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Abstract

Ensuring privacy and protection from issuer corruption in digital identity systems is crucial. We
propose a method for selective disclosure and privacy-preserving revocation of digital credentials
using second-order Elliptic Curves and Boneh-Lynn-Shacham (BLS) signatures. We make holders
able to present proofs of possession of selected credentials without disclosing them, and we protect
their presentations from replay attacks. Revocations may be distributed among multiple revocation
issuers using publicly verifiable secret sharing (PVSS) and activated only by configurable consensus,
ensuring robust protection against issuer corruption. Our system’s unique design enables extremely
fast revocation checks, even with large revocation lists, leveraging optimized hash map lookups.

1 Introduction

Digital identity systems implement credential issuance
and presentation mechanisms so that a person (holder)
can voluntarily disclose his or her own acquired skills,
professed attributes, or completed accomplishments. Cre-
dentials are signed by issuer authorities and encapsulated
within various forms of digital proofs to be held in digital
wallets, empowering individuals to reveal only chosen
details to designated recipients, to limit data exposure and
permit a user-controlled release of information.
Such systems are known as selective disclosure and they
enhance users privacy by allowing data minimization
when proving credentials.

1.1 State of the art

Selective disclosures are being used by nation states across
the world in their next generation identity systems, for
instance EIDAS2.0 in Europe where the European Digital
Identity Wallet Architecture and Reference Framework[1]
mandates the use of SD-JWT[2] and mDOC [3]. SD-JWT
adopts for its cryptography Hash-Based Message Authen-
tication Codes (HMAC) to generate proofs: such presen-
tations can be traced and recent critical feedback on the
EUDI ARF[4] details this problem.

In North America the efforts concentrate on the adop-
tion of the BBS+ algorithm[5] leveraging its Zero Knowl-
edge Proof properties and applied to W3C Verifiable
Credentials[6] to obtain an higher degree of privacy by
making every disclosure unlinkable.

1.2 Threats considered

The different choices in data formats in these two ap-
proaches is irrelevant in relation with cryptography, any
choice between JSON Web Tokens or W3C Verifiable Cre-
dentials does not impact the privacy level. But the cryptog-
raphy adopted determines the adequacy of a solution to
face three important threats that can render an algorithm
unsuitable to be used in real world situations.

Linkability The EUDI-ARF standard dictates that cre-
dentials issued to a holder, can be presented (in the form
of a verifiable presentation) to a relying party in order
to have one or more attributes verified. Every verifiable
presentation includes one or more HMAC(s), formatted
in SD-JWT: the HMACs are identical each time a verifi-
able presentation is produced from a certain credential.
This makes possible for colluding relying parties, or to
malicious actors, to trace a holder’s identity by collect-
ing, exchanging and confronting verifiable presentations
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(linkability). This threat appears to be well mitigated by
BBS+ through its Zero Knowledge Proof implementation.

Privacy breach of revocation lists We believe that
anonymous revocations are a condicio sine qua non to guar-
antee a sufficient level of privacy in digital identities and
credentials. There is no privacy-preserving revocation
system designed, either in EUDI-ARF, or in W3C-VC and
BBS+. In case the choice of strategy for revocation is left
open to developers, the risk for major privacy breaches
may occur, for example with the adoption of public sta-
tus lists [7]. The hypotetical use of a certificate status
lists (CRL) presents issues related primarily to privacy [8],
because sensitive information about holders leaks from
the list. This problem is partially mitigated by expira-
tion dates, in cases where credentials can be short-lived
(typically less important credentials), but not applicable
with digital identification documents such as ID, driving
license, passport and social security numbers, which typi-
cally have longer or no expiration time. Future plans for
the national standards we are observing include the adop-
tion of “Bitstring” status lists [9] which may grant a de-
gree of privacy. In SD-BLS we design a privacy-preserving
revocation mechanism to remove the leak of holder’s in-
formation and delegate the governance of revocations to
a quorum of multiple revocation issuers which may be
different from the credential issuer.

Revocation issuer corruption If the choice of inter-
active revocation is left to a single issuer, one may unilat-
erally choose to revoke credentials, without being subject
to revision or having to seek consensus with a quorum
of issuers. This situation leads to security issues in case
Issuers are corrupted and make a weaponized use of dig-
ital revocations to persecute engaged individuals. Such
a condition becomes a real concern for journalists or ac-
tivists living under dictatorial regimes that may arbitrarily
revoke their credentials, or even ID cards and passports.
Similarly, a security breach of an issuer service, would
result in similar threats. We mitigate this risk by intro-
ducing the possibility for threshold issuance of revocation
keys and by separating the responsibility of revocation
issuance and credential issuance.

2 Overview

2.1 Feature Comparison

We briefly round up on feature differences between the
named selective disclosure cryptographic schemes, as
shown in table 1, mainly distinguishing between four
fundamental features:

• UP: Unlinkable Presentation
• UR: Unlinkable Revocation
• TR: Threshold Revocation
• URG: Unregroupability

UP UR TR URG

SD-BLS no yes yes yes

SD-JWT no wip no no

BBS+ yes wip no yes

Table 1: feature comparison

Where wip is mentioned, it means work in progress on
adoption of bitstring status lists for unlinkable revoca-
tions.
The “unregroupability” feature refers to the fact that dif-
ferent presentations of different claims cannot be linked
to each other (regrouped) as presented by the same holder,
even when they are signed by the same issuer.

2.2 Key contributions

The cryptographic scheme described in this paper, named
SD-BLS for brevity, implements all the properties of the
SD-JWT scheme and proposes a novel cryptographic ap-
proach to similar data structures. Furthermore SD-BLS
proposes novel anonymous cryptographic revocation flow
for verifiable credentials, that aims to solve governance
issues posed by status and revocation lists.

Selective disclosure Similarly to the SD-JWT and
mDOC formats, SD-BLS produces an array of claims: the
elements of the array are individually signed by the is-
suer. In SD-BLS the signature(s) replace the HMAC and
still enable the holder to selectively disclose only certain
signed credentials, and produce a proof of possession that
minimizes private information given to verifiers.

Anonymous cryptographic revocation SD-BLS pro-
poses a novel approach to credential revocation: the data
published by the revocation issuer will produce crypto-
graphic material that contains no information about the
credential holders. The cryptographic revocation material
allows anyone to verify if an SD-BLS proof produced by a
credential holder has been revoked. The unlinkability, and
thus anonymity of the cryptographic revocation, allows
the revocation issuer to share revocations in public and
allows anyone to verify if credentials have been revoked.

Multi-stakeholder governance of revocations SD-
BLS allows to introduce a new trusted party to the is-
suance phase: the revocation dealer. The dealer doesn’t
need to know the content of the credential or the identity
of an holder: its role is that of producing the revocation
signature and distributing its secret key to a configurable
range of revocation issuers. Later on a configurable quo-
rum of issuers may reconstruct the revocation secret key
to revoke a credential. This way the decision on a revo-
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cation is not delegated to a single peer, but to a multi-
stakeholder governance that protects the holder from is-
suer corruption.

Extremely fast revocation checks SD-BLS shows
unique benchmark results on revocation checks: a verifier
can operate very fast, no matter how big is the revoca-
tion list. This is possible because revocations are looked
up using an hash as key in a list, leveraging commonly
optimized hash map lookups that are performed by any
in-memory or on-disk database system. Our in-memory
implentation doesn’t slows down even when checking
several thousands revocations.

2.3 Applications

In this section we present some applications and use cases
for digital identity and credentials, that could benefit from
using the SD-BLS scheme.

Digital identity The focus of the EUDI-ARF specifica-
tions is identity documents: it defines mechanisms and
data structures to issue a Personal Identification (PID) as,
for instance, with digital driving licenses. Similarly, the US
government is experimenting with W3C-VC and mDOC
for cross-states interoperable driving licenses. The SD-
BLS data format is similar to SD-JWT and mDOC, offering
selective disclosure and anonymous revocation.

Academic credentials Diploma and academic creden-
tials are among the core offerings of EBSI as well as a
primary research target of the W3C VC working group.

KYC/AML We are unaware of standardization efforts
for interoperable credentials in the fields of "Know Your
Customer" (KYC) and Anti Money-Laundering (AML) cer-
tifications. We are aware of solution providers experi-
menting with W3C-VC for AML applications and believe
SD-BLS can greatly improve the governance of credential
revocation, which is a critical component for this use case.

Generic light credentials As the digital identity and
verifiable credential technologies are maturing, they are
being considered for usage in less privacy concerning
applications, such subscriptions and membership and fi-
delity cards.

Verifiable credentials on Blockchain SD-BLS can be
used with blockchain-based smart-contracts to activate
certain functions:

• A proof of possession can be published and be peer-
verified on-chain in its private form without disclosing
the credential contents.

• A smart-contract may verify if one or more holder’s
credentials match the requirement needed to process a
transaction.

• Issuers can publish their cryptographic revocation lists
on chain, allowing smart-contracts to verify the status
of a credential.

• The issuer’s public keys can also be published on-chain,
although this does not represent a novelty.

3 Implementation

In this section we will provide a detailed description of
the algorithm we propose for selective disclosure and
unlinkable revocation using BLS signatures.

3.1 Notations and assumptions

We will adopt the following notations:

• 𝔽𝑝 is the prime finite field with 𝑝 elements (i.e. of prime
order 𝑝);

• 𝐸 denotes the (additive) group of points of the curve
BLS12-381 [10] which can be described with the Weier-
strass form 𝑦

2
= 𝑥

3
+ 16;

• 𝐸𝑇 represents instead the group of points of the twisted
curve of BLS12-381, with embedding degree 𝑘 = 12.
The order of this group is the same of that of 𝐸;

We also require the notion of a cryptographic pairing. [11]
For the purpose of our protocol we will consider theMiller
pairing 𝑒 ∶ 𝐸𝑇 × 𝐸 → 𝔾𝑇 , where 𝔾𝑇 ⊂ 𝔽𝑝

12 is the subgroup
containing the 𝑛-th roots of unity, and 𝑛 is the order of
the groups 𝐸 and 𝐸𝑇 .
For completeness we also recall the main properties of
the map:

i. Bilinearity, i.e. given 𝑃1, 𝑄1 ∈ 𝐸𝑇 and 𝑃2, 𝑄2 ∈ 𝐸, we
have

𝑒(𝑃2, 𝑃1 + 𝑄1) = 𝑒(𝑃2, 𝑃1) ⋅ 𝑒(𝑃2, 𝑄1)

𝑒(𝑃2 + 𝑄2, 𝑃1) = 𝑒(𝑃2, 𝑃1) ⋅ 𝑒(𝑄2, 𝑃1)

ii. Non-degeneracy, meaning that for all 𝑔1 ∈ 𝐸𝑇 , 𝑔2 ∈ 𝐸,
𝑒(𝑔2, 𝑔1) ≠ 1𝔾𝑇

, the identity element of the group 𝔾𝑇 ;
iii. Efficiency, so that the map 𝑒 is easy to compute;
iv.𝐸𝑇 ≠ 𝐸, and moreover, that there exist no efficient

homomorphism between 𝐸𝑇 and 𝐸.

3.2 Issuance

As for other well known algorithms BLS signing works
following three main steps:

• Key Generation phase.
For an issuer who wants to sign a credential 𝑚, a se-
cret key 𝑠𝑘 is a random number chosen uniformly in
𝔽𝑛, where 𝑛 is the order of the groups 𝔾1,𝔾2,𝔾𝑇 . The
corresponding public key 𝑝𝑘 is the element 𝑠𝑘 ⋅𝐺2 ∈ 𝐸𝑇 ;

• Signing phase.
The credential 𝑚 is first hashed into the point 𝑈 ∈ 𝐸;
the related signature is then given by 𝜎 = 𝑠𝑘 ⋅ 𝑈 ;
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• Verification phase.
For an other user that wants to verify the authenticity
and the integrity of the message 𝑚, it needs to
1. parse 𝑚, 𝑝𝑘 and 𝜎

2. hash the message 𝑚 into the point 𝑈 and then check
if the following identity holds,

𝑒(𝑝𝑘, 𝑈 ) = 𝑒(𝐺2, 𝜎)

If verification passes it means that 𝜎 is a valid signature
for 𝑚.

BLS signatures also support aggregation: it is possible
to aggregate a collection of multiple signatures 𝜎𝑖 (each
one related to a different message 𝑚𝑖) into a singular new
object 𝜎, that can be validated using the respective public
keys 𝑝𝑘𝑖 in a suitable way.
Since 𝜎𝑖 ∈ 𝐺1∀𝑖, the algorithm has an homomorphic prop-
erty. We exploit this property to add a revocation signa-
ture into the signed credential.
The issuer create a credential as follow: given a claim𝑚, it
generate a new secret revocation key 𝑟𝑒𝑣 with public key
𝑟 . Let  be a cryptographic hash function, we compute:

𝐻 = (𝑚 ∶ 𝑟)

then the issuer proceeds to sign with both its private key,
and the revocation key generated above:

𝑟 = 𝑟𝑒𝑣 ⋅ 𝐺2

𝜎𝑟𝑒𝑣 = 𝑠𝑖𝑔𝑛(𝑟𝑒𝑣, 𝐻 ∶ 𝑟)

𝜎 = 𝑠𝑖𝑔𝑛(𝑠𝑘, 𝐻 ∶ 𝑟) + 𝜎𝑟𝑒𝑣

The set of all the signed claims will be:
 =

{

{𝐻, 𝑟, 𝜎, 𝑚} ∶ 𝑚 ∈ 𝑐𝑙𝑎𝑖𝑚𝑠

}

At the end of this phase the holder is sent the signed claims
to be stored in a private wallet, while the issuer stores a list
of revocations as tuples formed by {𝐻, 𝑟𝑒𝑣} into a private
database that can be used later to issue revocations.

3.3 Presentation

Any presentation of a SD-BLS credential can simply omit
the message 𝑚 to separate disclosure from verification as
required by the specific context of a proof of possession
and to satisfy privacy preserving design patterns for data
minimization.

Basic Proof A credential holder can choose any set of
signed claims to present, and selectively disclose them
into what we name “Basic Proof” presentation.
The holder can present a basic proof of possession {𝐻, 𝑟, 𝜎}

for each claim requested, or the complete set {𝐻, 𝑟, 𝜎, 𝑚}

for claims whose content must be disclosed.
However, Both forms of presentation of a basic proof are
vulnerable to replay attacks: any verifier receiving such
presentations can reuse them to impersonate the holder
in any other session.

One Time Proof To prevent replay attacks we exploit
once again the homomorphic property of BLS signatures
to add a sessions signature into the credential signature,
then we add separate fields containing a signed timestamp
and the public key of the session signature.
We name this presentation “One Time Proof”.
For each presentation the holder generates a key pair
(𝑠𝑘𝑡 , 𝑝𝑘𝑡) and a string 𝑡 containing session information, i.e.
an expiration date or a pointer to the intended recipient.
Then we compute:

𝜎
′
= 𝜎 + 𝑠𝑖𝑔𝑛(𝑠𝑘𝑡 , 𝐻 ∶ 𝑟)

𝜎𝑡 = 𝑠𝑖𝑔𝑛(𝑠𝑘𝑡 , 𝐻 ∶ 𝑟 ∶ 𝜎
′
∶ 𝑡 ∶ 𝑝𝑘𝑡)

And obtain a presentation composed as follows:
{𝐻, 𝑟, 𝜎

′
, 𝑡, 𝑝𝑘𝑡 , 𝜎𝑡}

This schema is secure because it is impossible to recon-
struct the holder information {𝐻, 𝑟, 𝜎} necessary for a re-
ply attack; indeed, given 𝜎

′, an attacker that wants to
retrieve 𝜎 should be able to reconstruct the signature 𝜎𝑡 ,
but this is not possible without the knowledge of the secret
key 𝑠𝑘𝑡 .
Furthermore the three attributes 𝑡, 𝜎𝑡 , 𝑝𝑘𝑡 cannot be mod-
ified or removed because 𝑝𝑘𝑡 is necessary for the veri-
fication of signature 𝜎

′. If an attacker tries to create a
new valid presentation with freshly generated 𝑠𝑘

′

𝑡
, 𝑝𝑘

′

𝑡
, 𝑡

′

and 𝜎
′

𝑡
, then the signature 𝜎′′

= 𝜎
′
+ 𝑠𝑖𝑔𝑛(𝑠𝑘

′

𝑡
, 𝐻 ∶ 𝑟) can

be verified using the public key 𝑝𝑘𝑡 + 𝑝𝑘
′

𝑡
. However this

public key does not verify the signature 𝜎′

𝑡
, and 𝜎

′

𝑡
can

not be updated using the homomorphic property since it
is the signature over the old 𝜎

′. Thus any tampering of
the presentation will lead to an invalid credential.

3.4 Verification

Credential verification is made by checking the presented
issuer’s signature and revocation status of each claim. In
order to verify the signature the credential issuer’s public
key must be added to the revocation public key.

Basic proof We consider the basic credential proof as
a collection of tables of the following form:

𝑐 = {𝐻, 𝑟, 𝜎}

where 𝜎 and 𝑟 are respectively the signature of the string
𝐻 and the revocation public key, optionally the claim
value 𝑚 can be included.
We can check the validity of the presented claim comput-
ing the key:

𝑝𝑘 = 𝐴.𝑝𝑘 + 𝑟

and verify the bls signature 𝜎.
As proof of correctness consider that the signature 𝜎 is
given by:

𝜎 = 𝑠𝑖𝑔𝑛(𝐴.𝑠𝑘, 𝐻 ∶ 𝑟) + 𝑠𝑖𝑔𝑛(𝑟𝑒𝑣, 𝐻 ∶ 𝑟)

= 𝐴.𝑠𝑘𝑈 + 𝑟𝑒𝑣𝑈

4
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where 𝑈 is the mapping of the string 𝐻 in the group 𝐺1.
Recalling the verification formula, it holds that:

𝑒(𝑝𝑘, 𝑈 ) = 𝑒(𝐴.𝑠𝑘𝐺2 + 𝑟𝑒𝑣𝐺2, 𝑈 )

= 𝑒(𝐴.𝑠𝑘𝐺2, 𝑈 ) ⋅ 𝑒(𝑟𝑒𝑣𝐺2, 𝑈 )

= 𝑒(𝐺2, 𝐴.𝑠𝑘𝑈 ) ⋅ 𝑒(𝐺2, 𝑟𝑒𝑣𝑈 )

= 𝑒(𝐺2, 𝐴.𝑠𝑘𝑈 + 𝑟𝑒𝑣𝑈 )

= 𝑒(𝐺2, 𝜎)

where each equality holds for the bilinearity of the Miller
loop.
When the presentation contains the value𝑚 it should also
be checked that:

𝐻 = (𝑚 ∶ 𝑟).

One Time Proof If the verifier receives the credential
locked to the current session (with replay attack protec-
tion) as {𝐻, 𝑟, 𝜎

′
, 𝑡, 𝑝𝑘𝑡 , 𝜎𝑡} then it proceeds to

• verifiy the information in 𝑡 (e.g. timestamp)
• verify 𝜎𝑡 with public key 𝑝𝑘𝑡

• verify 𝜎
′ with the public key 𝐴.𝑝𝑘 + 𝑟 + 𝑝𝑘𝑡

In case the verifier is presented with a one time disclosure
that includes 𝑚 then it needs also to check its hashed
value 𝐻 = (𝑚 ∶ 𝑟).
This concludes the first verification phase. If the given
presentation is valid, then the verifier should proceed to
check the revocation status of the credential.

3.5 Revocation

To control if a revocation has been emitted for any cre-
dential being verified, we update the revocation list from
the issuer. A revocation list can be publicly distributed
since revocation keys do not provide any information on
the identity of holders.
Given an element 𝑐 = {𝐻, 𝑟, 𝜎} of the credential presen-
tation and the Issuer public key 𝐴.𝑝𝑘, if the claim 𝐻 is
present in the revocation list, we can take the correspond-
ing revocation private key 𝑟𝑒𝑣.
We can verify the validity of the revocation by checking if
the revocation public key presented by the holder match:

𝑟 = 𝐺2 ⋅ 𝑟𝑒𝑣

This step should follow the signature verification and is
sufficient to guarantee the revocation status.
If a dishonest holder provides a wrong 𝑟 , then the verifi-
cation of the signature will fail, and the given credential
should be considered invalid.
If it happens that the signature verification is success-
ful and that the revocation key does not match, one can
conclude that the credential is not revoked.
Note that, in the case the verifier received a credential in
the “One Time Proof” form, the check for the revocation
status does not change.

3.6 Threshold Revocation

In order to split responsibilities over interactive revocation
we introduce a threshold over the revocation key, plus we
split the functionality of credential issuance from that of
revocation issuance, now operated by different peers.
This is implemented via an interactive process facilitated
by a third party trustee, a revocation dealer, who should
be:

• never entitled to publish revocations
• connected to credential issuers to complete any creden-

tial signature
• never informed about the identity of credential holders
• regularly connected to revocation issuers to distribute

shares

Such a revocation dealer will be in contact with credential
issuers for the signature of credentials: it will create the
𝑟𝑒𝑣 revocation key while concealing it from them. The
dealer then proceeds creating the 𝜎𝑟𝑒𝑣 = 𝑠𝑖𝑔𝑛(𝑟𝑒𝑣, 𝐻 ∶

𝑟) revocation signature and the 𝑟 = 𝑟𝑒𝑣 ⋅ 𝐺2 public key,
which will be communicated to the credential issuer to be
aggregated into the signed credential (see section (3.2)).
The dealer will then proceed to split the secret revocation
key into shares using a public verifiable secret sharing
(PVSS [12]) implementation and distribute these shares
to all revocation issuers. In order to issue a revocation,
a configurable quorum of peers among the revocation
issuers will need to reconstruct the secret revocation key
and publish it.
This process separates responsibilities between the cre-
dential issuer and the revocation issuers, delegating to the
revocation issuers the possibility to revoke a credential
interactively through a collective process.
The collection of shares can be done asynchronously and
is provable. The dealer should publish proofs of knowl-
edge of each revocation share, proving their creation and
authenticity. Revocation issuers can also use the dealer
proofs to verify the validity of the shares received with-
out revealing them. Such revocation proofs will also be
useful when revocation issuers will reconstruct a revoca-
tion, since they can refer to them to prove their shares are
authentic without revealing their content.

4 Benchmarks

We implemented the flows for credential issuance, pre-
sentation, verification and revocation for lab tests using
Zenroom 1, a secure isolated execution environment im-
plementing advanced cryptography transformations. The
reference implementation for this paper is published on
a public repository 2. All benchmarks were executed on

1Zenroom home: https://zenroom.org
2SD-BLS github repository: https://github.com/dyne/sd-bls
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Figure 2: Speed of verification of a claim over multiple revocations

a 6th gen. Intel PC running tests on a single i7 3.40GHz
core and making no use of hardware acceleration.
Lab measurements on a growing number of claims show
that issuance is less computation heavy than verification,
as shown in figure 1.
Based on our benchmarks, the resulting data objects sizes
are:

• Signed claim: 177 Bytes
• Proof: 322 Bytes
• Revocation: 64 Bytes

The computational cost of verifications doesn’t grows
with the presence of a cryptographic revocations list,
whose growth in terms of computational load mantains
asyntotically constant complexity (1). We assume re-
vocations are published as hash maps using the unique
credential component 𝐻 as key and the secret revocation
key 𝑟𝑒𝑣 as value.
Lab measurements of the time taken by a single proof
verification process to operate on a growing number of
revocations serves also to demonstrate the speed of Zen-
room’s in-memory resolution of its hash based key-value
storage, as shown in figure 2.
The threshold operated for revocation issuers consists of a
verifiable secret sharing implementation supporting a con-
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Figure 3: Speed of creation and reconstruction of shares among multiple peers

figurable total and quorum of peers. Our implementation
shows very good performance on reconstruction, which
is the most speed-sensitive operation in scenarios where
responsive revocation process is required. The process of
reconstruction can be easily scaled for asynchronous con-
sensus on a micro-service swarm architecture and verified
on blockchain.

5 Conclusion

5.1 Security considerations

The revocations database is privacy and corruption sen-
sitive (by our previous definition of issuer corruption)
and it should be securely stored by each Issuer. This is
mitigated by the adoption of threshold revocation. When
using threshold revocation there is still the need for a
revocation dealer who has no access to private informa-
tions, but may be dishonest and publish revocation keys
collected during the process of credential issuance.
BLS signatures and the proof system obtained with cre-
dentials are considered secure by assuming the existence
of random oracles [13], together with the decisional Diffie-
Hellman Problem (DDH) [14], the external Diffie-Hellman
Problem (XDH), and with the Lysyanskaya-Rivest-Sahai-
Wol Problem (LRSW) [15], which are connected to the
Discrete Logarithm. The future growth of quantum-
computing technologies may be able to overcome the
Discrete Logarithmic assumptions by qualitatively dif-
ferent computational means and SD-BLS may then be
vulnerable to quantum-computing attacks. However this
is speculative reasoning on what we can expect from the
future.
The SD-BLS implementation we are presenting in this
paper is demonstrated using the BLS12-381 curve [10] also
adopted by ETH2.0. Debating the choice of BLS12-381 is
beyond the scope of this paper, but is worth mentioning
that we can easily switch using the BLS461 curve based
on a 461 bit prime, hence upgrading our implementation
to 128 bit security [16] against attacks looking for discrete
logs on elliptic curves [17].
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The 𝐻 component may be protected against brute-forcing
attacks using hash collisions to forge a valid credential for
a different message. A protection against this attack can
be the adoption of a key-derivation function like Argon2
[18] on hash creation, which will add computational costs
to issuance and verification.
Anyone with knowledge of 𝐻, 𝑟 can try to guess 𝑚 by ap-
pending known strings, which becomes trivial especially
in case of boolean credential strings (i.e. “above18=true”).
We recommend the credential issuer appends a nonce like
𝑚 ∶ 𝑛𝑜𝑛𝑐𝑒 before hashing and signing the message, which
will be known by the holder and always disclosed when
disclosing 𝑚.

5.2 Future development

In this section we describe possibilities for expanding
the algorithm to cover further applications, which appear
promising while requiring further investigation.

Compatibility with EUDI-ARF EUDI-ARF dictates
that the holder’s secret key generation and signatures
must occur inside a trusted platform module (TPM). For
mobile devices, this limits the secret keys and signa-
tures to those offered, via proprietary APIs by the mobile
OS, namely RSA (multiple flavours) and ECDSA on the
secp256r1 curve. Currently the TPMs APIs supported by
Android and iOS do not support BLS 12-381 key genera-
tion or signature.
Client-side signatures in EUDI-ARF are mostly used in
the authentication process, specifically in the proof of
possession required by the OpenID4VCI[19] issuance flow,
but not in the verification.
Therefore, we can investigate the possibility to use SD-
BLS to implement a partially retro-compatible superset
of EUDI-ARF, by maintaining the current issuance and
verification protocols and using an extended SD-JWT for-
mat. Also we can explore useful integrations with the
European Blockchain Services Infrastructure (EBSI [20]).

Signroom and DIDroom In SD-BLS both credential
issuers and revocation issuers are in charge of various
interactive administrative operations, while the dealing
of revocation shares can be easily automated.
We plan to integrate SD-BLS in the free and open source
software “Signroom”, an application we developed in the
context of the NGI ASSURE grant, and “DIDroom” the
dashboard connected to our did:dyne W3C DID domain.

Digital Product Passport Efforts in standardization
of Digital Product Passport (DPP) are ongoing in both
the EU (Cirpass, BatteryPass, Trace4EU) and US (DSCSA).
An obstacle to adoption of DPP technologies is the reluc-
tancy of manufacturers to share information about their
supply-chain, knowing that the information would be-
come publicly available and immutable due to blockchain
storage. While requiring further analysis and investiga-

tion, a further development of the SD-BLS scheme could
allow creating DPPs built on the selective disclosure prin-
ciples, which may facilitate the adoption of the technol-
ogy in the industry by preserving the privacy of natural
persons present in the DPP as REA agents[21], while au-
thenticating their contribution.

DAO Technologies The SD-BLS math is fully compati-
ble with ETH2.0 and can be computed inside an Ethereum
VM. A verifier implemented in solidity can be a building
block for more advanced Distributed Autonomous Organi-
zations (DAO [22]) that want to authenticate peers using
the selective disclosure of verifiable credentials instead of
a single key based proof of possession.
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