidity development requires blockchain expertise. De-
velopers must understand gas optimization, storage pat-
terns, and security vulnerabilities specific to smart con-
tracts. The learning curve is steep. Experienced Solidity
developers command premium salaries.

Zencode development requires understanding the lan-
guage and scenarios but not low-level cryptographic im-
plementation. Developers can be productive more quickly.
However, the smaller ecosystem means less existing code
to reuse. Custom functionality requires more develop-
ment.

Traditional scripting requires cryptographic expertise. De-
velopers must understand algorithm selection, parameter
choices, and common pitfalls. Incorrect usage of crypto
libraries is common and dangerous. Expert review is es-
sential.

Audit costs:

Solidity contract audits are expensive. The specialized
nature of blockchain security and the high cost of vul-
nerabilities make audits essential. Audits cost tens of
thousands to hundreds of thousands of dollars depending
on complexity.

Zencode contract audits can be performed by non-
cryptographic specialists for business logic verification.
The readable syntax reduces audit time. Cryptographic

Dyne.

org Z @ DYNE.ORG

correctness is verified in the VM rather than per-contract.
This separation reduces audit costs for contracts while
requiring VM audit.

Traditional script audits require cryptographic expertise
if the code performs cryptographic operations. The cost
is similar to Solidity audits for comparable functionality.

Operational costs:

Blockchain deployment costs scale with usage due to gas
fees. High-frequency applications pay substantial ongo-
ing costs. These costs are inherent to public blockchain
architecture.

Zenroom deployment costs are conventional infrastruc-
ture costs. Organizations pay for compute resources.
Costs scale with usage but at server computing rates
rather than blockchain transaction fees.

Traditional scripts have similar operational costs to Zen-
room. The main difference is whether scripts execute in
isolated VM or full runtime environment.

Maintenance costs:

Blockchain smart contracts are immutable once deployed.
Fixes require deploying new contracts and migrating state.
This rigidity prevents easy updates but also prevents unau-
thorized changes.

Zenroom contracts can be updated as needed. Updates
require testing and deployment but no blockchain mi-
gration. The flexibility reduces maintenance costs but
requires operational security to protect against unautho-
rized changes.

Traditional scripts have similar maintenance character-
istics to Zenroom. The main consideration is whether
cryptographic libraries need updates when vulnerabilities
are discovered.

Training costs:

Blockchain development requires specialized training. De-
velopers learn blockchain concepts, Solidity, and security
patterns. The training investment is substantial.

Zencode is more accessible. Developers learn a con-
strained language focused on cryptographic operations.
The learning curve is gentler. However, deep expertise
still requires understanding cryptographic concepts.

Traditional scripting builds on existing language knowl-
edge but requires cryptographic training for secure usage.

Lock-in costs:

Public blockchains create ecosystem lock-in. Migrating
deployed contracts to different chains is difficult. The
DeFi ecosystem demonstrates this: protocols are tied to
specific chains.

Zenroom is portable. Contracts run on any platform with
a Zenroom implementation. Organizations can change
deployment platforms without changing contracts. How-

35

ever, switching to different smart contract systems re-
quires rewriting logic.

Traditional scripts have minimal lock-in beyond the cho-
sen language. Migrating Python to JavaScript requires
rewriting but the cryptographic operations remain similar.

Overall assessment:

No approach dominates on all cost dimensions. Organiza-
tions must weigh factors based on their specific require-
ments:

Blockchain makes sense for applications where public
coordination justifies gas costs and where ecosystem lock-
in is acceptable for network effects.

Zencode makes sense for private cryptographic opera-
tions where readable contracts reduce audit costs and
where operational flexibility outweighs smaller ecosys-
tem.

Traditional scripting makes sense for general-purpose ap-
plications where cryptographic operations are incidental
and where development teams have existing expertise.

13 Risk Assessment and Compliance

Organizations deploying cryptographic systems face reg-
ulatory requirements, industry standards, and internal
governance policies. Compliance is not optional for en-
terprise and government deployments. This section ad-
dresses how Zenroom maps to common compliance frame-
works and where organizations must implement addi-
tional controls.

13.1 GDPR and Privacy by Design

The General Data Protection Regulation requires privacy
by design and default. Systems processing personal data
must implement technical measures protecting privacy
from the architecture level. Zenroom’s design aligns with
GDPR principles in several ways but does not constitute
full GDPR compliance alone.

Data minimization:

GDPR Article 5(1)(c) requires processing only data nec-
essary for the purpose. Zencode’s schema validation en-
forces explicit declaration of what data enters processing.
Contracts cannot access data not declared in Given state-
ments. This technical constraint supports data minimiza-
tion policies.

Selective disclosure credentials implement data minimiza-
tion cryptographically. A credential holder proves only
necessary attributes without revealing others. An age
verification reveals age range without birthdate. This is
stronger than policy-based minimization because the ver-
ifier cannot access undisclosed data even if they wanted
to.

Purpose limitation:

Dyne.

org Z @ DYNE.ORG

GDPR Article 5(1)(b) requires processing data only for
specified purposes. Zencode contracts are purpose-
specific. Each contract implements defined operations on
defined data. The contract text serves as documentation of
processing purpose. Auditors can verify that processing
matches declared purpose by reviewing contracts.

Storage limitation:

GDPR Article 5(1)(e) requires retaining personal data only
as long as necessary. Zenroom'’s stateless execution means
the VM retains no data between executions. Memory is
wiped on termination. This architecture prevents acci-
dental data retention in VM state. Applications using
Zenroom remain responsible for storage decisions but the
VM does not contribute to retention.

Integrity and confidentiality:

GDPR Article 5(1)(f) requires appropriate security. Zen-
room provides cryptographic operations implementing
security controls. Encryption protects confidentiality. Sig-
natures ensure integrity. The isolated execution prevents
data leaks through VM compromise. These are technical
measures supporting the security requirement.

Data portability:

GDPR Article 20 grants individuals right to data porta-
bility. Verifiable credentials implement cryptographic
portability. Credential holders possess credentials in stan-
dard formats. They present credentials to verifiers of their
choice. The credentials are not locked in issuer systems.
This architecture supports portability requirements.

Limitations:

Zenroom is infrastructure, not a complete GDPR solution.
Organizations must implement consent management, data
subject rights workflows, breach notification procedures,
and data protection impact assessments. The VM provides
technical primitives but not legal compliance processes.
A GDPR-compliant system uses Zenroom as a component,
not as the complete solution.

13.2 Common Criteria and Security Certifications

Common Criteria evaluates security products against stan-
dardized requirements. Organizations requiring certified
products ask whether Zenroom has CC certification. The
answer is nuanced.

Certification status:

Zenroom itself does not hold Common Criteria certifi-
cation. CC evaluation is expensive and time-consuming,.
Open source projects rarely pursue CC certification due to
cost. Organizations requiring certified components must
evaluate whether to pursue certification for their deploy-
ment or use Zenroom in applications where certification
is not mandatory.

Evaluation Assurance Levels:

36

Common Criteria defines EAL1 through EAL7 assurance
levels. Higher levels require more rigorous evaluation.
Zenroom’s architecture and development practices align
with requirements for mid-level EALs. The deterministic
execution, isolation, and testing methodology support
evaluation if an organization pursues certification.

The formal grammar specification and documented archi-
tecture facilitate evaluation. Evaluators need clear specifi-
cations to assess. The whitepaper and technical documen-
tation provide materials evaluators require. Organizations
pursuing certification have foundation to build on.

Protection profiles:

Common Criteria uses protection profiles defining secu-
rity requirements for product categories. No existing
protection profile precisely matches Zenroom’s capabili-
ties. Organizations might evaluate against cryptographic
module profiles or trusted execution environment profiles
depending on use case.

Alternative certifications:

FIPS 140-2 and 140-3 certify cryptographic modules. Zen-
room uses AMCL which has been separately evaluated but
the Zenroom integration is not certified. Organizations
can operate Zenroom in FIPS mode using only approved
algorithms and key sizes. This provides partial compliance
with FIPS requirements.

Industry-specific requirements:

Financial services have PCI-DSS. Healthcare has HIPAA.
Each industry has standards. Zenroom provides technical
controls supporting these standards but does not consti-
tute compliance. Organizations map Zenroom capabilities
to specific requirements in their compliance frameworks.

13.3 Supply Chain Security

Software supply chain attacks compromise development,
build, or distribution processes. Organizations must
assess supply chain risks when adopting any software
component. Zenroom addresses supply chain security
through several mechanisms.

Source code availability:

Zenroom source code is publicly available under AGPL
license. Organizations can inspect code for backdoors or
vulnerabilities. This transparency is fundamental supply
chain security. Proprietary software requires trusting ven-
dor claims. Open source enables independent verification.

The public development process on GitHub allows moni-
toring changes. Organizations can review commit history,
contributor identities, and code review discussions. Sus-
picious changes would be visible in public record.

Build reproducibility:

Zenroom builds are deterministic. Organizations can com-
pile from source and verify the resulting binary matches
official releases byte-for-byte. This reproducibility proves

Dyne.

org Z @ DYNE.ORG

the binary corresponds to public source code. Backdoored
binaries would fail reproduction.

Reproducible builds defend against compromised build
infrastructure. If the build server were compromised and
malicious code injected into binaries, independent com-
pilation would detect the mismatch. Organizations can
trust binaries because they can verify them.

Dependency management:

Zenroom has zero external runtime dependencies. The
attack surface for supply chain compromise is the code
in the repository. There are no package dependencies
that could be compromised. This minimal dependency
approach reduces supply chain risk.

Build-time dependencies exist: compilers, build tools. Or-
ganizations must trust their build environment. The de-
terministic builds allow verifying that different build envi-
ronments produce identical results, providing confidence
that build tools are not injecting malicious code.

Cryptographic signatures:

Official releases are cryptographically signed. Organiza-
tions verify signatures before deployment. This prevents
distribution of modified binaries by attackers who compro-
mise distribution channels. The signing key is protected
and published through multiple channels.

Vulnerability disclosure:

Zenroom maintains a security contact and responsible dis-
closure process. Discovered vulnerabilities are addressed
promptly. Security advisories provide detailed informa-
tion allowing organizations to assess impact. This trans-
parency allows organizations to make informed risk deci-
sions.

SBOM and provenance:

Software Bill of Materials documents components in a
software package. Zenroom’s minimal dependencies sim-
plify SBOM. The SBOM contains Zenroom itself, AMCL,
and Lua. Each component is versioned and sourced from
known repositories. Supply chain provenance is straight-
forward to document.

13.4 Cryptographic Agility and Algorithm
Transitions

Cryptographic algorithms have lifespans. SHA-1 was dep-
recated. 1024-bit RSA is weak. Quantum computers will
break elliptic curves. Organizations need cryptographic
agility: the ability to transition to new algorithms when
old algorithms become unsafe.

Algorithm selection flexibility:

Zenroom supports multiple algorithms for each opera-
tion. Signatures can use ECDSA, EdDSA, RSA, Schnorr,
or post-quantum schemes. Organizations choose algo-
rithms matching current threat models. When threats
evolve, they can transition to stronger algorithms.

37

The scenario system allows adding new algorithms with-
out VM changes. When quantum-safe algorithms emerge,
they can be implemented as new scenarios. Existing con-
tracts using old algorithms continue working. New con-
tracts use new algorithms. Gradual transition is possible.

Migration patterns:

Hybrid approaches ease transitions. Credentials can carry
multiple signatures using different algorithms. Verifiers
accept any valid signature. During transition, old verifiers
use old signatures, new verifiers use new signatures. Both
work during migration period.

The readable contract syntax helps transition planning.
Organizations can identify which contracts use which
algorithms by reading contract text. Migration impact
assessment is straightforward. Contracts are documenta-
tion of algorithm usage.

Post-quantum readiness:

The ML-KEM and ML-DSA implementations prepare for
quantum transition. Organizations can begin using post-
quantum algorithms today for data with long confidential-
ity requirements. The hybrid approaches allow combin-
ing traditional and post-quantum cryptography hedging
against risks in both.

Deprecation management:

When algorithms are deprecated, Zenroom can disable
them in new deployments while maintaining compati-
bility for verification of old signatures. A contract can
verify historical ECDSA signatures while creating new
signatures using post-quantum schemes. This asymmetry
supports gradual migration.

Standardization tracking:

Zenroom follows cryptographic standards from NIST,
IETF, and W3C. When standards evolve, implementations
are updated. Organizations benefit from standards com-
pliance without implementing standards themselves. The
scenario system encapsulates standards compliance.

13.5 Audit Trail and Accountability

Accountability requires recording who did what when
and providing evidence for later review. Cryptographic
systems must support audit requirements without under-
mining privacy. The balance is delicate.

Execution determinism enables audit:

Deterministic execution means audit records can be veri-
fied by re-execution. An auditor receives contract, inputs,
and claimed outputs. They re-execute the contract with
the same inputs. If outputs match, the execution is ver-
ified. This cryptographic audit is stronger than trusting
execution logs.

The determinism also enables dispute resolution. If parties
disagree about execution results, a neutral third party
can execute the contract and determine the correct result.

Dyne.

org Z @ DYNE.ORG

The mathematical certainty of deterministic execution
eliminates ambiguity.

Immutable contracts as audit evidence:

Zencode contracts are text documents. They can be stored
immutably: signed, timestamped, and archived. Audit
trails reference specific contract versions. Years later, au-
ditors can examine the exact contract that executed.

The human-readable syntax means archived contracts re-
main comprehensible. Binary bytecode or optimized rep-
resentations may become unreadable as tools evolve. Text
contracts with natural language syntax remain accessible
to future auditors.

Credential provenance:

Cryptographic signatures provide credential provenance.
A verifiable credential contains issuer signatures proving
issuance. The signature proves who issued, what was
issued, and when. This provenance is cryptographic evi-
dence, not self-reported logs.

The unlinkable presentation proofs maintain privacy
while providing verification. Auditors verify that creden-
tials were properly issued and validated without learning
individual credential usage patterns. The cryptography
separates audit capabilities from surveillance capabilities.

Accountability without surveillance:

Traditional audit approaches log all operations and require
accessing logs to verify behavior. This creates privacy
risks. Logs become surveillance data. Zenroom enables
accountability through verifiable computation instead of
logging.

A contract execution produces outputs and optionally
cryptographic proofs of correct execution. Third parties
verify proofs without accessing execution logs. The zero-
knowledge properties of the cryptography allow proving
correct execution without revealing inputs or intermedi-
ate states.

Regulatory requirements:

Financial regulations require audit trails. Healthcare re-
quires access logs. Each domain has requirements. Zen-
room provides cryptographic primitives supporting audit
requirements. Applications must implement appropriate
logging and access controls at the application layer. The
VM focuses on cryptographic correctness while applica-
tions handle regulatory compliance.

38

14 Future Directions

14.1 Roadmap and Planned Enhancements
14.2 Research Collaborations

14.3 Community and Ecosystem Growth
14.4 Long-Term Support and Maintenance

Commitment
15 Conclusion

The security landscape facing organizations has never
been more complex. Post-quantum cryptography tran-
sitions loom. Privacy regulations tighten. Supply chain
attacks multiply. Digital identity infrastructure becomes
critical. Traditional approaches to cryptographic software
development are not keeping pace with these challenges.

Zenroom and Zencode represent a different approach. The
design starts from language-theoretic security principles,
applies them rigorously through architecture, and pro-
duces a system where security properties emerge from
structure rather than defensive coding. This is not theo-
retical research but production infrastructure proven at
scale.

Core achievements:

The technical contributions are measurable. A process
VM with three-compartment memory isolation enforc-
ing recognition-processing-output separation. A domain-
specific language with formal grammar where contracts
are simultaneously specifications and implementations.
Deterministic execution enabling reproducible verifica-
tion across platforms. Zero external dependencies reduc-
ing attack surface. Cryptographic operations from legacy
algorithms through post-quantum schemes integrated in
a single codebase.

These technical properties solve concrete problems.
Verifiable credentials with selective disclosure enable
privacy-preserving identity without centralized tracking.
Blockchain integration provides readable smart contracts
accessible to non-developers. Municipal democracy sys-
tems give citizens cryptographic guarantees about voting
integrity. Border control systems verify passports offline
without database dependencies. These are operational sys-
tems processing real users’ data with real consequences.

Design philosophy vindicated:

The fundamental bet was that security through simplicity
and transparency beats security through complexity and
obscurity. Eight years of production use validate this bet.
The human-readable contracts enable audit by stakehold-
ers who matter: regulators, citizens, lawyers, compliance
officers. The isolation architecture prevents entire vulner-
ability classes rather than defending against them after the
fact. The deterministic execution makes contract behavior
verifiable by anyone with sufficient interest.

Dyne.

org Z @ DYNE.ORG

This philosophy has costs. Zencode is not Turing complete.
The VM cannot access filesystems or networks. General
computation requires different tools. These limitations
are features. They force clarity about what the system
does and what it cannot do. Organizations know exactly
what they are getting because the constraints are explicit.

Production maturity:

Pilot projects demonstrate concepts. Production systems
prove viability. Zenroom deployments span EU digital
identity certification, municipal democracy in major Euro-
pean cities, blockchain platforms, and government border
control. The diversity of deployments demonstrates that
the design generalizes beyond narrow use cases.

The maturity shows in operational characteristics. Perfor-
mance is predictable: simple operations take milliseconds,
complex ones take tens of milliseconds. Memory usage is
bounded and configurable. Error messages are structured
and diagnostic. Updates deploy without breaking existing
contracts. These operational qualities matter more than
peak performance or minimal footprint.

For decision makers:

CTOs evaluating Zenroom should ask whether their re-
quirements align with Zenroom’s strengths. If you need
private cryptographic operations with audit requirements,
readable contracts for compliance review, deterministic
execution for reproducibility, or deployment flexibility
across platforms from embedded to cloud, Zenroom de-
serves serious consideration.

If you need general-purpose computation, blockchain
properties like public state and censorship resistance, or
ecosystem lock-in benefits from established platforms,
other approaches may fit better. The comparative analysis
section provides frameworks for mapping requirements
to technical choices.

CISOs evaluating security should recognize that Zenroom
follows security-by-design principles that formal methods
researchers and language security experts advocate. The
LangSec foundation is not marketing but peer-reviewed
research. DARPA’s formal methods initiatives align with
the approach. The architecture prevents problems rather
than detecting and blocking attacks.

This does not mean Zenroom is perfectly secure. No com-
plex software is. The known limitations section docu-
ments where protections are incomplete. Side-channel
resistance is limited without hardware support. Imple-
mentation bugs exist despite testing. Cryptographic as-
sumptions could be invalidated. The honest acknowledg-
ment of limitations builds realistic security assessments.

Strategic considerations:

Cryptographic infrastructure has decades-long lifespans.
Organizations deploying identity systems or crypto-
graphic protocols today commit to supporting them for
years or decades. This long timeline makes certain prop-
erties essential.

39

Cryptographic agility matters because algorithms will
be broken. Systems deployed today must survive post-
quantum transitions and unexpected weaknesses in cur-
rent schemes. Zenroom’s multi-algorithm support and
scenario-based extensibility provide migration paths.

Auditability matters because regulations and security re-
quirements evolve. Contracts written today will be au-
dited under future requirements. The human-readable
syntax and immutable text representation ensure con-
tracts remain comprehensible to future auditors using
future tools.

Portability matters because deployment targets change.
A system might start on servers, migrate to mobile apps,
expand to embedded devices, or move to edge comput-
ing. Zenroom’s minimal dependencies and broad platform
support enable evolution without rewrites.

The next generation of cryptographic infrastructure:

Digital identity, verifiable credentials, privacy-preserving
computation, and decentralized trust are not future tech-
nologies but present requirements. Organizations need
infrastructure supporting these capabilities today. Tradi-
tional approaches using general-purpose languages with
crypto libraries are not sufficient. The complexity is too
high, the audit burden too great, the error potential too
large.

Zenroom demonstrates that purpose-built infrastructure
for cryptographic operations can be simpler, more au-
ditable, and more secure than general-purpose alterna-
tives. The domain-specific approach trades generality for
correctness. The readable syntax trades implementation
flexibility for audit accessibility. The isolation architecture
trades system integration for security guarantees.

These tradeoffs align with the requirements of critical
cryptographic infrastructure. Systems processing identity
credentials, financial transactions, or democratic decisions
need correctness more than flexibility, auditability more
than performance, and security more than convenience.

Call to evaluation:

This whitepaper provides technical foundation for in-
formed evaluation. The architecture section explains how
the system works. The security analysis documents what
protections exist and what limitations remain. The case
studies demonstrate production viability. The compara-
tive analysis frames decision criteria.

Organizations should evaluate Zenroom through proof-of-
concept deployments. The barrier to experimentation is
low: download a binary, write contracts, test with actual
data. The deterministic execution means proof-of-concept
results predict production behavior. Time invested in
evaluation produces reliable understanding of operational
characteristics.

The open source nature enables deep evaluation. Or-
ganizations can inspect source code, review test suites,
reproduce builds, and verify cryptographic implementa-

Dyne.

org Z @ DYNE.ORG

tions. The transparency removes barriers to trust. Secu-
rity through obscurity is not an option. Security through
verifiable correctness is the standard.

Final assessment:

Zenroom is production-ready infrastructure for crypto-
graphic operations requiring human-readable contracts,
deterministic execution, and verifiable computation. It is
not a universal solution. It is a specialized tool solving
specific problems well.

For organizations with requirements matching Zenroom’s
strengths, adoption provides measurable benefits: re-
duced audit costs through readable contracts, increased
security through isolation architecture, operational flex-
ibility through platform portability, and cryptographic
agility through multi-algorithm support.

The technical foundations are sound. The production de-
ployments are real. The development community is active.
The architectural principles align with formal methods
research and security best practices. Organizations evalu-
ating next-generation cryptographic infrastructure should
include Zenroom in their assessment.

Acknowledgments

A Zencode Formal Grammar
Specification

This appendix provides the complete formal grammar of
the Zencode language in Extended Backus-Naur Form
(EBNF) following the ISO/IEC 14977 standard. This for-
malization serves multiple purposes: it provides a precise,
unambiguous specification of valid Zencode contracts;
it enables automated parser generation; it facilitates for-
mal verification and static analysis; and it documents the
language for implementers and tool developers.

The grammar is context-free at its core with context-
sensitive restrictions enforced during semantic analysis.
This positioning in the Chomsky hierarchy is intentional.
Context-free grammars are well-understood, efficient to
parse, and amenable to formal analysis. The context-
sensitive extensions handle phase ordering and memory
access rules that cannot be expressed in pure context-free
form but are essential for security.

A.1 Grammar Structure

The Zencode grammar consists of several layers:

Lexical layer: Defines tokens like identifiers, keywords,
literals, and delimiters. Keywords are reserved words
(Given, When, Then, If, Foreach) that trigger state transi-
tions in the parser. Variable placeholders are marked by
single quotes surrounding identifier strings.

Syntactic layer: Defines valid statement structures. A
contract is a sequence of statements organized into phases.

40

Each phase has specific keywords and permitted statement
types. The grammar enforces that statements appear in
valid order and that control structures are properly nested.

Semantic layer: Enforces constraints not expressible
in pure context-free grammar. Phase ordering requires
that Given statements precede When statements which
precede Then statements. Memory access permissions
vary by phase. Control flow depth is bounded. These con-
straints are verified during parsing through state machine
transitions.

A.2 Phase Structure

The grammar reflects Zencode’s phase-based execution
model:

contract = [preamble | , body
preamble = { rule | scenario }

body = [given phase | , [when_phase | , |
then_ phase]

The preamble contains optional directives that config-
ure parsing and execution. The rule directive sets VM
behavior like input encoding or version requirements.
The scenario directive loads domain-specific statement
libraries.

The body contains the actual computational contract. The
Given phase declares and validates inputs. The When
phase performs transformations. The Then phase formats
outputs. Each phase is optional but if present they must
appear in this order.

A.3 Statement Patterns

Zencode statements follow a pattern-matching syntax:

statement__pattern { pat-

tern__element }

pattern_ element

)

pattern_ element literal text | variable place-

holder

variable_ placeholder =

99 790

, variable_name ,

A pattern consists of literal text interspersed with vari-
able placeholders. The parser matches input statements
against registered patterns from loaded scenarios. When a
match succeeds, variable values are extracted and passed
to the corresponding implementation function.

This pattern-matching approach enables natural language-
like syntax while maintaining formal parsability. The
single-quote delimiters make variable boundaries explicit,
preventing ambiguity in pattern matching.

A.4 Control Flow

The grammar defines two control structures:

Conditional branching:

Dyne.

org Z @ DYNE.ORG

if block if _statement , [whenif phase | , |
thenif phase | , endif statement

Conditional execution within When and Then phases.
The condition is evaluated during execution. If true, the
whenif and thenif statements execute. The branch does
not loop; it executes at most once per contract execution.

Iteration:

foreach_block = foreach_statement , [whenfore-
ach_ phase | , endforeach_ statement

Bounded iteration over collections. The maximum itera-
tion count is set at VM initialization. The loop body cannot
modify the collection being iterated. Foreach blocks can
contain if blocks but cannot be nested recursively beyond
implementation limits.

A.5 Context-Sensitive Constraints

Several constraints are enforced by the parser but cannot
be expressed in the context-free grammar:

(D Phase ordering must be: scenario/rule, then Given,
then When, then Then

(2) Control structures must be properly paired (if with
endif, foreach with endforeach)

@ Statement patterns must match registered patterns
from loaded scenarios

(4) Variable names must be valid identifiers without
spaces

(5) Nesting depth of control structures is bounded by VM
configuration

(6) Memory access permissions vary by phase and are
checked by the VM

These constraints are verified during parsing through the
state machine that tracks current phase and validates
transitions.

A.6 Extensibility

The grammar allows extension through scenario modules.
New scenarios register additional statement patterns with-
out modifying the core grammar. A pattern registration
specifies:

« The statement text with variable placeholders
« Which phase(s) the statement is valid in
+ The implementation function to invoke when the pat-

tern matches

Pattern registration is checked for ambiguity. If two pat-
terns could match the same input, the parser rejects the
registration. This prevents undefined behavior from am-
biguous grammars.

41

A.7 Complete Grammar Specification

The complete EBNF grammar is provided in the accompa-
nying file zencode.ebnf. This machine-readable specifi-
cation can be used with parser generators (ANTLR, Yacc,
PEG) or verification tools. The grammar includes:

All terminal and non-terminal symbols

Production rules for every language construct

Lexical definitions for tokens

Examples of valid contracts

Documentation of semantic constraints

The grammar is maintained as part of the Zenroom source
distribution. Changes to the language require correspond-
ing updates to the formal grammar. This coupling pre-
vents specification drift and ensures the grammar accu-
rately reflects implementation behavior.

A.8 Verification Applications

The formal grammar enables several verification ap-
proaches:

Static analysis: Tools can parse contracts without execut-
ing them, checking for syntax errors, undefined variables,
or unreachable code. The grammar makes contract struc-
ture explicit and amenable to automated checking.

Contract validation: Organizations can verify that con-
tracts conform to policy requirements by analyzing the
Abstract Syntax Tree produced by parsing. For example,
checking that contracts do not use forbidden operations
or access prohibited data.

Documentation generation: The grammar structure
allows automated extraction of all valid statement pat-
terns, producing comprehensive reference documentation
directly from the implementation.

Test generation: Formal grammars can seed fuzz testing
by generating valid contracts that exercise different code
paths. The grammar defines the valid input space, making
coverage-guided fuzzing more effective.

Cross-validation: Different tools can parse the same
contract and verify they produce equivalent ASTs. This
helps prevent parser differentials between tools that claim
to support Zencode.

The grammar formalization is not academic exercise but
practical engineering. It makes Zencode behavior precise,
testable, and verifiable by third parties without requiring
access to implementation source code.

B Zencode Syntax Reference

This appendix provides a practical reference for writing
Zencode contracts. The formal grammar in the previous
appendix defines what is syntactically valid. This refer-
ence shows what statements exist, what they do, and how

Dyne.

org Z @ DYNE.ORG

to use them. The organization follows the phase struc-
ture: Given, When, Then, with control flow and directives
covered separately.

B.1 Directive Statements

Directives configure contract execution and must appear
before the Given phase. They control parsing, validation,
and output behavior.

Scenario declaration:

Scenario 'scenario name'
Scenario 'ecdh': 'ethereum': 'credential’

Loads scenario modules providing domain-specific state-
ments. Multiple scenarios can be declared on one line
separated by colons. Common scenarios: ecdh, eddsa,
credential, ethereum, bitcoin, w3c, coconut.

Rule directives:

Rule check version 5.0

Rule input encoding base64
Rule input format json
Rule output encoding hex
Rule output format cbor
Rule unknown ignore

Version checking ensures contract compatibility. Encod-
ing rules specify how input and output data is encoded.
Format rules specify serialization format (json, cbor, ms-
gpack). The unknown ignore rule suppresses errors for
unrecognized input fields.

B.2 Given Phase: Input Loading and Validation

The Given phase loads and validates input data. Every
piece of data used in the contract must be loaded explicitly.

Identity declaration:

Given I am 'Alice'
Given I am known as 'Bob'
Given my name is in a 'string' named 'username'’

Declares the identity of the contract executor. This affects
which nested JSON objects are accessible with the "my”
keyword.

Loading simple objects:

Given I have a 'string' named 'message’
Given I have a 'number' named 'amount'
Given I have a 'hex' named 'publicKey'
Given I have a 'base64' named 'signature'
Given I have an 'integer' named 'counter’

Loads atomic values with specified encoding. Supported
encodings: string, number, integer, hex, base64, base58,
url64, binary, time.

Loading arrays:

42

Given I have a 'string array' named 'names’
Given I have a 'number array' named 'values'
Given I have a 'hex array' named 'keys'

Arrays are homogeneous collections. The encoding speci-
fies element type.

Loading dictionaries:

Given I have a 'string dictionary' named 'config'
Given I have a 'number dictionary' named 'balances'

Dictionaries are key-value maps where keys are strings
and values have specified encoding.

Loading from nested objects:

Given I have my 'keypair'

Given I have my 'string' named 'email’

Given I have a 'number' named 'price' in 'product’
Given I have a 'string' named 'city' inside 'address'

The "my” keyword accesses objects nested under the de-

clared identity. The ”in” or “inside” keywords access ob-
jects nested under named parents.

Loading cryptographic schemas:

Given I have my 'keyring'

Given I have a 'public key' from 'Alice’

Given I have a 'verifiable credential' named 'diploma
Given I have a 'bitcoin address' named 'wallet'

Schemas are complex objects with structure defined by
scenarios. The schema name matches the scenario termi-
nology.

B.3 When Phase: Data Processing and
Transformation

The When phase performs computation, manipulates data,
and executes cryptographic operations.

Creating new objects:

When I create the random 'nonce'’

When I create the random object of '256"' bits
When I create the array of '10' random numbers
When I set 'result' to '42' as 'number’

When I write string 'Hello' in 'greeting'

Creates objects with specified values or random gener-
ation. The "set” and “write” statements create variables
with explicit values.

Arithmetic operations:

When I create the result of 'a' + 'b'

When I create the result of 'x' - 'y

When 1 create the result of 'price' * 'quantity'
When I create the result of 'total' / 'count’

When I create the result of 'value' % 'modulus’

Dyne.org

Z @ DYNE.ORG

Basic arithmetic. Operations work on numbers. Results
are named “result” and typically renamed immediately.

String manipulation:

When I append 'suffix' to 'text'
When I split the leftmost '4' bytes of 'data’
When I split the rightmost '8' bytes of 'data’

String operations. Append concatenates strings. Split
extracts substrings from left or right.

Object manipulation:

When I rename the 'oldName' to 'newName'
When I copy 'source' to 'destination'

When I delete 'temporary’

When I remove 'item' from 'collection'

Rename changes object names. Copy duplicates objects.
Delete removes objects. Remove extracts from collections.

Array operations:

When I randomize the 'items' array

When I pick the random object in 'choices’

When I create the copy of element '3"' from array 'list’
When I create the flat array of contents in 'nested’
When I create the flat array of keys in 'dictionary'

Randomize shuffles arrays. Pick selects random element.
Copy element extracts by index. Flatten operations con-
vert nested structures to flat arrays.

Hashing:

When I create the hash of 'message’
When I create the hash of 'data' using 'sha512'

Asymmetric encryption to public keys. Symmetric en-
cryption with passwords. Decryption requires appropri-
ate private key or password.

Key operations:

When I create the ecdh key

When I create the ecdh key with secret 'seed'
When I create the eddsa key

When I create the public key

When I create the key derivation of 'master' with path 'm/0/1'

Key generation. Random generation or deterministic from
seed. Public key extraction. Hierarchical derivation for
HD wallets.

Credential operations:

When I create the verifiable credential
When I create the credential signature
When I create the credential proof
When I verify the 'credential’

When I create the selective disclosure of 'credential' revealing 'attribu

W3C Verifiable Credential operations. Issuance, signing,
proof generation, verification, and selective disclosure.

Blockchain operations:

When I create the bitcoin address
When I create the ethereum address
When I create the bitcoin transaction
When I create the ethereum transaction
When I sign the 'transaction’

Blockchain-specific address derivation and transaction
creation. Signing produces blockchain-compatible signa-

When I create the HMAC of 'message' with key 'secret tures.

When I create the key derivation of 'password'

When I create the pbkdf2 of 'password' with salt 'salt’

Cryptographic hashing. Default hash is SHA-256. Spe-
cific algorithms can be requested. HMAC provides keyed
hashing. KDF and PBKDF?2 derive keys from passwords.

Signature operations:

When I create the signature of 'message’

When I create the ecdh signature of 'data’
When I create the eddsa signature of 'document'
When I verify the 'signature'

B.4 Control Flow

Control structures enable conditional execution and itera-
tion.

Conditional execution:

If T verify the 'signature’
When I create the 'result’
Then print the 'result’
Endif

When I verify the 'message' has a signature in 'signatud’ 'lbalaAtie¢is found in 'accounts’

Signing creates signatures using the executor’s private
key. Verification checks signatures against public keys.
The algorithm matches the scenario.

Encryption and decryption:

When I encrypt the 'plaintext' to 'Bob'
When I decrypt the 'ciphertext' from 'Alice’

When I compute the 'transaction'
Endif

If blocks execute conditionally. The condition must be
a boolean statement. When and Then statements can
appear inside If blocks.

Iteration:

When I encrypt the secret message 'text' with 'passworHoreach 'item' in 'items'

43

Dyne.

org Z @ DYNE.ORG

When I create the hash of 'item'
Endforeach

Foreach 'name' in 'users'
When I create the credential for 'name'
Endforeach

Foreach loops iterate over array elements. The loop vari-
able is bound to each element in sequence. Maximum
iterations are bounded by VM configuration.

B.5 Then Phase: Output Generation

The Then phase selects and formats output data.

Printing objects:

Then print the 'result’
Then print my 'output’
Then print all data
Then print data

Print statements copy objects to output. Specific objects
can be selected. Print all data outputs everything in the
ACK workspace.

Output encoding;:

Then print the 'data' as 'hex'
Then print the 'signature' as 'base64’
Then print the 'key' as 'baseb8'

Output encoding can be specified per object. This over-
rides the rule output encoding directive.

B.6 Statement Modifiers and Prefixes

Statements accept optional modifiers that adjust parsing
behavior without changing semantics.

Common prefixes:
« I, that, the, a, an: articles and pronouns for natural
reading

have, my, known, valid: possession and validation indi-
cators

« all, inside, in: collection and nesting indicators

These words are syntactic sugar. "Given I have a ’string’”
is equivalent to "Given have string”. The readable form is
preferred for human consumption.

And keyword:
Given I have a 'string' named 'first’

And I have a 'string' named 'second’
And T have a 'number' named 'count’

And continues the previous phase. It is equivalent to

repeating the phase keyword. Used to avoid repetitive
Given/When/Then statements.

44

B.7 Common Patterns

Practical contract patterns that appear frequently in pro-
duction use.

Hash and sign:

Given I have a 'string' named 'document’
Given I have my 'keyring'

When I create the hash of 'document'
When I create the signature of 'hash'
Then print the 'signature’

Standard signing pattern: hash the input, sign the hash.
Verify and process:
Given I have a 'string' named 'message’

Given I have a 'signature’
Given I have a 'public key' from 'sender’

If I verify the 'message’ has a signature in 'signature' by 'sender'

When I process the 'message’
Then print the 'result’
Endif

Conditional processing based on signature verification.

Credential issuance:

Scenario 'credential’

Given I am 'issuer'

Given I have my 'keyring'

Given I have a 'string dictionary' named 'claims’
When I create the verifiable credential

When I create the credential signature

Then print the 'verifiable credential’

W3C Verifiable Credential issuance flow.

Selective disclosure:

Scenario 'credential’

Given I am 'holder’

Given I have my 'verifiable credential'

Given I have a 'string array' named 'revealed’

When I create the selective disclosure revealing 'revealed'
Then print the 'credential presentation'

BBS+ selective disclosure presentation.

B.8 Error Messages and Debugging

Understanding error messages helps debug contract is-
sues.

Pattern not found:

['] Zencode line 12 pattern not found:
Given I have a 'nonexistent' named 'object’

No registered pattern matches the statement. Check
spelling, scenario loading, and statement syntax.

Schema validation failure:

Dyne.

org Z @ DYNE.ORG

['] Zencode line 5 schema validation failed:
Given I have a 'number' named 'text'

Input data does not match declared schema. The object
exists but has wrong type or encoding.

Missing object:

['] Zencode line 8 object not found:
When I create the hash of 'missing'

Referenced object was not loaded in Given phase. Add
appropriate Given statement.

Phase violation:

['] Zencode line 15 invalid phase transition:
Given I have a 'string' (after When)

Statement appears in wrong phase. Given statements
cannot appear after When statements.

B.9 Best Practices

Guidelines for writing maintainable contracts.

Explicitloading: Load only data needed for computation.
Avoid loading unnecessary input that increases attack
surface.

Immediate renaming: When statements create objects
with generic names like “result” or “random_object”, re-
name immediately to descriptive names.

Clear variable names: Use descriptive names matching
domain terminology. “userCredential” is better than "vc1”.

Comments: Use hash comments to document complex
logic or business rules.

Error handling: Use If blocks to handle verification fail-
ures gracefully rather than allowing contract to fail.

Minimal scope: Keep contracts focused on single pur-
pose. Multiple small contracts are better than one large
contract doing many things.

Schema validation: Let Given phase validation catch
bad input. Do not implement redundant validation in
When phase.

This syntax reference covers common operations. Com-
plete statement lists are generated from scenario imple-
mentations. Use the statement discovery feature to list all
available patterns for loaded scenarios.

C Cryptographic Algorithm Details

This appendix provides technical specifications for cryp-
tographic algorithms implemented in Zenroom. The in-
formation serves multiple purposes: security analysis,
interoperability verification, and implementation valida-
tion. Each algorithm section includes mathematical foun-
dations, implementation details, parameter choices, and
security considerations.

45

C.1 Hash Functions
SHA-256:

Standard: FIPS 180-4

Output size: 256 bits

Block size: 512 bits

Security level: 128 bits (birthday bound)
Implementation: AMCL hash library

SHA-256 is the default hash function for operations not
specifying an algorithm. The implementation follows the
FIPS specification exactly including padding, endianness,
and initialization vectors. Message digests are determin-
istic: the same input always produces the same hash.

SHA-512:

« Standard: FIPS 180-4

Output size: 512 bits

Block size: 1024 bits

Security level: 256 bits (birthday bound)
Implementation: AMCL hash library

SHA-512 provides higher security margin than SHA-256
at cost of larger output and slower computation. Used for
CSPRNG seeding and when explicit algorithm selection
requests it.

SHAKE?256:

« Standard: FIPS 202

« Output size: Variable (extendable-output function)

« Security level: Up to 256 bits

« Implementation: Keccak-based

SHAKE256 is an extendable-output function based on

Keccak. Used for key derivation where variable-length
output is beneficial.

C.2 Elliptic Curve Cryptography

NIST P-256 (secp256r1):

« Curve equation: y? = x% * 3x + b over prime field F,
Prime: p = 2256 * 2224 4 9192 4 996+

Order: n = 2256 * 2224 4 2192 Oy (slightly less than
9256)
Cofactor: 1

Security level: 128 bits
Implementation: AMCL ECP module

Point operations use projective coordinates for efficiency.
Point multiplication uses windowed non-adjacent form
(WNAF) for scalar multiplication. Point validation checks

Dyne.

org Z @ DYNE.ORG

that points satisfy the curve equation and have the correct
order.

secp256k1:

Curve equation: y* = x* + 7 over prime field F,
Prime: p = 2256 * 232 * 977

Cofactor: 1

Security level: 128 bits
Implementation: AMCL ECP module

The curve used by Bitcoin and Ethereum. The special form
of the prime enables optimized field arithmetic. Endomor-
phism acceleration is available but not currently used in
Zenroom.

Ed25519:

. Curve: Edwards curve *x? + y?2 = 1 *
(121665/121666)x2y?

- Base field: F, where p = 22°5 * 19

+ Group order: 2252 +

27742317777372353535851937790883648493
Cofactor: 8

Security level: 128 bits

Implementation: EADSA with SHA-512

Ed25519 uses twisted Edwards curve arithmetic. The
curve has complete addition formulas resistant to timing
attacks. Signatures are deterministic following EdDSA
specification. Public keys are 32 bytes, signatures are 64
bytes.

BLS12-381:

Curve type: Barreto-Lynn-Scott pairing-friendly curve
Embedding degree: 12
Base field: IF, where q is 381-bit prime

Group orders: Both G; and Go have prime order r (255
bits)

Security level: 128 bits
Implementation: AMCL BLS module

BLS12-381 supports efficient pairing computation en-
abling advanced schemes. The curve provides 128-bit
security with reasonable performance. G1 is curve over
base field, G2 is curve over extension field. Pairings map
G1 G2 — Gr where Gr is multiplicative group in F2.

C.3 Signature Schemes
ECDSA:
« Standard: FIPS 186-4 (verification), RFC 6979 (determin-

istic signing)

46

« Curves: P-256, secp256k1
Hash function: SHA-256

Signature size: 64 bytes (r, s components)

Security: Relies on discrete logarithm problem

Signing process:

Order: n = OxFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48 AO3BBFD25E8CD0364141

Compute message hash h = H(m

(2) Derive deterministic nonce k from private key and
hash using HMAC-DRBG (RFC 6979)

(3) Compute point R = kG where G is generator

@ Set r = xg mod n where xp is x-coordinate of R

(5) Compute s = k' (h + r - d) mod n where d is private
key

(6) Return signature (r, s)

Verification checks that R = (h-s)G + (r-s1)Q where
Q is public key, and that x-coordinate of R equals r.

EdDSA:

Standard: RFC 8032
Curve: Ed25519

Hash function: SHA-512
Signature size: 64 bytes

Security: Relies on discrete logarithm problem

EdDSA signing is deterministic by design. The nonce is
computed as r = H(H (k)32 ¢4|lm) where k is private key
and m is message. This eliminates randomness failures
that have broken ECDSA implementations.

Schnorr Signatures:

« Standard: BIP 340 (for secp256k1)

Curves: secp256k1, Ed25519-compatible

Hash function: SHA-256 (tagged hash for Bitcoin)
Signature size: 64 bytes

Security: Relies on discrete logarithm problem with
proven security in random oracle model

Schnorr signatures enable key aggregation and multi-
signatures. The signature equation is s = k+H (R||P||m)-x
where k is nonce, R = kG, P is public key, m is message,
and x is private key.

BLS Signatures:

Curve: BLS12-381

Signature size: 96 bytes (G1 element) or 192 bytes (G2
element)

Security: Relies on computational Diffie-Hellman prob-
lem in pairing groups

Properties: Signatures can be aggregated efficiently

Dyne.

org Z @ DYNE.ORG

BLS signature on message m with private key x is 0 =
x - H(m) where H maps messages to curve points. Verifi-
cation uses pairing: e(o, G) = e(H(m), P) where P = xG
is public key. Multiple signatures on different messages
can be aggregated: 044, =), 0;.

C.4 Post-Quantum Cryptography
ML-KEM (Kyber):

Standard: NIST FIPS 203

Parameter sets: ML-KEM-512, ML-KEM-768, ML-KEM-
1024

Security levels: 128, 192, 256 bits respectively

Key sizes: Public keys 800-1568 bytes, private keys
1632-3168 bytes

Ciphertext sizes: 768-1568 bytes

Based on: Module Learning With Errors (MLWE) prob-
lem

ML-KEM-768 is the default parameter set providing 192-
bit security against quantum adversaries. The scheme uses
structured lattices with polynomial rings Z,[X]/(X?%% +
1) where g = 3329.

Key generation produces public key (A, t = As+e) where
A is public matrix, s is secret vector, and e is error vector.
Encapsulation generates shared secret K and ciphertext
(u,v) encrypting K. Decapsulation recovers K using pri-
vate key.

ML-DSA (Dilithium):

 Standard: NIST FIPS 204

Parameter sets: ML-DSA-44, ML-DSA-65, ML-DSA-87
Security levels: 128, 192, 256 bits

Public key sizes: 1312-2592 bytes

Signature sizes: 2420-4595 bytes

Based on: Module Learning With Errors and Module
Short Integer Solution

ML-DSA-65 provides 192-bit security with reasonable sig-
nature size. Signatures are larger than classical schemes
but verification is efficient. The scheme uses rejection
sampling to ensure signatures leak no information about
the private key.

NTRU:

Parameter sets: Various (ntru—hps—2048—509, ntru-hrss-
701)

Security levels: 128-256 bits

Key sizes: 935-1230 bytes (public), 935-1450 bytes (pri-
vate)

Ciphertext sizes: 699-1138 bytes
Based on: Shortest Vector Problem in NTRU lattices

47

NTRU has longer history than ML-KEM but was not se-
lected as NIST standard. Included for compatibility with
systems deployed before standardization. Uses polyno-
mial ring operations in Z4[X|/(X" * 1).

C.5 Key Derivation and Password-Based
Cryptography
PBKDF2:

Standard: RFC 8018
Hash function: HMAC-SHA-256 or HMAC-SHA-512

Iterations:
mended

Configurable, minimum 10000 recom-

Salt: Random, minimum 128 bits
Output: Variable length

PBKDEF2 derives keys from passwords using iterated
hashing. The iteration count slows down brute force
attacks. Formula: DK T1|| To]|...|| T, where T;
Uy @ Uy @ .. ® U, and U; = HMAC(Uy) with Uy =
HMAC (password, salt|[i).

HKDF:

Standard: RFC 5869
Hash function: SHA-256 or SHA-512

Phases: Extract (PRK from input key material), Expand
(derive keys from PRK)

Output: Variable length up to 255 HashLen

HKDF provides key derivation suitable for Diffie-
Hellman outputs and other key material. Extract phase:
PRK = HMAC-Hash(salt,IKM). Expand phase: T; =
HMAC-Hash(PRK, T;+1||info||i) where Ty is empty string.

BIP32 Hierarchical Derivation:

Standard: Bitcoin BIP 32

Applications: HD wallets, key hierarchies

Key types: Normal and hardened derivation

Path notation: m/purpose’/coin_type’/ac-
count’/change/address_index

BIP32 enables deriving child keys from parent keys. Nor-
mal derivation allows public key derivation without pri-
vate key. Hardened derivation requires private key. Mas-
ter key derived from seed using HMAC-SHA-512. Child
keys derived using HMAC-SHA-512 with parent key and
index.

C.6 Encryption Schemes
AES-GCM:

« Standard: NIST SP 800-38D
« Key sizes: 128, 192, 256 bits

Dyne.

org Z @ DYNE.ORG

o IV size: 96 bits recommended
« Tag size: 128 bits

« Mode: Authenticated encryption with associated data
(AEAD)

AES-GCM combines AES-CTR encryption with GMAC
authentication. The mode provides both confidentiality
and integrity. Implementation uses constant-time oper-
ations to resist side-channel attacks. Associated data is
authenticated but not encrypted.

ECIES (Elliptic Curve Integrated Encryption
Scheme):

Components: ECDH key agreement, KDF, symmetric
encryption, MAC

Curves: P-256, secp256k1, Ed25519
KDF: HKDF-SHA-256

Encryption: AES-256-GCM

MAC: Included in GCM tag

ECIES encrypts to recipient’s public key. Sender generates
ephemeral key pair, performs ECDH with recipient public
key, derives encryption key using KDF, encrypts plaintext,
includes ephemeral public key in ciphertext. Recipient
uses private key with ephemeral public key to recover
shared secret and decrypt.

C.7 Zero-Knowledge Proof Primitives

Schnorr Proof of Knowledge:

Proves knowledge of discrete logarithm x such that Y =
xG without revealing x.

Protocol:

@ Prover generates random r, computes R = rG
(2) Prover computes challenge ¢ = H(G||Y||R)
(3) Prover computes response s = r + cx

(4) Verifier checks sG = R + cY

Non-interactive variant uses Fiat-Shamir transform where
challenge is hash of commitment and public values.

BBS+ Signatures with Selective Disclosure:

Curve: BLS12-381
Security: Based on q-SDH assumption

Signature size: Single G1 element (48 bytes compressed)

Proof size: Depends on number of attributes (approxi-
mately 300-500 bytes)

BBS+ signs multiple messages with single signature.
Holder creates zero-knowledge proof revealing chosen
messages while hiding others. Proof shows knowledge
of signature on committed messages. Implementation
follows IETF draft specification.

48

C.8 Random Number Generation
CSPRNG:
« Algorithm: HMAC-DRBG with SHA-512

Standard: NIST SP 800-90A
Seed size: 440 bits (security strength + entropy)

Reseed interval: Never during single contract execution

Prediction resistance: Provided by proper seeding

The CSPRNG state is initialized once per contract exe-
cution from provided seed or platform entropy. State is
never shared between executions. Implementation in-
cludes instantiate, generate, and uninstantiate functions.
State is wiped on VM termination.

C.9 Implementation Validation

All cryptographic implementations are validated through:

« Known Answer Tests (KAT) from standards documents
« Interoperability tests with other implementations
« NIST test vectors where available

Academic paper test vectors for newer schemes

Continuous integration test suite execution

Implementation compliance with standards is verified
mechanically. Deviations from standards are documented
and justified. Custom implementations include rationale
and security analysis.

C.10 Algorithm Selection Guidelines
Organizations should select algorithms based on threat
model and requirements:

For new systems:

ECDSA or EdDSA for signatures (EdDSA preferred for
simplicity)

P-256 for FIPS compliance, secp256k1 for blockchain,
Ed25519 for performance

SHA-256 for hashing unless specific requirements dic-
tate otherwise

« Consider ML-KEM and ML-DSA for long-term security

For blockchain integration:

«+ secp256k1 for Bitcoin/Ethereum compatibility
+ Keccak-256 for Ethereum hashing

« BLS12-381 for aggregate signatures in consensus
For privacy-preserving credentials:

« BBS+ on BLS12-381 for selective disclosure

Dyne.org

Z @ DYNE.ORG

« Ed25519 for simple credentials without selective disclo-
sure

+ Coconut for threshold issuance requirements
For post-quantum transition:

+ ML-KEM-768 for key encapsulation (hybrid with
ECDH)

+ ML-DSA-65 for signatures where size is acceptable

+ Plan migration timeline aligned with organizational
risk assessment

D Performance Benchmarks

E Security Checklist for Implementers

This appendix provides a practical checklist for organiza-
tions implementing systems using Zenroom. The check-
list covers deployment configuration, operational secu-
rity, contract design, integration patterns, and monitoring.
Each item includes rationale and implementation guid-
ance.

E.1 Pre-Deployment Planning

Threat model documentation:

« Document what threats the system must defend against
« Identify trust boundaries between components
« Classify data sensitivity and protection requirements

+ Define adversary capabilities (insider, network, physi-
cal access)

+ Map threats to Zenroom security features

Rationale: Zenroom provides specific protections. Un-
derstanding which threats you face determines whether
those protections are sufficient.

Compliance requirements identification:

« List applicable regulations (GDPR, HIPAA, PCI-DSS,
etc.)

« Document specific technical requirements from each
regulation

+ Identify gaps between Zenroom capabilities and re-
quirements

« Plan application-layer controls for unmet requirements
+ Obtain legal review of compliance approach
Rationale: Zenroom is infrastructure, not complete com-
pliance solution. Knowing gaps allows planning.
Algorithm selection:

« Choose cryptographic algorithms matching threat
model

49

« Consider post-quantum requirements for long-term
data

« Plan migration timeline for algorithm deprecation
« Document algorithm choices and rationale

« Verify chosen algorithms are supported by required
scenarios

Rationale: Algorithm choices affect security posture for
years. Explicit decisions prevent defaults that may not fit
requirements.

E.2 Build and Deployment Configuration
Binary verification:

« Verify cryptographic signatures on official releases

« Reproduce builds from source and compare to official
binaries

« Document build toolchain versions used
« Establish trust in binary provenance before deployment

+ Use checksums for distribution integrity verification

Rationale: Supply chain attacks target build and distribu-
tion. Verification catches compromised binaries.

Memory configuration:

« Set maximum memory pool size appropriate for plat-
form

« Configure maximum iteration count for loops
 Set maximum nesting depth for control structures
« Test contracts execute within configured limits

« Document memory requirements for typical contracts

Rationale: Memory limits prevent resource exhaustion.
Correct configuration allows legitimate use while block-
ing attacks.

Scenario loading:

« Load only scenarios needed for application

« Disable unused scenarios to minimize attack surface

« Verify scenario versions match tested versions

« Document which scenarios are required and why

« Test that contracts fail gracefully when scenarios are

missing

Rationale: Each loaded scenario adds code that could
contain vulnerabilities. Minimal loading reduces risk.

Seccomp configuration (Linux):

« Deploy seccomp profiles restricting system calls
« Verify only required system calls are permitted

« Test that contracts execute successfully under restric-
tions

Dyne.org

Z @ DYNE.ORG

+ Monitor seccomp violations in logs

+ Document allowed system calls and rationale

Rationale: Seccomp provides kernel-level enforcement of
isolation. Even if VM is compromised, system calls are
blocked.

E.3 Contract Design and Review

Input validation:

« Declare all input schemas explicitly in Given phase
« Use most restrictive schema that accepts valid input

« Validate string encodings (hex, base64) catch mal-
formed input

» Test contract behavior with malformed input

» Document expected input structure and constraints

Rationale: Given phase is the recognition phase from
LangSec. Validation here prevents malicious input from
reaching processing.

Minimal permissions:

+ Load only data needed for contract operation

« Avoid "Given I have all data” patterns that load every-
thing

+ Output only results needed by caller
+ Do not print intermediate computation unless required

« Review each Given statement for necessity

Rationale: Principle of least privilege. Contracts with min-
imal access have minimal damage potential if exploited.

Error handling;:

+ Use If blocks to handle expected failures gracefully

+ Provide meaningful error messages for debugging

+ Avoid error messages that leak sensitive information
« Test error paths as thoroughly as success paths

+ Document expected failure modes

Rationale: Unhandled errors cause contract failure.
Proper handling provides better user experience and se-
curity.

Determinism verification:

+ Test contracts produce identical output for identical
input

+ Test on multiple platforms (x86, ARM, different OS)
« Verify random number generation uses proper seeding
« Document any intended non-determinism

« Include determinism tests in contract test suite

50

Rationale: Non-determinism causes verification failures
in distributed systems. Determinism is required for con-
sensus and audit.

Code review:

« Review contracts for business logic correctness

Verify cryptographic operations match requirements

Check that schemas match actual data structures

« Ensure variable names are clear and not misleading

« Have contracts reviewed by non-authors

Rationale: Human review catches logic errors automated
testing misses. Fresh eyes find issues authors miss.

E.4 Integration Security

Input sanitization:

Validate data before passing to Zenroom

« Escape special characters in strings

Verify JSON structure before contract execution

« Set reasonable size limits on input data

Log rejected inputs for security monitoring

Rationale: Defense in depth. Application validation
catches issues before they reach Zenroom.

Output validation:

« Parse Zenroom JSON output safely

« Validate output matches expected schema

« Handle execution errors appropriately

« Do not trust output encoding without verification

« Sanitize output before displaying to users

Rationale: Applications must validate external input, in-
cluding from Zenroom. Trust but verify.

Process isolation:

« Run Zenroom in separate process, not embedded in-
process

 Use minimal privileges for Zenroom process
« Limit process resources (CPU, memory, file descriptors)
« Terminate processes after contract execution completes

+ Monitor process behavior for anomalies

Rationale: Process boundaries provide additional isola-
tion. Compromised VM cannot directly access application
memory.

Secret management:

« Do not pass secrets in logs or error messages

« Use secure channels for key material input

Dyne.

org Z @ DYNE.ORG

« Wipe sensitive data from memory after use

+ Rotate keys according to security policy

« Document key lifecycle and storage

Rationale: Zenroom wipes its memory but applications
must manage secrets properly in their context.

Network isolation:

Deploy Zenroom on hosts without outbound internet
access where possible

Use network segmentation to isolate cryptographic op-
erations

Monitor network traffic for unexpected connections
Block DNS resolution in container environments
Document network architecture and isolation bound-

aries

Rationale: Zenroom makes no network calls but defense
in depth requires network-level controls.

E.5 Operational Security
Logging and monitoring:

Log contract execution start and completion

Record execution duration for performance monitoring

Log input hash (not content) for audit trail
Alert on execution failures or timeouts

Retain logs according to compliance requirements
Rationale: Logs provide audit trail and detect operational
issues. Balance logging with privacy requirements.

Update procedures:

Subscribe to Zenroom security announcements

Test updates in staging before production deployment
Maintain rollback capability for problematic updates
Document installed version and update history

Plan emergency update procedures for critical vulnera-
bilities

Rationale: Updates fix vulnerabilities but can introduce
regressions. Procedures balance speed with safety.

Backup and recovery:

Back up contract source code and configuration
Store keys and credentials securely

Document recovery procedures for system failure
Test recovery procedures periodically

Maintain offline backups for critical data

51

Rationale: Systems fail. Recovery procedures minimize
downtime and data loss.

Incident response:

« Define security incident criteria

Document response procedures and contacts

Establish communication channels for incidents

Plan forensic data collection procedures

Conduct incident response exercises
Rationale: Incident response planning reduces chaos dur-
ing actual incidents. Procedures enable effective response.

Performance monitoring:

Baseline normal execution times for contracts
Alert on significant performance degradation
Monitor memory usage patterns

Track error rates and failure modes

Investigate anomalies promptly

Rationale: Performance changes may indicate attacks or
system degradation. Early detection prevents issues.

E.6 Testing and Validation
Functional testing;:

Test all contract code paths including error cases
Verify outputs match expected results

Test boundary conditions and edge cases

Include negative tests with invalid input

Automate tests for regression detection

Rationale: Testing verifies contracts behave as intended.
Automated tests catch regressions.

Security testing:

Test with malformed input attempting to break parsing

Test with extremely large input attempting resource
exhaustion

Test with input designed to trigger overflow or under-
flow

Fuzz contracts with mutated inputs

Document security test cases and results

Rationale: Adversarial testing finds vulnerabilities before

attackers do.

Integration testing;:

« Test complete workflow from application through Zen-
room

« Verify error handling across integration boundary

Dyne.

org Z @ DYNE.ORG

« Test timeout and resource limit scenarios
+ Validate data flow through entire system

» Test failure recovery mechanisms

Rationale: Integration bugs appear at component bound-
aries. Testing full workflows catches integration issues.

Performance testing;:

« Measure execution time under normal load

Test behavior under maximum load

Verify memory usage stays within limits

Test concurrent execution if applicable

Document performance characteristics

Rationale: Performance testing identifies bottlenecks and
validates capacity planning.

E.7 Documentation Requirements
System architecture:

Document how Zenroom fits in overall architecture
Diagram data flow through components

Identify trust boundaries and security controls
Document deployment topology

Maintain architecture documentation current
Rationale: Architecture documentation enables security
review and guides future changes.

Contract documentation:

Document purpose of each contract

Describe expected inputs and outputs

Explain business logic in plain language

Document cryptographic operations and algorithms

Include examples of valid contract execution

Rationale: Contract documentation enables audit and
helps future maintainers.

Operational runbooks:

Document deployment procedures

Describe monitoring and alerting

Define troubleshooting procedures

Document backup and recovery procedures

Include emergency contact information

Rationale: Runbooks enable operations team to manage
system effectively.

Security documentation:

« Document threat model and security requirements

52

Describe implemented security controls
Maintain inventory of cryptographic keys
Document security testing results

Track security incidents and resolutions

Rationale: Security documentation supports audit and
compliance requirements.

E.8 Compliance Checklist

For organizations with specific compliance requirements:

GDPR compliance:

« Data processing purposes documented in contracts

Retention periods enforced at application level

Data minimization verified through contract review

Subject rights (access, deletion) implemented

Data protection impact assessment completed
FIPS 140 compliance:

Only approved algorithms enabled

Key sizes meet FIPS requirements

Random number generation uses approved sources
Self-tests implemented for critical functions

Security policy documented

Common Criteria evaluation:

Protection profile selected and documented

Security functional requirements mapped
Assurance level determined

Evidence documentation prepared

Evaluation facility engaged

This checklist is not exhaustive but covers critical security
considerations. Organizations should adapt it to their
specific requirements and risk tolerance.

