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This collection of short expository, critical,
and speculative texts offers a field guide
to the cultural, political, social, and aes-
thetic impact of software. Computing and
digital media are essential to the way we
work and live, and much has been said
about their influence. But the very materi-
al of software has often been left invisible.
In Software Studies, computer scientists,
artists, designers, cultural theorists, pro-
grammers, and others from a range of dis-
ciplines each take on a key topic in the
understanding of software and the work
that surrounds it. These include algo-
rithms; logical structures; ways of thinking
and doing that leak out of the domain of
logic and into everyday life; the value and
aesthetic judgments built into computing;
programming’s own subcultures; and the
tightly formulated building blocks that
work to make, name, multiply, control, and
interweave reality.

The growing importance of software
requires a new kind of cultural theory that
can understand the politics of pixels or the
poetry of a loop and engage in the micro-
analysis of everyday digital objects. The
contributors to Software Studies are both
literate in computing (and involved in
some way in the production of software)
and active in making and theorizing cul-
ture. Software Studies offers not only
studies of software but proposes an agen-
da for a discipline that sees software as an
object of study from new perspectives.

Matthew Fuller is David Gee Reader in
Digital Media at the Centre for Cultural
Studies, Goldsmiths College, University of
London. He is the author of Media
Ecologies: Materialist Energies in Art and
Technoculture (MIT Press, 2005) and
Behind the Blip: Essays on the Culture of
Software.
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The arts, science, and technology are experiencing a period of profound 
change. Explosive challenges to the institutions and practices of engineering, 
art making, and scientifi c research raise urgent questions of ethics, craft, and 
care for the planet and its inhabitants. Unforeseen forms of beauty and under-
standing are possible, but so too are unexpected risks and threats. A newly 
global connectivity creates new arenas for interaction between science, art, and 
technology but also creates the preconditions for global crises. The Leonardo 
Book series, published by the MIT Press, aims to consider these opportunities, 
changes, and challenges in books that are both timely and of enduring value.

Leonardo books provide a public forum for research and debate; they con-
tribute to the archive of art- science- technology interactions; they contribute to 
understandings of emergent historical processes; and they point toward future 
practices in creativity, research, scholarship, and enterprise.

To fi nd more information about Leonardo / ISAST and to order our publica-
tions, go to Leonardo Online at http: // lbs.mit.edu / or e- mail leonardobooks@
mitpress.mit.edu.

Sean Cubitt
Editor- in- Chief, Leonardo Book series

Leonardo Book Series Advisory Committee: Sean Cubitt, Chair; Michael Punt; 
Eugene Thacker; Anna Munster; Laura Marks; Sundar Sarrukai; Annick Bureaud
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Leonardo, the International Society for the Arts, Sciences, and Technology, 
and the affi liated French organization Association Leonardo have two very 
simple goals:

1. to document and make known the work of artists, researchers, and schol-
ars interested in the ways that the contemporary arts interact with science and 
technology, and
2. to create a forum and meeting places where artists, scientists, and engineers 
can meet, exchange ideas, and, where appropriate, collaborate.

When the journal Leonardo was started some forty years ago, these creative 
disciplines existed in segregated institutional and social networks, a situa-
tion dramatized at that time by the “Two Cultures” debates initiated by C. P. 
Snow. Today we live in a different time of  cross- disciplinary ferment, collabo-
ration, and intellectual confrontation enabled by new hybrid organizations, 
new funding sponsors, and the shared tools of computers and the Internet. 
Above all, new generations of  artist- researchers and  researcher- artists are now 
at work individually and in collaborative teams bridging the art, science, and 
technology disciplines. Perhaps in our lifetime we will see the emergence of 
“new Leonardos,” creative individuals or teams that will not only develop a 
meaningful art for our times but also drive new agendas in science and stimu-
late technological innovation that addresses today’s human needs.

For more information on the activities of the Leonardo organizations and 
networks, please visit our Web sites at <http: // www.leonardo.info / > and 
<http: // www.olats.org>.

Roger F. Malina
Chair, Leonardo / ISAST

ISAST Governing Board of Directors: Martin Anderson, Michael Joaquin 
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Introduction, the Stuff of Software

Matthew Fuller

This project is entitled software studies1 for two reasons. First, it takes the 
form of a series of short studies: speculative, expository, and critical texts on 
particular digital objects, languages, and logical structures. Additional terms 
touch on some of the qualities software is supposed to possess and ideas by 
which to approach it. Together, at certain scales of interpretation, these con-
stitute the “stuff” of software. Software structures and makes possible much of 
the contemporary world. This collection proposes an exercise in the rapid pro-
totyping of transversal and critical approaches to such stuff.

What is covered here includes: algorithms; logical functions so fundamental 
that they may be imperceptible to most users; ways of thinking and doing that 
leak out of the domain of logic and into everyday life; the judgments of value 
and aesthetics that are built into computing; programming’s own subcultures 
and its implicit or explicit politics; or the tightly formulated building blocks 
working to make, name, multiply, control, and interrelate reality. Does Soft-
ware Studies offer a pair of super X- ray specs for the standardized user, allowing 
them to see behind the screen, through the many layers of software, logic, 
visualization, and ordering, right down to the electrons bugging out in the 
microcircuitry and on, into the political, cultural and conceptual formations 
of their software, and out again, down the wires into the world, where software 
migrates into and modifi es everything it touches? Does it offer even a diagram 
of such a vision? Not quite. That would take a second volume. What we can 
achieve though, is to show the stuff of software in some of the many ways that 
it exists, in which it is experienced and thought through, and to show, by the 
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interplay of concrete examples and multiple kinds of accounts, the conditions 
of possibility that software establishes.

Secondly, Software Studies proposes that software can be seen as an object of 
study and an area of practice for kinds of thinking and areas of work that have 
not historically “owned” software, or indeed often had much of use to say about 
it. Such areas include those that are currently concerned with culture and me-
dia from the perspectives of politics, society, and systems of thought and aes-
thetics or those that renew themselves via criticism, speculation, and precise 
attention to events and to matter among others. In a famous anecdote, com-
puting pioneer Alan Kay is said to have said of the fi rst Macintosh that despite 
its limitations it was the fi rst computer really worthy of criticism.2 By this, 
one imagines he means a computer that deserves a reciprocation of the richness 
of thought that went into it, with the care to pay attention to what it says 
and what it makes palpable or possible, and the commitment to extend such 
attention into its continuing development. The texts written for this volume 
suggest their use as a handbook of supplements to some of the key standard 
objects of computer science, programming, and software culture. As such, our 
question here is: Where is the rest of that criticism? Indeed, criticism with 
its undertones of morality or imperious knowledge might be better phrased 
as a questioning or setting in play. Yes, there is plenty of studiousness being 
dished up about what people do with software; there are big, fat, and rapidly 
remaindered books about how to write or use software. But we can’t fi nd much 
of it that takes things at more than face value, or not nearly enough of it to 
understand the world as it is. There’s only one thing to do in such a situation: 
get on and write what you need to read.

Software’s Roots and Reverberations

Recent etymological research3 credits John W. Tukey with the fi rst published 
use of the term “software.” In a 1958 article for American Mathematical Monthly 
he described how the mathematical and logical instructions for electronic cal-
culators had become increasingly important, “Today the ‘software’ comprising 
the carefully planned interpretive routines, compilers, and other aspects of au-
tomative programming are at least as important to the modern electronic cal-
culator as its ‘hardware’ of tubes, transistors, wires, tapes and the like.”4

Another crucial moment was the decision by IBM in 1968, prompted in no 
small part by antitrust court actions, to split its software section off from its 
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hardware section. Software was no longer to be bundled as a service or gratuity. 
As a result, according to Martin  Campbell- Kelly, “IBM liberated the industry 
by unbundling.”5 At the point of software’s legal reordering as a separate kind 
of entity, it became a commodity, an entity the prime or sole motive for the 
production of which is to generate a monetary profi t for those who own the 
entities, such as companies, by which it is made.6 This description allows it to 
circulate in different ways, such as markets, while occluding others. For vari-
ous reasons, software has always had a parallel geneology including the ama-
teur, academic, gratuitous, experimental, and free. This lexicon, it is hoped, 
provides useful access to all of these trajectories.

Beyond these beginnings, as software becomes a putatively mature part of 
societal formations (or at least enters a phase where, in the global north, genera-
tions are now born into it as an infrastructural element of daily life), we need to 
gather and make palpable a range of associations and interpretations of software 
to be understood and experimented with. While applied computer science and 
related disciplines such as those working on  computer- human interface have 
now accreted around half a century of work on this domain, software is often 
a blind spot in the wider, broadly cultural theorization and study of computa-
tional and networked digital media. This is not simply because the disciplinary 
 cookie- cutter for the arts and humanities is incompetent with the daily fabric of 
contemporary working lives, which includes word processors, websites, search 
engines, email, databases, image editors, sound software and so on; software 
as a fi eld is largely seen as a question of realized instrumentality. As viewed 
through the optic of applied logic, software exists as something that has gone 
through a “threshold of formalization”7 and now exists only in terms devoid of 
any reference other than itself. Software is seen as a tool, something that you do 
something with. It is neutral, grey, or optimistically blue. On the one hand, 
this ostensive neutrality can be taken as its ideological layer, as deserving of 
critique as any such myth. But this interpretation itself one that emphasizes 
only critique can block a more inventive engagement with software’s particular 
qualities and propensities. Working with the specifi cities of software at the 
multiple scales at which it occurs is a way to get past this dichotomy.

Recognition of the synthetic power of computing should not block the 
understanding that much software comprises simply and grimly of a social 
relation made systematic and unalterable.8 (Consider, for instance, the ulti-
mately abitrary informational regimes governing who is inside or outside of a 
national population.) It may not work or offer a rich fi eld of bugs and loopholes 
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of course, but this structuration is often imperceptible,9 actuated with little 
public debate or even platforms capable of achieving such debate with mean-
ingful effect. or in a way that is culturally rich enough to bother taking part 
in. Technologisation of the senses and structuring of relations by technology is 
often carried out by naturalized means, lessening our ability to understand and 
engage with such changes. Many accounts have been made of how such natu-
ralization occurs through the technologization of a problem. The optimal solu-
tion becomes the one that is most amenable to technical description, usually a 
description that is only in terms of certain already normalized precursors. By 
contrast, when technology is used in a way that is interrogable or hackable,10 it 
allows and encourages those networked or enmeshed within it to gain traction 
on its multiple scales of operation. Hackability is not in itself a magic bullet; it 
relies on skills, knowledge, and access, of making such things public and chang-
ing them in the process. Gathering together forms of knowledge that couple 
software with other kinds of thinking is hopefully a way of enlarging the ca-
pacity of hackability itself to be hacked from all directions.

Another theoretical blockage that this collection seeks to overcome is the 
supposed “immateriality” of software. While this formulation has been de-
ployed by many writers to explain software’s distinction from things that have 
a straightforward physicality at the scale of human visual perception, or the way 
in which its production differs from industrial or craft forms of fabrication the 
idea of software’s “immateriality” is ultimately trivializing and debilitating.11

The new lexicon relies upon an understanding of the materiality of software 
being operative at many scales: the particular characteristics of a language or 
other form of interface—how it describes or enables certain kinds of program-
mability or use; how its compositional terms infl ect and produce certain kinds 
of effects such as glitches,  cross- platform compatibility, or ease of sharing and 
distribution; how, through both artifact and intent, events can occur at the level 
of models of user subjectivity or forms of computational power, that exceed 
those of pre- existing social formatting or demand new fi gures of knowledge.

Whereas much work published in the area of new media largely adopts an 
Information and Communications Technology model (the shunting of ‘con-
tent’ from point A to point B) for its understanding of phenomena such as the 
internet or even games, and aims its critical faculties at what happens around 
or through software, this project differs by, among other things, emphasizing 
the neglected aspect of computation, which involves the possibilities of virtual-
ity, simulation, abstraction, feedback, and autonomous processes.
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The purpose of this lexicon then is not to stage some revelation of a sup-
posed hidden technical truth of software, to unmask its esoteric reality, but to 
see what it is, what it does and what it can be coupled with. In doing so we 
hope also to construct multiple entry points into the fi eld. Rather than simply 
watch and make notes on the humans lit by the glow of their monitors it aims 
to map a rich seam of conjunctions in which the speed and rationality, or slow-
ness and irrationality, of computation meets with its ostensible outside (users, 
culture, aesthetics) but is not epistemically subordinated by it.

At the same time, the contents of this lexicon acknowledge that software 
exists at many scales. It is increasingly distributed as an embedded part of socio-
technical infrastructures; manifest as the “semantic sugar” and operational con-
straints of user- friendly interface elements or higher level languages; integrated 
into patterns of work and communication so thoroughly that it is desirable to 
describe all of these in order to account for any; and operative at a low level in 
interaction with the physical properties of conductive and nonconductive ma-
terials. Finding a way of accounting for, understanding, and crucially, working 
with this multiscalar reality is an important challenge requiring new tools for 
thought, and ways of holding different kinds of account together.

Software marks another of its beginnings in Alan Turing’s desire to chart 
the computable, arising as a response to David Hilbert’s assertion that all 
mathematical problems are decidable (solvable by means of a defi nite universal 
method) within the terms of mathematics.12 Computation establishes a toy 
world in conformity with its axioms, but at the same time, when it becomes 
software, it must, by and large (except for autonomous processes, such as Cron, 
the demon to execute commands to a schedule in a Unix system, or as exempli-
fi ed in work such as Artifi cial Paradises13) come into combination with what lies 
outside of code. Just as science, under the admirably empirical plan drawn up 
by Karl Popper,14 is a ’Pataphysical machine driven by the accumulation of 
fi ner and fi ner grained errors, which are in turn surpassed by better and better 
miscomprehensions, software is computation, which, whether it is as useful and 
mundane as a word- processor, or as brilliant and simple as a cellular automaton, 
gains its power as a social or cultural artifact and process by means of a better 
and better accommodation to behaviors and bodies which happen on its out-
side. Whether these are writing or evolutionary models, the terms by which 
they are understood have to be grafted, and hence modifi ed and fi ltered, back 
into the limited but paradoxical domain of computation. And it is this para-
dox, the ability to mix the formalized with the more messy—non- mathematical 
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formalisms, linguistic, and visual objects and codes, events occurring at every 
scale from the ecological to the erotic and political—which gives computa-
tion its powerful effects, and which folds back into software in its existence as 
culture. This folding in does not only happen to software, but with which it 
couples. Hardware, with its rich panoply of sensors and triggering devices, its 
mixture of the analog and digital, is perhaps still the fi nest purveyor of messi-
ness, but as several texts here attest, it fi nds its complement in software. Once 
things have become modeled, replicated, and reifi ed, they can be intensifi ed, 
copied, multiplied, and stretched or subject to a host of other functions that 
have become familiar from the basic grammars of applications.15

The development of software is in many cases simply not subject to the 
rigor of the requirement for the “better and better” typical of technologies 
aimed at consumers. Its self- suffi ciency, which has allowed computer science 
to maintain its status as a closed world,16 allows the plainly dysfunctional and 
imaginary to roam free. This freedom applies as much to the bizarre fruits of 
business plans gorged on the tragedy of imagined or “intellectual” property 
as to the whimsical, inventive, or deranging entities stored in software art re-
positories. (A whole separate volume of the vocabulary of the anxious, deluded, 
and mendacious could be drawn up for  large- scale private or governmental 
software projects.) The rise of software and of computational and networked 
digital media in general has in many ways depended upon massive amounts 
of investment in institutions, training, and the support of certain kinds of ac-
tors. One other strand of the development of software over its history has often 
depended upon individuals or small groups of people fi nding a breathable 
pocket of time and resources in the intestines of larger hierarchically ordered 
organizations, or acting on their own  cobbled- together means. Since the de-
velopment of computer networks, such pockets of differentiated pressure have 
been able to be assembled across space, in smaller chunks, and asynchronously. 
Since the massifi cation of computing they have in some small ways also been 
able to construct themselves in relation to other forms of life. (In the sense 
that Ludwig Wittgenstein means when he says, “To imagine a language is to 
imagine a form of life.”17) This “self- suffi ciency” of software, in such a context, 
allows (in much the same way as it allows a programmer to think he or she is 
working on the formulation of a particularly interesting and chewy algorithm 
when working at another scale, perhaps more determining, on an insurance 
program to more fi nely exclude the poor from public services) a certain dis-
tance from social or cultural norms. Things can be done in software that don’t 
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require much dependence on other factors. The range of articulation software 
allows due to the nature of the joints it forms with other layers of reality means 
that this freedom (that of a closed world), while somewhat paralyzing, has also 
guaranteed it a space for profound and unfi nishable imagination.

Parallels and Precursors

While this book proposes a set of approaches to thinking about software, it is 
not alone in this work. It comes out of a wider set of interlocking areas of activity 
in digital cultures, but two other key areas, historical research into the genesis 
of computing and the discourse associated with free and open source soft-
ware, have provided a context for the work here.

Computing is beginning to be recognized as something having a history, 
rather than just being permanently in a state of improvement. Computing 
history thus becomes discursive, and opens computing in the present day up 
to the consideration of palpable alternatives. Several of the key texts in the 
history of computing are called upon here and it is an area from which one 
anticipates further revealing developments.

Of special interest for this lexicon is the way in which free software, and 
associated currents such as open source have set off ripples in the way people 
talk and think about software. This discussion has often taken place on blogs, 
mailing lists, and in the opinion pieces of industry pundits.18 While it is often 
short on historical memory or connection to thought outside of its own do-
main, this discussion can be lively and insightful. Neal Stephenson suggests 
that, “Linux per se is not a specifi c set of ones and zeroes, but a self- organizing 
net subculture.”19 Because free and open source software opens up the process 
of writing software in certain ways its also opens up the process of talking and 
thinking about it.

Two other currents have also fed into this project. While art and design have 
for a reasonably long period had something of an inkling that objects, devices, 
and other material entities have a politic—that they engage in the arrange-
ment and composition of energies, allow, encourage or block certain kinds of 
actions—these concerns have also more recently been scrutinized by the inter-
disciplinary area of science and technology studies. Shifting from an emphasis 
on epistemologies to also encompass the way in which things are embedded 
with and produce certain kinds of knowledge and possibility of interaction 
with the world (and indeed make worlds) has been extremely fruitful. Such 
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work has also contributed to this book because, among other things, it pro-
vides a means of talking about the materiality of abstraction, the interplay 
between formalization and the heterogenous stuff it mobilizes.

The area that has become known as software art20 is perhaps the most di-
rect feed into this lexicon. This current of work, along with hacker culture, 
provides a means for bringing the generative, refl exive, and anarchist intel-
ligence of art into compositional entanglement with the ostensibly ordered 
and self- suffi ciently technical language, working patterns, and material of 
software. Art understands that the style of thought is crucial—style not sim-
ply as a metric for the deposition of fl ourishes and tricks, but as a way of ac-
cessing multiple universes of reference. Software Studies also proposes another 
set of potential interactions between art and other inventive cultural prac-
tices and domains such as mathematics and logic. Signifi cant work has been 
done in the overlap between the two fi elds utilizing conceptual fi gures such 
as “beauty” or “symmetry.” Other, non- idealist interactions are also possible, 
and indeed, necessary. The project provides a space for interactions between 
art and mathematics outside of  clean- room purity in dirtier interactions with 
cultures, economies, hardware, and life. Mathematics becomes applied, not to 
the cleanly delineated sets of problems set it by productivity and effi ciency 
goals in software projects, but to the task of inventing and laughing with its 
own goofi ly serene self and in doing so regaining its “pure” task of establishing 
systems and paroxysms of understanding.

What Is a Lexicon?

Finding a mode of writing capable of inducing experiment is tricky. In what 
way does a lexicon provide a useful structure for this form of software study? 
A lexicon is a vocabulary of terms used in a particular subject. Rather than an 
encyclopedia, which is too universal, or a dictionary or glossary, which offer 
too short descriptions or readings of terms, a lexicon can be provisional and is 
scalable enough a form to adapt to any number of terms and lengths of text. 
In producing a lexicon for an area that is as wide, deep, and fast moving as 
software, one can easily make a virtue out of the necessary incompleteness of 
the work. Indeed, Software Studies cannot claim to be a summa of terms, ob-
jects, structures, and ideas. Although we refer often to monumental works 
such as Donald Knuth’s Art of Computer Programming,21 a systematic and good 
humored survey and exposition of algorithms and data structures, other forms 
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of encyclopedia and glossary also infl uenced the adoption of this structure. The 
Jargon File 22 is a lengthy and wry catalogue of early North American hackers’ 
argot displaying readily the way in which something can be at once both tech-
nically informative, enjoying word- play or double, if not infi nitely recursive, 
meaning, and also refl exive upon its own working culture. Another strand of 
work that informs Software Studies is the trajectory of dictionaries and folios 
of terms and keywords, which recognize the ridiculousness of attempting to 
catalogue, name, and explain reality. These supplementary explanations inves-
tigate our culture as if it requires an interpretative account. They try to cap-
ture the language of a possible future, actual language at the cusp of where it 
intersects the possible and the unspeakable. These works, among them such 
dark jewels as the “Dictionary” supplements to the magazine Documents ed-
ited by Georges Bataille, capture through their many facets a pattern out of 
which an approach to life can be sensed and articulated.23 Rather more hopeful 
of the possibility of lucid communication is Raymond Williams’s Keywords, a 
book established as a personal “enquiry into a vocabulary.”24 Both of these use 
the way in which a lexicon can establish alliances between words, texts, and 
ideas without necessarily agglutinating them as a whole, thus effacing a more 
complex reality. A normal dictionary comes to a point of momentary stability 
when it defi nes all the words which it uses to defi ne all the words that it con-
tains. Each defi nition, then, reaches out to all the terms used to establish its 
meaning in a beautiful, recursively interwoven networking of language. Soft-
ware Studies is not quite so mature, but an astute reader will fi nd many path-
ways between the different texts.

Words bind thinking and acting together, providing a means for the con-
junction and differentiation of work and other dynamics between persons, across 
groups of ideas, and ways of doing things. Collections of words build up a consis-
tency, becoming a population teeming with the qualities that Ronald Sukenick 
ascribes to narrative: “agonistic, sophistic, sophisticated, fl uid, unpredictable, 
rhizomatic, affective, inconsistent and even contradictory, improvisational and 
provisional.”25 At the same time, in the case of software studies, words work in 
relation to another set of dynamics, a technical language that is determined by 
its relation to constants that are themselves underpinned by a commitment to 
an adequately working or improved description. That is, at a certain, software 
demands an engagement with its technicity and the tools of realist description. 
As software becomes an increasingly signifi cant factor in life, it is important to 
recognize this tension and to fi nd the means for doing so.
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Stuff behind Stuff

One rule of thumb for the production of this book is that the contributors had 
to be involved in some way in the production of software as well as being en-
gaged in thinking about it in wider terms. It is perhaps a sign of an underly-
ing shift that this project is possible now, that this many people who can work 
within this format and topic could be brought together.

Part of this underlying shift is that software is now, unevenly, a part of mass 
and popular cultures. It forms a component, if not the largest part, of more and 
more kinds of work. Knowledge about how to make it, to engage with pro-
gramming and how to use software more generally, circulates by an increasing 
number of formal and informal means. The experience and understanding of 
software is undergoing a change in both quantity and quality. This book aims 
to make available some of the mixed intelligences thinking through these con-
ditions. The authors are artists, computer scientists, designers, philosophers, 
cultural theorists, programmers, historians, media archaeologists, mathema-
ticians, curators, feminists, musicians, educators, radio hams, and other fi ne 
things, and most straddle more than one discipline. The voices collected here 
bring more than one kind of intelligence to software because software makes 
more sense understood transversally.

There’s another rule of thumb: In order to program, you have to understand 
something so well that you can explain it to something as stonily stupid as a 
computer. While there is some painful truth in this, programming is also the 
result of a live process of engagement between thinking with and working on 
materials and the problem space that emerges. Intelligence arises out of inter-
action and the interaction of computational and networked digital media with 
other forms of life conjugate new forms of intelligence and new requirements 
for intelligence to unfold. As a result, a number of authors collected in this 
book have called for a renewed understanding of what literacy should mean 
contemporarily. Amongst others, Michael Mateas has made an important call 
for what he describes as Procedural Literacy.26 Those whose working practice 
involves education, and the need to address the tension between education and 
knowledge,27 know that the question of what such a literacy might be returns 
always as a question, and not as a program. In order to ask that question well, 
however, it is useful to have access to vocabularies which allow one to do so.

Returning to the question of the lexicon, the investigation of such a prob-
lem space requires an adequate form of description for computational processes 
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and digital objects. For this, we look at what is most familiar.28 There is a dual 
danger here: What is more pretentious than an attempt to interpret the banal, 
to see in the stuff of everyday life something more than what is seen by those 
who made it, use it, or live it? Do we just offer up a banality from another fi eld 
of work (say, those that have currently and partially settled out as economics, 
philosophy or art) plonking it down as a reference to software, stating that 
the subject is now “complex” and somehow therefore familiarly sublime in its 
diffi culty?29 On the other hand, should we limit ourselves to repeating, using, 
and abjectly loving that which is given, or limit ourselves only to the language 
of specialists where “questions and differences about words”30 are erased and 
terminologies are owned?

What is important is not to settle for either of these traps. Friedrich 
 Nietzsche suggests that the need for knowledge is often founded on the fear of 
the unfamiliar, and the refusal to face the familiar, that which we are the most 
habituated to, as the most potentially unknown or disturbing. He suggests that 
when we look at what seems strange, and then fi nd behind it something “that 
is unfortunately quite familiar to us, such as our multiplication tables or our 
logic, or our willing and desiring,”31 we are doing so as a way of avoiding more 
diffi cult processes of questioning and revaluation. Software has become our 
familiar. The stuff of software is what excites the writers gathered here. I hope 
that in setting out a few terms for discussion that we have not left either the 
unfamiliar or the familiar in the same state and that we enhance for the users 
of these texts the capacity, by any means, to become strange.

Notes

1. “Software studies” is a conjunction of words describing a possible fi eld of activ-

ity in Lev Manovich’s The Language of New Media and is further commented upon in 
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Algorithm
Andrew Goffey

Algorithm = Logic + Control1

The importance of the algorithm for software studies is indicated with admi-
rable succinctness by Les Goldschlager and Andrew Lister in their textbook, 
Computer Science: A Modern Introduction. The algorithm “is the unifying concept 
for all the activities which computer scientists engage in.” Provisionally a “de-
scription of the method by which a task is to be accomplished,” the algorithm 
is thus the fundamental entity with which computer scientists operate.2 It is 
independent of programming languages and independent of the machines that 
execute the programs composed from these algorithms. An algorithm is an ab-
straction, having an autonomous existence independent of what computer sci-
entists like to refer to as “implementation details,” that is, its embodiment in a 
particular programming language for a particular machine architecture (which 
particularities are thus considered irrelevant).

But the algorithm is not simply the theoretical entity studied by computer 
scientists. Algorithms have a real existence embodied in the class libraries of 
programming languages, in the software used to render web pages in a browser 
(indeed, in the code used to render a browser itself on a screen), in the sorting 
of entries in a spreadsheet and so on. Specialized fi elds of research, such as artifi -
cial life or connectionism in cognitive science, utilize genetic algorithms, back-
propagation algorithms, least mean square algorithms for the construction of 
models to simulate evolutionary processes or the learning capacities of neural 
networks. Algorithms have material effects on end users—and not just when 
a commercial website uses data- mining techniques to predict your shopping 
preferences.

In short, both theoretically and practically, ideally and materially, algo-
rithms have a crucial role in software. But none of this tells us much about 
the social, cultural, and political role algorithms play, if anything. Nor does 
it tell us much about the strata of material reality algorithmic abstractions 
might be correlated with: glowing confi gurations of pixels on a screen? mouse 
movements? the fl ow of electrons around an integrated circuit? Locating itself 
squarely on the side of the reductionist strategies of the exact sciences, society, 
culture, and politics are very much marginal to the concerns of computing 
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science. Software engineering, on the other hand, concerned as it is with the 
pragmatic effi cacy of building software for particular purposes, might appear 
to offer a better starting point for factoring culture back into software. How-
ever, it is unlikely that software engineering will allow us to view culture as 
anything other than something that software plugs into, as long as we fail to 
arrive at a better understanding of some of its basic building blocks. The key 
question then is what, if anything, a study of algorithms as such can tell us 
about the place of culture in software.

Historically, the algorithm occupies the central position in computing sci-
ence because of the way that it encapsulates the basic logic behind the Turing 
machine. Alan Turing’s concept of a machine that could be used to determine 
whether any particular problem is susceptible to being solved mechanically was 
a highly original interpretation of the aim of David Hilbert’s famous project of 
formally deciding whether or not any mathematical proposition can be proved 
true. The algorithm, which Turing understood as an effective process for solv-
ing a problem, is merely the set of instructions fed into the machine to solve 
that problem.3 Without the algorithm then, there would be no computing.

Although computer scientists work with them as if they were purely formal 
beings of reason (with a little bit of basic mathematical notation, it is possible 
to reason about algorithms, their properties and so on, the way one can reason 
about other mathematical entities), algorithms bear a crucial, if problematic, re-
lationship to material reality. This was tacit in the way that the Turing machine 
was envisaged in terms of effective processes: A computer is a machine, after all, 
and while the Turing machine is an imaginative abstraction, its connotations 
of materiality are entirely real. Robert Rosen has suggested that the tempta-
tion to extrapolate from formal procedures to material processes was practically 
inherent in the enterprise of the early computing scientists.4 Such a temptation 
implies a confusion between the mathematics of algorithms and the physics of 
real processes, of which Stephen Wolfram’s bold speculation that the universe is 
itself a giant computer is one possible outcome.5 The rest of this article explores 
another possibility, equally speculative but perhaps more mundane.

One of the implications of characterizing the algorithm as a sum of logic 
and control is that it is suggestive of a link between algorithms and action. 
Despite the  formal- logical framework of the theory of algorithms and the fact 
that programming languages are syntactic artifacts, the construction of al-
gorithms as a precisely controlled series of steps in the accomplishment of a 
task is a clear indication of what might be called the pragmatic dimension of 
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programming. Algorithms do things, and their syntax embodies a command 
structure to enable this to happen. After all, the Turing machine as an imagi-
native abstraction had as a material correlate a series of real computers. And 
dumb though they may be, missile guidance systems, intelligence databases, 
and biometric testing are all perfectly real. Without this effective existence 
in concrete machinery, algorithms would only ever have a paper reality as the 
artifacts of a formal language.

In the fi eld of linguistics, the existence of a pragmatic dimension to lan-
guage—the fact that words do things—has created enormous problems for 
attempts to formalize the structure of natural language. Because pragmatics 
connects language to extrinsic factors, it becomes impossible to conceptualize 
a language as a self- suffi cient system closed in on itself. Perhaps attempting to 
conceptualize the pragmatic dimension of the algorithm might yield a simi-
lar result? However, while formalization comes afterwards with natural lan-
guages, with algorithms, formalization comes fi rst, the express aim being to 
divorce (formal) expression from (material) content completely. Understand-
ably then, the study of computation has tended to concentrate on issues of 
syntax and semantics, the assumption being that what algorithms do can be 
appropriately grasped within such a framework. This has tended to result in 
making the leap from the theoretical world to the practical world a diffi cult 
one to accomplish. Always the trivia of implementation details.

A conception of the algorithm as a statement as Michel Foucault used the 
term might allow us to understand this approach a little better. For Foucault, 
the statement is not analytically reducible to the syntactic or semantic features 
of a language; it refers instead to its historical existence and the way that this 
historical existence accomplishes particular actions. The statement is a sort 
of diagonal line tracing out a function of the existence of language, which is 
in excess of its syntactic and semantic properties. In this way, the concept of 
the statement acts as a reminder that the categorical distinction between form 
and content is, paradoxically, insuffi ciently abstract to grasp the intelligence 
of concretely singular constellations of language in their effective existence. 
As Foucault puts it in The Archaeology of Knowledge, “to speak is to do some-
thing—something other than to express what one thinks, to translate what 
one knows, and something other than to play with the structure of language.”6 
For Foucault, these actions are restricted to the human sphere, as is only to be 
expected from an analysis which focuses on the historical existence of natural 
languages. Appropriately translated into the fi eld of software studies, however, 
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focusing on the development and deployment of algorithms and an analysis of 
the actions they accomplish both within software and externally might lead us 
to view the latter as a sort of machinic discourse, which addresses the ways in 
which algorithms operate transversally, on themselves, on machines, and on 
humans. (Alternatively, we might want to start to think about cultural analy-
sis as a process of software engineering.)

Viewing algorithms in this way as statements within a machinic discourse 
would problematize their existence in a way which undercuts the “pure  /  applied” 
or “theory  /  practice” dichotomies which crop up when the distinction between 
computing science and software engineering is too hastily made. The formalist 
aim at complete abstraction from content not only relays the theory  /  practice 
divide, it also tends to preclude an analysis of the link between the crucial enti-
ties of computing science and historical context. Just because the development 
of an algorithm requires a level of de facto formal abstraction, which then al-
lows that algorithm to be applied to other kinds of content, does not mean that 
we have exhausted everything that we need to know to understand the processes 
of which it is a part. To borrow an expression from Gilles Deleuze and Félix 
Guattari, whose analysis of the place of pragmatics in language is part of the 
inspiration for this discussion, the problem with the purely formal conception 
of the algorithm as an abstract machine is not that it is abstract. It is that it is 
not abstract enough. That is to say, it is not capable of understanding the place 
of the algorithm in a process which traverses machine and human.7

Algorithms obviously do not execute their actions in a void. It is diffi cult 
to understand the way they work without the simultaneous existence of data 
structures, which is also to say data. Even the simplest algorithm for sorting a 
list of numbers supposes an unsorted list as input and a sorted list as output (as-
suming the algorithm is correct). Although computer scientists reason about 
algorithms independendently of data structures, the one is pretty near useless 
without the other. In other words, the distinction between the two is formal. 
However, from a practical point of view, the prerequisite that structured data 
actually exist in order for algorithms to be operable is quite fundamental, be-
cause it is indicative of a critical operation of translation that is required for a 
problem to be tractable within software. That operation of translation might be 
better understood as an incorporeal transformation, a transformation that, by 
recoding things, actions, or processes as information, fundamentally changes 
their status. This operation can be accomplished in myriad ways, but generally 
requires a structuring of data, whether by something as innocuous as the use of 
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a form on a web page or by social processes of a more complex form: the knowl-
edge extraction practiced by the developers of expert systems, the restructur-
ing of an organization by management consultants, and so on.

It would be easy to leave the analysis of algorithms at this point: We are 
back on familiar territory for cultural analysis, that of the critique of abstrac-
tion. Within cultural studies and many other fi elds of research in the human 
sciences, abstraction is often thought of as the enemy. Many movements of 
philosophical thought, literary and artistic endeavor, and  human- scientifi c re-
search set themselves up against the perceived dehumanizing and destructive 
consequences of the reductionism of mathematics, physics, and allied disci-
plines, as the perennial debates about the differences between the human and 
the exact sciences suggests. We could even understand major elements of the 
concept of culture as a response to the abstract machinery of industrial capital-
ism and the bifurcated nature modern rationality is built upon. Understand-
ing things, activities, tasks, and events in algorithmic terms appears only to 
exacerbate this situation. What is an algorithm if not the conceptual embodi-
ment of instrumental rationality within real machines?

However, to simply negate abstraction by an appeal to some other value 
supposedly able to mitigate the dehumanizing consequences of reductionism 
misses a crucial point. It fails to adequately question the terms by which the 
algorithm, as a putatively self- suffi cient theoretical construct, maintains its 
hierarchizing power. In questioning the self- suffi ciency of the algorithm as a 
formal notion by drawing attention to its pragmatic functioning, however, it 
becomes possible to consider the way that algorithms work as part of a broader 
set of processes. Algorithms act, but they do so as part of an ill- defi ned network 
of actions upon actions, part of a complex of  power- knowledge relations, in 
which unintended consequences, like the side effects of a program’s behavior, 
can become critically important.8 Certainly the formal quality of the algorithm 
as a logically consistent construction bears with it an enormous power—par-
ticularly in a  techno- scientifi c universe—but there is suffi cient equivocation 
about the purely formal nature of this construct to allow us to understand that 
there is more to the algorithm than logically consistent form.

Lessig has suggested that “code is law,” but if code is law it is law as a 
“management of infractions.”9 Formal logics are inherently incomplete and 
indiscernibles exist. Machines break down, programs are buggy, projects are 
abandoned and systems hacked. And, as the philosopher Alfred North White-
head has shown, humans are literally infected by abstractions.10 This no bad 
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thing, because like the virus which produced variegated tulips of a rare beauty, 
infection can be creative too.
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Analog
Derek Robinson

Now the analogy between reasons, causes, forces, principles, and 
moral rules is glaring, but dazzling.
—james clerk maxwell1

The term “analog” has come to mean smoothly varying, of a piece with the 
apparent seamless and inviolable veracity of space and time; like space and 
time admitting infi nite subdivision, and by association with them connoting 
something authentic and natural, against the artifi cial, arbitrarily truncated 
precision of the digital (e.g., vinyl records vs. CDs). This twist in the tradi-
tional meaning of “analog” is a linguistic relic of a  short- lived and now  little-
 remembered blip in the history of technology.

Electronic analog computers, based on technologies developed in the 
1930s–1940s and sold commercially from the mid- 1950s onward, were used 
by scientists and engineers to create and explore simulation models, hence 
their name: A model is something standing in analogical relationship to the 
thing being modeled. The medium of the analogy was voltage, the electro-
motive force fl owing and varying continuously through a circuit. Electronic 
amplifi ers would allow any varying quantity sensed by instruments to be input 
to and transformed through an analog computer’s “program” (i.e., its circuit), 
fi tting it for use in ballistics computations and real time process control.

General purpose analog computers were anticipated in certain exotic me-
chanical devices dating from the 1870s, but these were costly specialized ma-
chines, never widely deployed. Only twenty or so Bush Differential Analyzers 
were ever built, and a similar number of Kelvin’s Tidal Predictor and Har-
monic Analysers installed worldwide. The fi nal iteration of the Bush Differen-
tial Analyzer was operational by 1942; it had 2000 vacuum tubes, 200 miles of 
wire, 150 electric motors, thousands of relays, and weighed 100 tons.2 Of the 
mechanical analog computers (barring the slide rule) the Norden bombsight 
probably saw widest service, being used in U.S. bombers from World War II 
until the end of the Vietnam War. Given airspeed and altitude, the bombsight 
calculated a bomb’s trajectory through a complex assembly of electric motors, 
gyros, levels, gears, and optical parts.

Much of the early work on electronic computing, both analog and digital, 
was carried out under the shroud of wartime secrecy, and it would be decades 
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before detailed accounts of projects like the Colossus computers used by British 
codebreakers began to emerge. It turns out that the fi rst general purpose ana-
log electronic computer was built in 1941 at Peenemunde, the German mil-
itary’s top- secret rocket facility. Helmut Hoelzer’s “Mischgerat” was used as 
an onboard fl ight controller in V- 2 ballistic missiles and as a programmable 
launch dynamics simulator on the ground. At the war’s close, Hoelzer was 
one of the German scientists spirited away by Operation Paperclip to develop 
guided missiles for the U.S. military. He became head of the Marshall Space 
Flight Center Computation Lab and contributed to the Saturn V rocket used 
in the Apollo and Skylab missions.3

In the decade following World War II, a number of American, English, 
Dutch, and German electronics fi rms got into the business of manufacturing 
analog computers. These were large handsome objects in enameled sheetmetal 
cases, sporting delicate vernier dials, glowing nixie tubes, rows of black bakelite 
knobs and colorful  patch- cords hanging in braids—an epitome of the modern 
 instrument- maker’s art. Rapidly adopted by research labs due to their versatility 
and relatively modest cost, by the end of the 1960s they had been replaced in 
most areas by digital software. One noteworthy exception was computers made 
for music synthesis. Analog synthesizers, a special breed of analog computer, 
didn’t yield to digital synths like the Yamaha DX- 7 until the 1980s.4 And simi-
larly to realtime video synthesizers used by avant garde cineastes, their palette 
wouldn’t be reproducible in software until the 2000s (whence came the laptop 
VJ).5 Certain kinds of embedded analog controllers might also be seen as spe-
cial purpose analog computers, however analog control system design is its own 
branch of engineering, which both contributed to and outlasted the brief apogee 
of analog computing.

It might have been initially unclear which type of giant electronic brain 
would prevail, but with the advent of mainframes (the  Remington- Rand type-
writer company began commercial development of the UNIVAC in 1951) 
the balance tipped in favor of digital machines for general purpose number 
crunching. Analog computers by their nature were unsuited to the preparation 
of the National Census; almost before getting underway the analog era entered 
a lengthy decline into its present obscurity.

Analogies and Amplifi cations

The term “analog,” as indicated above, was an allusion to a body of physical 
and geometric “analogies” and their corresponding systems of equations, es-
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tablished by mathematicians from Newton’s time forward. The differential 
equations of physics represent, in a bristlingly arcane syntax, common spatio-
temporal patterns occurring across the panoply of chemical, hydraulic, ther-
mal, mechanical, acoustic, electrical, and biological phenomena. Electronic 
analog computers, arriving as and when they did, imbued the standard physi-
cal analogs with a new concreteness and gravitas, and made tangible the ab-
stract dynamics hidden behind the mathematics. Researchers could quickly 
construct a working system (indeed a system of equations, but now “in the 
metal”) whose transient and long- term behaviors they could observe and re-
cord oscillographically and freely tweak with sliders and knobs. An analog 
computer was functionally an oversize, precision manufactured,  rocket- age 
version of the home circuit hobbyist’s electronic breadboard.

The basic unit of analog computing was the operational amplifi er, so named 
because it could be confi gured to mimic, by changing the values of resistors 
and capacitors attached to its inputs, all the basic operations of mathematics 
(negation, addition, subtraction, multiplication, division, differentiation, in-
tegration) and so emulate in circuitry virtually anything that could be mod-
eled in a system of equations. Unlike a digital CPU, whose speed is limited by 
a fi xed clock cycle and the effi ciency or otherwise of the code being executed, 
and which operates on binary 1s and 0s rather than continuous voltages and 
can execute only one instruction at a time, analog computation takes place ef-
fectively instantaneously, at every point in a circuit at once.

The op amp was a refi nement and elaboration of the negative feedback am-
plifi er developed by Harold Black, and patented in his name by Bell Labs in 
1937. It is in large part owed to Black’s invention, placed in the hands of war-
time electronics engineers, that the term “feedback” entered into common use. 
Black’s negative feedback amplifi er revolutionized scientifi c instrumentation 
in the 1940s, and a generation of scientists (at the time scientists were neces-
sarily also analog hackers, just as today’s scientists are trained to be fl uent in 
Unix, C programming, and LaTEX) were exposed to the sometimes startling 
consequences attendant on feeding a system’s outputs back as its inputs.6

Mapped into electronic engineering schematics and circuit symbols, the 
scientist’s analogies formed a highly compressed picture language of systems 
in general, applicable to very nearly any focus of scientifi c inquiry. What made 
electronic analog computation possible is that circuits and circuit elements in-
trinsically embody a common mathematics and physicogeometrical metaphor 
of force, fl ow, and circular feedback. The root metaphor and lasting legacy 
of the analog era is therefore this concept of “system” itself, as an assembly of 
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elements in relations of interdependence, altogether constituting a complex 
organized whole.7

Owing to the connective tissue of intervening dependencies, in a system 
every part ultimately depends upon every other part, and the temporal linear 
chain of causes and effects is made circular. It becomes a “circuit.” The snake 
swallows its tail, the world is round. Effects fed back become the causes of 
their own causes, and the mutual constraint of part upon part ensures that any 
imbalance or error (which physicists term the “energy”) is immediately relayed 
to adjacent parts, and by these to the parts adjoining and being acted upon 
by them, driving the entire system to equilibrium, an energy minimum. It 
might not be the lowest such minimum, and the system might never stabilize. 
Instead it may endlessly oscillate (oscillators are handy things to engineers) or 
jitter and careen about madly in so- called mathematical chaos. Without cor-
rective negative feedback, amplifi er circuits immediately saturate, solutions 
take off for infi nity,  speaker- cones and eardrums are easily blown.

Feedback

This picture of circularly dependent systems, bound together in dynamic feed-
back loops, in many ways marked a return to ideas current two centuries be-
fore. The image of electricity as a strangely sexed fl uid circulating endlessly in 
closed loops had been advanced by Volta, Franklin, Ampere, and other late-
 eighteenth- century natural philosophers.8 A hydraulic or pneumatic analogy 
was already present in Descartes’s diagrams of fi ery ethers conveying sensation 
and volition by nerves going to and from the brain, and in Harvey’s famous 
demonstration of the circulation of blood by the action of the heart. Simon 
Stevin, a Flemish contemporary of Galileo, had revived Archimedean hydrostat-
ics, framed the parallelogram law of forces, and advised the use of  double- entry 
bookkeeping for national accounts. By 1760 the Physiocrats were proposing a 
circulatory model of the French economy: Quesnay’s Tableau Economique was 
the prototype “spreadsheet model,” with money and goods charted as recip-
rocal fl ows through the demographic sectors of pre- revolutionary France. The 
scientifi c enlightenment of the Early Modern period thus saw the union of a 
philosophical apperception of universal cyclical fl ow, with precise new labo-
ratory procedures and instruments, and a rigorous, newly minted accounting 
system where input and output quantities must necessarily balance.

Philosopher- scientists in the time of Leibniz and Newton were readier to 
see in the laws of dynamics evidence for a divine or even panpsychical9 pur-
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pose that with seeming prescience is able to discern paths of least resistance to 
achieve its ends using the least action, the least effort, the greatest economy of 
means. With the discovery of the “conservation laws” or “action principles,” 
as they later came to be known, it seemed to savants like Fermat, Mauper-
tuis, Leibniz, and Euler as though all physical phenomena could be explained 
as the unfolding consequences of one universal necessity. We should have to 
return to pre- Socratic philosophy, or to Lao- Tzu’s mysterious “valley spirit”10 
to fi nd as like an image of the entire cosmos as a living, questing, even a cog-
nizant being: fl uid, active, elastic, responsive, self- regulating, self- repairing, 
optimizing.

“All equations equal zero” is the cardinal rule of mathematics. It is equally 
and profoundly true of physics, and one needn’t look further to fi nd reasons for 
what Eugene Wigner called the “unreasonable effectiveness of mathematics” 
in modeling nature.11 A corollary is this: whenever in nature we see an object 
or a substance moving or fl owing from one place to another, the motion can be 
interpreted as an attempt to return to a state of balance, or “zero difference.” 
Any displacement from equilibrium elicits an equivalent compensating mo-
tion and force. Bodies at rest will spontaneously adopt a confi guration that 
minimizes the total potential energy. The trajectory of a body subject to ex-
ternal forces is that for which its kinetic energy over the duration of the mo-
tion is minimal. The energy expended pumping water up a hill is paid back 
when the water is released to fl ow down a channel to turn a wheel and grind 
the corn. Even the small but perplexing differences between the energies paid 
and reclaimed, observed once there were instruments to measure things fi nely 
enough, were at the close of the nineteenth century fi nally resolved into a com-
mon accountancy of heat, work, and statistical entropy.

Feedback Everywhere

By the 1950s researchers in a growing number of fi elds had tripped over the 
now suddenly ubiquitous feedback loop, and were seeking opportunities to 
share their discoveries with other scholars. Thus were enjoined the new, syncre-
tistic sciences of cybernetics and systems theory, which were to enjoy a couple 
of decades’ vogue before losing their lustre. (They wouldn’t remain lost for 
long however. In the 1980s and 1990s, remarkably similar investigations were 
being presented under the banners of mathematical chaos, artifi cial neural 
nets, nonlinear dynamics, and complexity theory, even if some of their authors 
seemed unaware of precedent studies scarcely a generation removed.)
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Feedback is one of the grand unifying concepts of intellectual history. Once 
it had been named and witnessed and felt in fi ngers and elbows it became pos-
sible to apprehend earlier appearances of the same idea: Elmer Sperry’s auto-
pilot of 1912, Claude Bernard and Walter B. Cannon’s notions of biological 
“homeostasis,” James Watt’s 1788 development of the centrifugal steam gov-
ernor, the unknown inventor of the fl oat valves found in ancient Greek water 
clocks, Rene Descartes’s canny elucidation of the refl ex arc, even the bimetallic 
“brain” inside the humble household thermostat. James Clerk Maxwell had, 
in 1868, written a mathematical analysis of Watt’s governor, which failed to 
fi nd readers able to appreciate the scope and subtlety of the idea. But once the 
notion had gelled and circulated widely enough, anyone could readily see in 
Darwin’s theory of evolution, for example, a cybernetic feedback loop linking 
organisms and their environments. Cybernetics made what takes place at the 
laboratory bench philosophically interesting again, and reaffi rmed science’s 
relevance to the life- world.12

The diffi culty of designing electronic circuits and devices that will exhibit 
specifi ed behaviors attests to the vastly greater complexity observed in the in-
terdependent cycles and fl ows in natural systems. The classic ecosystem model 
is the tidal pool; marine biologists are still searching for its bottom. We living 
creatures apparently weren’t made with a purpose in mind (evolutionary the-
ory offers an elegant account of how we could have arisen spontaneously) but 
living matter is distinguished from the nonliving by a  future- directed “telos” 
or purposiveness. The  cyclic- AMP motor inside every cell is an electrochemi-
cal “ratchet- and- pawl” for storing energy against future need, in a way similar 
to though far more complex than how the windmill exploits fi ckle winds to 
pump water into a reservoir from which its motive force may later, at human 
discretion, be tapped.

The icons and circuit diagrams of the analog engineers were in fairly short 
order picked up by ecologists and planners to aid in visualizing the complex 
loops of energy, matter, and information fl owing through ecological, economic, 
and industrial systems. Bill Phillips’s famous hydraulic analog computer, the 
“MONIAC,” was an extraordinary example of analog model building built in 
1949 while he was a student at the London School of Economics. Circular fl ows 
of money through the UK economy (household and government expenditures, 
business investments, export revenues, losses due to imports, all tweaked via 
policy measures aimed at controlling unemployment and stimulating growth, 
e.g., through setting tax rates or issuing new currency) were physically em-
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bodied in tanks and streams of water of various colors, their levels charted by 
felt- tipped pens as the system attempted to restore equilibrium following eco-
nomic shocks and corrections. With each change, the impacts could be traced 
kinetically through the coupled lags and loops of its nine differential equa-
tions. Even hardened mathematical economists were surprised and at times 
dismayed to see the system demonstrating consequences unanticipated in their 
favorite theories.13

In the 1960s, an emergent systems ecology14 used the graphic language 
of analog computing to synoptically map the interlinking systems of feed-
backs upon which industrial civilization depends. Simulation programming 
languages like MIT’s Dynamo (used to program the World Dynamics models 
of the infl uential “Limits to Growth” report,15 helping fuel the environmen-
tal battles of the 1970s) were expressly created to emulate analog computers 
in the more fl exible medium of software. The simulation languages would 
in turn give way, except in specialized areas like circuit design, to electronic 
spreadsheets running on desktop computers, so completing and democritizing 
a cycle begun with the Tableau Economique.

Analog Again

Systems modeling has for the most part retired from the public’s gaze, back 
to the university and industrial laboratories from whence it came. And while 
op amps are the trusty mainstay of analog IC design, nowadays it would be 
unusual to use or describe them as “computing elements.” One area in which 
the old- style systems models continue to play a role behind the scenes is in 
computer games like “Age of Empires,”16 which are basically system dynam-
ics simulations recast in historical fantasy worlds, where functional relations 
between variables of state (the “stocks and fl ows” of ecological and economics 
modeling) are hardwired by the game’s designers. (An earlier incarnation of 
the genre, which readers of a certain age may recall fondly, is the game “Lem-
onade Stand.”17)

Recently, there have been intriguing reports of new excitement stirring up the 
cold grey ashes of the analog. Carver Mead, the distinguished CalTech physicist 
who in 1980 established the rules for silicon compiling of VLSI (Very Large Scale 
Integrated) digital circuits, has been turning his hand to bending and breaking 
those very rules to engineer a new generation of analog circuits from the same 
VLSI technology used to manufacture ultra high density CPUs and memory 

Analog



28

chips. Mead and his students have in effect been building analog computers on a 
silicon substrate with digital technology.18 They have built and tested an artifi -
cial cochlea, analog neural networks, and several varieties of synthetic retina (one 
of which has been incorporated into a high- end electronic camera).

Following Mead’s lead, a number of small initiatives were undertaken in 
the 1990s to create fl exible hybrid arrays of  fi eld- programmable analog blocks 
within a digital interconnection matrix on a single chip. While uptake by sys-
tem designers and manufacturers hasn’t yet lived up to expectations, it seems 
that fi fty years after its brief golden age, analog computing has at least to this 
extent returned. And while it is probably too early to say, its revival might be 
an occasion to reevaluate our concepts of what “computation” is, or might in 
time become.
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Button
Søren Pold

Buttons are everywhere in software interfaces, they “initiate an immediate ac-
tion” and are an essential part of the controls in the modern graphical user 
interface (GUI). An intensive design effort has gone into the sculpting of but-
tons, they have become sonifi ed, texturized, sculpted, and various kinds are 
developed with distinct functionality and signifi cation: push buttons, metal 
buttons, bevel buttons, round buttons, help buttons, and radio buttons.1 They 
appeared from the moment of the earliest graphical user interfaces such as in 
Xerox’s SmallTalk and the Xerox Star computer from the 1970s and early 
1980s.2 Buttons are a cornerstone in contemporary software interfaces. But why 
and what do they signify, and why are buttons so important and seductive?

Buttons signify a potential for interaction. When the mouse was invented 
by Douglas Engelbart’s team in the 1960s, it was used to click on text and hy-
pertext links. These gradually changed into buttons when the GUI became es-
tablished. Already ASCII interfaces like DOS shells and the notorious Norton 
Commander (fi gure 1) had  button- like text boxes to click on when the mouse 
became a standard interface with PCs. The GUI introduced icons and its but-
tons gradually became reactive, inverting the black and white colors when they 
were clicked. Later, in the 1990s, they became increasingly  three- dimensional 
in style as the available screen resolution increased. The interface designer 
 Susan Kare, who had earlier worked on the Macintosh, worked for Microsoft in 
the late 1980s on what was to become Windows 3.0 (1990), where she replaced 
“black rectangles with images that looked like  three- dimensional ‘pressable’ 
buttons.”3 By the mid- 1990s 3–D buttons were a fully fl edged standard in, for 
example, Windows 95 (1995) and Mac OS 8.0 (1997).

A button indicates a functional control; something well defi ned and pre-
dictable will happen as a result of the user pressing it. The fact that it is often 
rendered in 3–D simulates a physical, mechanical  cause- and- effect relationship 
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which is often emphasized by the system event sound of a mechanical button 
being pressed. This is a simulation of how we know buttons from old machin-
ery and electronics, where the buttons are in fact the mechanical interface, 
which might switch a relay through a mechanical lever, followed by an audible 
click and noise from the machinery and electronics. Since the connection is 
mechanical and not symbolic, such buttons are trustworthy, and one can feel 
them working tactilely. They do not change functionality; they always pre-
cipitate the same action. There is an analog connection between pressing the 
button and, by the force of one’s fi nger transmitted through a lever, changing 
the state of the apparatus—as in old tape recorders, where one actually pushed 
the tape head into place with the button. The computer interface does away 
with the analog mechanical functionality, but the function of buttons here is 
to signify the same stable denotation, even though its material basis is gone. 
That is, interface buttons disguise the symbolic arbitrariness of the digital 
mediation as something solid and mechanical in order to make it appear as if 
the functionality were hardwired: they aim to bring the old solid analog ma-
chine into the interface. In this sense buttons are a part of a remediation4 of the 
machine in the computer interface, a way of dressing it up as something well 
known and well understood, but there is more to it than this. It points directly 
to our limited understanding of the computer as a machine and as a medium 
and how it functions in culture and society.

One pioneer of computer graphics, computer art, and semiotics, Frieder 
Nake, has described the computer as an instrumental medium that we use in-

Figure 1 Norton Commander (1986)
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strumentally as a tool while communicating with it as a medium, thus it is 
both machine and mediation simultaneously.5 Following Nake’s concept of the 
instrumental medium, the computer is a new kind of  media- machine that me-
diates the instrumental or functional and functionalizes the representational 
medium. That is, function becomes mediated and the mediated representation 
becomes functional. This chimerical quality, though diffi cult to grasp from 
both a functional perspective (e.g., engineering) and from a media perspective 
(e.g., postmodern media studies and aesthetic theory) has become a standard 
mode of expression in software interfaces, with the button as a central element 
of expression.

When pushing a button in an interface—that is, by movement of the mouse, 
directing the representation of one’s hand onto the representation of a button 
in the interface and activating a script by clicking or  double- clicking—we 
somehow know we are in fact manipulating several layers of symbolic repre-
sentation and, as such, interacting with a complex mediation of a functional 
expression, engaging with what Steven Johnson characterizes as the “strange 
paradoxical quality” of direct manipulation.6 But we nevertheless see and in-
terpret it as something that triggers a function—and for good reason, since 
it is designed to perform in this way. It is a software simulation of a function, 
and this simulation aims to hide its mediated character and acts as if the func-
tion were natural or mechanical in a straight  cause- and- effect relation. Yet it 
is anything but this: it is conventional, coded, arbitrary, and representational, 
and as such also related to the cultural.

Just think about how many codes and values—from programming, com-
merce, and ideology—are mobilized when you click “buy,” pay with your 
credit card, and download a tune in a proprietary fi le format with technically 
and juridically imposed restrictions on how you can use, play, and copy it. The 
cultural, conventional, and representational elements are disguised or “black-
 boxed” as pure technical functionality; you do not even realize the conse-
quences of the copy protection technology, the money transfer via your credit 
card company, or the way the music is produced, commercialized, and regu-
lated by the recording company, the outlet, and the artist. The functional 
spell is only broken when the software crashes, or when the software becomes 
refl exive: either through artistic means as in net-  and software art, in order 
to surprise, criticize, or inform; or through juridical necessities such as when 
submitting to licenses, etc. The installation screens where, before installing 
the software, one has to accept a lot of restrictions and modes of conduct by 
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pressing a button are perhaps some of the most perverse examples of using but-
tons in software. The long intricate message and the easy accept button seem 
contradictory, and even though you are asked in capitals to read the agreement 
carefully before using the software, it only seems symptomatically to point to 
the contradiction. For example when installing Apple’s iTunes player, it states 
that by clicking the button you accept a 4000- word contract stating that you 
are only licensing the software, that you may only use it to reproduce material 
which is not in violation of copyright, that you will not use iTunes to develop 
nuclear missiles, chemical or biological weapons(!), and, among other things, 
that you will be solely responsible for any damages to your computer or data.

This example highlights how buttons force decisions into binary choices. 
There is no way of answering that one partially agrees, has not realized the 
consequences of accepting, or does not care, even though these would probably 
be franker answers from most users. Buttons are verbs that rule out tenses other 
than present tense, and rule out modal auxiliary, subjunctive, and other more 
sophisticated ways in which our language expresses activity. Buttons also des-
ignate you as a masterful subject in full control of the situation, which obvi-
ously is problematic in many cases, such as the one above, where one cannot 
oversee, predict, or even understand the consequences of clicking “I accept,” 
or in other examples where the buttons effectively hide the scripts enacted by 
pressing it, such as in the “buy” example.

But as manufacturers of technological consumer goods from cars and hi- fi  
equipment to computer hardware and software know, buttons have seductive 
aesthetic qualities and should provide a satisfying response to the desire to push 
them. They should evoke confi dence by returning a smooth response, not plas-
tickey or cheap, even though it might have nothing to do with functionality. 
Buttons are tempting—just watch kids in technical museums. Their magne-
tism may refl ect a desire for control or for the capacity to have an effect, and this 
is combined with a tactile desire that is emphasized by the adding of simulated 
textures (e.g., metal, shadows, lighting, grooves, 3- D, etc., shown in fi gure 2), 
as in the Mac OS 7.5.3 CD- Player. That buttons still are important for the suc-
cess of a product is demonstrated by the iPod’s Apple ClickWheel, which is the 
tactical icon for the extremely successful iPod.

In fact the ClickWheel points out how software buttons have increasingly 
become hardware. The ClickWheel is a button on the iPod hardware designed 
to control specifi c functions of the software, thus materializing the software 
into the hardware. Other and older examples of software buttons migrating 
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back to hardware are the mouse itself, buttons on a computer for controlling 
sound volume or various functions of the operating system (home, end, search) 
or the function buttons (F1–F12) on the computer keyboard. These kind of 
soft- hardware buttons are often seen when the universal computer is custom-
ized for special use, such as in mobile phones, iPods, game consoles, etc., and 
they seem to be fl ourishing currently as seductive branding on fashionable 
electronic gadgets. A special case is touch screens, where one interacts with the 
interface by touching the screen and tapping its buttons. Here the interface 
becomes directly touchable though it is only an illusion which does not exactly 
feel right—instead of actually touching the interface it feels as if one’s fi nger 
becomes a mouse. Still, even if next generation touch screen producers feel 
tempted to produce screens that could automatically sculpt 3- D buttons with 
a tactile feel to them, it would not solve the paradox of the button as an ex-
pression of the interface’s mediation of the functional and instrumentation of 
the representational, as pointed out previously. Software buttons incarnate this 
paradox. As exemplifi ed by the function buttons, software buttons turned into 
hardware are often reconfi gurable, programmable, and, as such, they reverse 
the logic of mechanical buttons from giving the interface a hardwired func-
tional trustworthiness to softening the buttons on the box. This both leads 
to frustration (as when your keyboard layout is accidentally changed) and an 
at least momentary frisson (e.g., playing computer games or handling SMS’s).

Powerful buttons have an unmistakably “trigger happy” feel to them. They 
make the world feel controllable, accessible, and conquerable, providing “In-
formation at your fi ngertips” as the slogan goes, or, more broadly, the reduc-
tion of society, culture, knowledge, its complexity, countless mediations, and 
transformations to a “double- click” information society,7 where everything 
becomes packaged in manageable and functional scripts activated by buttons 

Figure 2 CD- player from Mac OS System 7.5.3 (1996)
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offering easy rewards. From this perspective, the interface button becomes an 
emblem of our strong desire to handle the increasingly complex issues of our 
societies by effi cient technical means—what one may call the “buttonization” 
of culture, in which our reality becomes clickable.

In Adrian Ward’s artistic software, Signwave Auto- Illustrator,8 there is a big, 
tempting button in the preferences palette with the caption “Don’t push this 
button,” which paradoxically pinpoints and heightens the desire to push it. 
One could say that by its apparent denial of functional purpose the button self-
 consciously tempts our desire for the functional experience of tactical control 
and mastery—a strong ingredient in the aesthetics of the functional interface, 
even when denied.9
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Class Library
Graham Harwood

use Poetic::Violence;

# Software for the aggressive assault on society.

# Thank GOD It’s all right now — we all want equality — 

use constant EQUALITY_FOR_ALL 

=> 

“the money to be in the right place at the right time”;

use constant NEVER = ‘for;;’;

use constant SATISFIED => NEVER;

# It’s time to liposuck the fat from the thighs of the bloated 

# bloke society—smear it on ourselves and become invisible.

# We are left with no option but to construct code that 

# concretizes its opposition to this meagre lifestyle.

   package DON’T::CARE;

   use strict; use warnings;

   sub aspire {

       my $class            = POOR;

       my $requested_type   = GET_RICHER;

       my $aspiration       = “$requested_type.pm”;

       my $class            = “POOR::$requested_type”;

       require $aspiration;

       return $class- >new(@_);

    }

    1;

# bought off with $40 dvd players

sub bought_off{

      my $self = shift;

      $self- >{gain} = shift;

      for( $me = 0;
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           $me <= SATISFIED; 

           $me += EQUALITY_FOR_ALL ){

           $Exploit 

           = 

           push(@poverty_on_someone_else,$self- >{gain});

           die “poor“ if $Exploit 

           =~ m  / ‘I feel better about $me’  /  g;

      }

      foreach my $self_worth ( @poverty_on_someone_else){

           wait 10;

           &Environmental_catastrophe (CHINA,$self_worth)

      }

}

# TODO: we need to seek algorithmic grit 

# for the finely oiled wheels of capital.

# Perl Routines for the redistribution of the world’s wealth 

# Take the cash from the rich and turn it into clean 

# drinking water

# Constants

use constant SKINT => 0;

use constant TO_MUCH => SKINT + 1;

# This is an anonymous hash record to be filled with 

# the Names and Cash of the rich

%{The_Rich} = {

    0 => {

            Name => ‘???’,

            Cash => ‘???’,

     },

}

# This is an anonymous hash record to be filled 

# with the Price Of Clean Water

# for any number of people without clean water
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%{The_Poor} = {

      0 =>{

          #the place name were to build a well

          PlaceName         => ‘???’, 

          PriceOfCleanWater => ‘???’,

          Cash              => ‘???’,

      },

  }

# for each of the rich, process them one at a time passing 

#them by reference to RedistributeCash.

  foreach my $RichBastardIndex (keys %{The_Rich}){

       &ReDisdributeCash(\%{The_Rich- >{$RichBastardIndex}});

 }

# This is the core subroutine designed to give away

# cash as fast as possible.

sub ReDisdributeCash {

      my $RichBastard_REFERENCE = @_;

      # go through each on the poor list

      # giving away Cash until each group

      # can afford clean drinking water

      while($RichBastard_REFERENCE - >{CASH} >= TO _MUCH){

            foreach my $Index (keys @{Poor}){

            $RichBastard_REFERENCE- >{CASH}—;

            $Poor- >{$Index}- >{Cash}++;

            if( $Poor- >{$Index}- >{Cash} 

               => 

               $Poor- >{$Index}- >{PriceOfCleanWater} ){

               &BuildWell($Poor- >{$Index}- >{PlaceName});

               }

          }

     }

}
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Code (or, How You Can Write Something Differently)
Friedrich Kittler

Codes—by name and by matter—are what determine us today, and what we 
must articulate if only to avoid disappearing under them completely. They are 
the language of our time precisely because the word and the matter code are 
much older, as I will demonstrate with a brief historical regression. And have 
no fear: I promise to arrive back at the present.

Imperium Romanum

Codes materialize in processes of encryption, which is, according to Wolfgang 
Coy’s elegant defi nition, “from a mathematical perspective a mapping of a fi -
nite set of symbols of an alphabet onto a suitable signal sequence.”1 This defi ni-
tion clarifi es two facts. Contrary to current opinion, codes are not a peculiarity 
of computer technology or genetic engineering; as sequences of signals over 
time they are part of every communications technology, every transmission 
medium. On the other hand, much evidence suggests that codes became con-
ceivable and feasible only after true alphabets, as opposed to mere ideograms 
or logograms, had become available for the codifi cation of natural languages. 
Those alphabets are systems of identically recurring signs of a countable quan-
tity, which map speech sounds onto letters more or less one- to- one and, hope-
fully, completely. A vocalic alphabet of a type such as Greek,2 justly praised 
for being the “fi rst total analysis of a language,”3 does appear to be a prereq-
uisite for the emergence of codes, and yet, not a suffi cient one. For what the 
Greeks lacked (leaving out of consideration sporadic allusions in the work of 
Aischylos, Aenas, Tacticus, and Plutarch to the use of secret writing4 was that 
second prerequisite of all coding, namely, developed communications technol-
ogy. It is anything but coincidental that our reports of the fi rst secret message 
systems coincide with the rise of the Roman Empire. In his Lives of the Caesars, 
Suetonius—who himself served as secret scribe to a great emperor—recounts 
discovering encrypted letters among the personal fi les left behind by both the 
divine Caesar and the divine Augustus. Caesar contented himself with mov-
ing all the letters of the Latin alphabet by four places, thus writing D instead 
of A, E instead of B, and so forth. His adoptive son Augustus, by contrast, is 
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reported to have merely skipped one letter, but a lack of mathematical dis-
cernment led him to replace the letter X, the last in his alphabet, by a double 
A.5 The purpose was obvious: When read aloud by those not called upon to 
do so (and Romans were hardly the most literate of people), a stodgy jumble 
of consonants resulted. And as if such innovations in matters of encryption 
were not suffi cient, Suetonius attributes to Caesar another invention immedi-
ately beforehand—that of having written in several columns, or even separate 
pages, reports to the Roman Senate on the Gallic campaign. Augustus is cred-
ited with the illustrious deed of creating, with riders and relay posts, Europe’s 
fi rst strictly military  express- mail system.6 In other words, the basis on which 
command, code, and communications technology coincided was the Empire, 
as opposed to merely the Roman Republic or shorthand writers like Cicero. 
Imperium is the name of both the command and its effect: the world empire. 
“Command, control, communications, intelligence” was also the Pentagon’s 
imperial motto until very recently, when, due to the coincidence of communi-
cation technologies and Turing machines it was swapped for C4—“command, 
control, communication, computers”—from Orontes to the Scottish headland, 
from Baghdad to Kabul.

It was the case, however, that imperia, the orders of the Emperor, were also 
known as codicilla, the word referring to the small tablets of stripped wood 
coated with wax in which letters could be inscribed. The etymon codex for its 
part—caudex in Old Latin and related to the German verb hauen (to hew)—in 
the early days of the Empire assumed the meaning of “book,” whose pages 
could, unlike papyrus scrolls, for the fi rst time be leafed through. And that 
was how the word that interests us here embarked on its winding journey to 
the French and English languages. From Imperator Theodosius to Empereur 
Napoleon, “code” was simply the name of the bound book of law, and codi-
fi cation became the word for the  judicial- bureaucratic act needed to arrest in 
a single collection of laws the torrents of imperial dispatches or commands 
that for centuries had rushed along the express routes of the Empire. Message 
transmission turned into data storage,7 pure events into serial order. And even 
today the Codex Theodosius and Codex Iustinianus continue to bear a code 
of ancient European rights and obligations in those countries where Anglo-
 American common law does not happen to be sweeping the board. In the 
Corpus Iuris, after all, copyrights and trademarks are simply meaningless, re-
gardless of whether they protect a codex or a code.
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Nation- States

The question that remains is why the technical meaning of the word “code” 
was able to obscure the legal meaning to such a degree. As we know, contem-
porary legal systems regularly fail to grasp codes in the fi rst place and, in con-
sequence, to protect them, be it from robbers and purchasers or, conversely, 
from their discoverers and writers. The answer seems to be simple. What we 
have been calling a code since the secret writings of Roman emperors to the 
arcana imperii of the modern age was known as a “cipher” from the late Middle 
Ages onward. For a long time the term code was understood to refer to very 
different cryptographic methods whereby words could still be pronounced, 
but obscure or innocuous words simply replaced the secret ones. Cipher, by 
contrast, was another name for the zero, which at that time reached Europe 
from India via Baghdad and put sifr (Arabic: “emptiness”) into  mathematical-
 technical power. Since that time, completely different sets of characters have 
been devised (in sharp contrast to the invention of Greek for speech sounds 
and numbers: on one side of language the alphabet of the people, on the other 
the numbers of the bearers of secrets—the name of which spelled the Arabic 
sifr once again. Separate character sets, however, are productive. Together they 
brew wondrous creatures that would never have occurred to the Greeks or Ro-
mans. Without modern algebra there would be no encoding; without Guten-
berg’s printing press, no modern cryptology. In 1462 or 1463, Battista Leone 
Alberti, the inventor of linear perspective, was struck by two plain facts. First, 
that the frequency of occurrence of phonemes or letters varies from language to 
language, a fact which is proved, according to Alberti, by Gutenberg’s letter 
case. From the frequency of shifted letters as they were written by Caesar and 
Augustus, cryptanalysis can heuristically derive the clear text of the encrypted 
message. Second, it is therefore insuffi cient to encrypt a message by shifting 
all the letters by the same number of places. Alberti’s proposal that every new 
letter in the clear text be accompanied by an additional  place- shift in the se-
cret alphabet was followed up until World War II.8 One century after Alberti, 
François Viète, the founder of modern algebra, and also a cryptologist in the 
service of Henry IV, intertwined number and letter more closely still. Only 
since Viète have there been equations containing unknowns and universal coef-
fi cients written with numbers encoded as letters.9 This is still the work method 
of anybody who writes in a high- level programming language that likewise al-
locates variables (in a mathematically more or less correct manner) to alpha-
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numeric signs, as in equations. On this basis—Alberti’s polyalphabetic code, 
Viète’s algebra, and Leibniz’ differential calculus—the  nation- states of the 
modern age were able to technically approach modernity.

Global Message Traffi c

Modernity began, however, with Napoleon. As of 1794, messengers on horse-
back were replaced by an optical telegraph which  remote- controlled France’s 
armies with secret codes. In 1806, the laws and privileges surviving from the 
old days were replaced by the cohesive Code Napoléon. In 1838, Samuel Morse 
is said to have inspected a printing plant in New York in order—taking a 
leaf from Alberti’s book—to learn from the letter case which letters occurred 
most frequently and therefore required the shortest Morse signals.10 For the 
fi rst time a system of writing had been optimized according to technical crite-
ria—that is, with no regard to semantics—but the product was not yet known 
as Morse code. The name was bestowed subsequently in books known as Uni-
versal Code Condensers, which offered lists of words that could be abbreviated 
for global cable communications, thus reducing the length, and cost, of tele-
grams, and thereby encrypting the sender’s clear text for a second time. What 
used to be called deciphering and enciphering has since then been referred to 
as decoding and encoding. All code processed by computers nowadays is there-
fore subject to Kolmogorov’s test: Input is bad if it is longer than its output; 
both are equally long in the case of white noise; and a code is called elegant 
if its output is much longer than itself. The twentieth century thus turned a 
thoroughly capitalist  money- saving device called “code condenser” into high-
est mathematical stringency.

The Present Day—Turing

All that remains to ask is how the status quo came about or, in other words, 
how mathematics and encryption entered that inseparable union that rules our 
lives. That the answer is Alan Turing should be well known today. The Turing 
machine of 1936, as the principle controller of any computer, solved a basic 
problem of the modern age: how to note with fi nitely long and ultimately whole 
numbers the real, and therefore typically infi nitely long, numbers on which 
technology and engineering have been based since Viète’s time. Turing’s ma-
chine proved that although this task could not be accomplished for all real 
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numbers, it was achievable for a crucial subset, which he dubbed computable 
numbers.11 Since then a fi nite quantity of signs belonging to a numbered al-
phabet which can, as we know, be reduced to zero and one, has banished the 
infi nity of numbers.

No sooner had Turing found his solution than war demanded its cryptana-
lytical application. As of spring 1941 in Britannia’s Code and Cipher School, 
Turing’s  proto- computers almost decided the outcome of the war by success-
fully cracking the secret codes of the German Wehrmacht, which, to its own 
detriment, had remained faithful to Alberti. Today, at a time when computers 
are not far short of unravelling the secrets of the weather or the genome—phys-
ical secrets, that is to say, and increasingly often biological ones, too—we all 
too often forget that their primary task is something different. Turing himself 
raised the question of the purpose for which computers were actually created, 
and initially stated as the primary goal the decoding of plain human language:

Of the above possible fi elds the learning of languages would be the most impressive, 

since it is the most human of these activities. This fi eld seems, however, to depend 

rather too much on sense organs and locomotion to be feasible. The fi eld of cryptogra-

phy will perhaps be the most rewarding. There is a remarkably close parallel between 

the problems of the physicist and those of the cryptographer. The system on which a 

message is enciphered corresponds to the laws of the universe, the intercepted messages 

to the evidence available, the keys for a day or a message to important constants which 

have to be determined. The correspondence is very close, but the subject matter of 

cryptography is very easily dealt with by discrete machinery, physics not so easily.12

Conclusions

Condensed into telegraphic style, Turing’s statement thus reads: Whether ev-
erything in the world can be encoded is written in the stars. The fact that 
computers, since they too run on codes, can decipher alien codes is seemingly 
guaranteed from the outset. For the past  three- and- a- half millennia, alphabets 
have been the prototype of everything that is discrete. But it has by no means 
been proven that physics, despite its quantum theory, is to be computed solely 
as a quantity of particles and not as a layering of waves. And the question re-
mains whether it is possible to model as codes, down to syntax and seman-
tics, all the languages that make us human and from which our alphabet once 
emerged in the land of the Greeks.
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This means that the notion of code is as overused as it is questionable. If 
every historical epoch is governed by a leading philosophy, then the philoso-
phy of code is what governs our own, and so code—harking back to its root, 
“codex”—lays down the law for one and all, thus aspiring to a function that 
was, according to the leading philosophy of the Greeks, exercised exclusively 
by Aphrodite.13 But perhaps code means nothing more than codex did at one 
time: the law of precisely that empire which holds us in subjection and for-
bids us even to articulate this sentence. At all events, the major research in-
stitutions that stand to profi t most from such announcements proclaim with 
triumphant certainty that there is nothing in the universe, from the virus to 
the Big Bang, which is not code. One should therefore be wary of metaphors 
that dilute the legitimate concept of code, such as when, for instance, in the 
case of DNS, it was not possible to fi nd a one- to- one correspondence between 
material elements and information units as Lily Ray discovered in the case of 
bioengineering. As a word that in its early history meant “displacement” or 
“transferral”—from letter to letter, from digit to letters, or vice versa—code is 
the most susceptible of all to faulty communication. Shining in the aura of the 
word code one now fi nds sciences that do not even master their basic arithmetic 
or alphabet, let alone cause something to turn into something different as op-
posed to merely, as in the case of metaphors, go by a different name. Therefore, 
only alphabets in the literal sense of modern mathematics should be known as 
codes, namely one- to- one, fi nite sequences of symbols, kept as short as possible 
but gifted, thanks to a grammar, with the incredible ability to infi nitely re-
produce themselves: Semi- Thue groups, Markov chains,14  Backus- Naur forms, 
and so forth. That, and that alone, distinguishes such modern alphabets from 
the familiar one that admittedly spelled out our languages and gave us Ho-
mer’s poetry15 but cannot get the technological world up and running the way 
computer code now does. For while Turing’s machine was able to generate real 
numbers from whole numbers as required, its successors have—in line with 
Turing’s daring prediction—taken command.16 Today, technology puts code 
into the practice of realities, that is to say: it encodes the world.

I cannot say whether this means that language has already been vacated as 
the House of Existence. Turing himself, when he explored the technical fea-
sibility of machines learning to speak, assumed that this highest art, speech, 
would be learned not by mere computers but by robots equipped with sensors, 
effectors, that is to say, with some knowledge of the environment. However, 
this new and adaptable environmental knowledge in robots would remain 

Code



46

obscure and hidden to the programmers who started them up with initial 
codes. The so- called “hidden layers” in today’s neuronal networks present a 
good, if still trifl ing, example of how far computing procedures can stray from 
their design engineers, even if everything works out well in the end. Thus, 
either we write code that in the manner of natural constants reveals the deter-
minations of the matter itself, but at the same time pay the price of millions 
of lines of code and billions of dollars for digital hardware; or else we leave the 
task up to machines that derive code from their own environment, although 
we then cannot read—that is to say: articulate—this code. Ultimately, the 
dilemma between code and language seems insoluble. And anybody who has 
written code even only once, be it in a high- level programming language or 
assembly, knows two very simple things from personal experience. For one, all 
words from which the program was by necessity produced and developed only 
lead to copious errors and bugs; for another, the program will suddenly run 
properly when the programmer’s head is emptied of words. And in regard to 
interpersonal communications, that can only mean that self- written code can 
scarcely be passed on with spoken words. May myself and my audience have 
been spared such a fate in the course of this essay.

Translated by Tom Morrison, with Florian Cramer
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Codecs
Adrian Mackenzie

Codecs (coder- decoders) perform encoding and decoding on a data stream or 
signal, usually in the interest of compressing video, speech, or music. They 
scale, reorder, decompose, and reconstitute perceptible images and sounds so 
that they can get through information networks and electronic media. Codecs 
are intimately associated with changes in the “spectral density,” the distribu-
tion of energy, radiated by sound and image in electronic media.

Software such as codecs poses several analytical problems. Firstly, they are 
monstrously complicated. Methodologically speaking, coming to grips with 
them as technical processes may entail long excursions into labryinths of 
mathematical formalism and machine architecture, and then fi nding ways of 
backing out of them bringing the most relevant features. In relation to video 
codecs, this probably means making sense of how transform compression and 
motion estimation work together. Second, at a phenomenological level, they 
deeply infl uence the very texture, fl ow, and materiality of sounds and images. 
Yet the processes and parameters at work in codecs are quite counterintuitive. 
Originating in problems of audiovisual perception, codecs actually lie quite a 
long way away from commonsense understandings of perception. Third, from 
the perspective of political economy, codecs structure contemporary media 
economies and cultures in important ways. This may come to light occasion-
ally, usually in the form of an error message saying that something is missing: 
the right codec has not been installed and the fi le cannot be played. Despite 
or perhaps because of their convoluted obscurity, codecs catalyze new relations 
between people, things, spaces, and times in events and forms.

Patent Pools and Codec Floods

Video codecs such as MPEG- 1, MPEG- 2, MPEG- 4, H.261, H.263, the im-
portant H.264, theora, dirac, DivX, XviD, MJPEG, WMV, RealVideo, etc., 
are strewn across networked electronic media. Roughly a hundred different au-
dio and video codecs are currently in use, some in multiple implementations. 
Because codecs often borrow techniques and strategies of processing sound and 
image, they have tangled geneologies.
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Leaving aside the snarled relations between different codecs and video tech-
nologies, even one codec, the well- established and uncontentious MPEG- 2 cod-
ing standard, is extraordinarily complex in its treatment of images. MPEG- 2 
(a.k.a. H.262) designates a well- established set of encoding and decoding proce-
dures for digital video formalized as a standard.1 The standards for MPEG- 2 are 
widely described. Many diagrams, defi nitions, and explanations of coding and 
decoding the bitstream are available in print and online.2 Open source software 
implementations of the MPEG- 2 standard offer a concrete path into its imple-
mentation. For instance, ffmpeg, “is a complete solution to record, convert and 
stream audio and video.”3 It handles many different video and audio codecs, and 
is widely used by many other video and audio projects (VLC, mplayer, etc.).

Economically, MPEG- 2 is a mosaic of intellectual property claims (640 pat-
ents held by entertainment, telecommunications, government, academic, and 
military owners according to Wikipedia.4 The large patent pool attests to the 
economic signifi cance of MPEG- 2 codecs. As the basis of commercial DVDs, the 
transmission format for satellite and cable digital television (DVB and ATSC), 
as the platform for HDTV as well as the foundation for many internet stream-
ing formats such as RealMedia and Windows Media, MPEG- 2 forms a pri-
mary technical component of contemporary audiovisual culture. It participates 
in geopolitical codec wars (e.g., China’s AVC codec, versus the increasingly 
popular H.264, versus other versions such as Microsoft Windows VC- 1—
Windows Media 9).

Many salient events in the development of information and digital cul-
tures (for instance, MP3- based fi le- swapping, or JPEG- based photography) 
derive from the same technological lineage as MPEG- 2 (lossy compression us-
ing transforms). At a perceptual level, what appears on screen is colored by the 
techniques of “lossy compression” that MPEG- 2 epitomizes. Codecs affect at a 
deep level contemporary sensations of movement, color, light, and time.

Trading Space and Time in Transforms

The MPEG standard is complex. Digital signal processing textbooks caution 
against trying to program it at home (which immediately suggests the desir-
ability of doing so). They suggest buying someone else’s implementation of 
the standard.5 Where does this complexity come from? The purpose of the 
MPEG- 2 standard developed in the early 1990s is generic:
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This part of this specifi cation was developed in response to the growing need for a 

generic coding method of moving pictures and of associated sound for various ap-

plications such as digital storage media, television broadcasting and communication. 

The use of this specifi cation means that motion video can be manipulated as a form of 

computer data.6

How does a “generic coding method” end up being so complex that “it is 
one of the most complicated algorithms in DSP [digital signal processing]”?7 
MPEG- 2 defi nes a bitstream that tries to reconcile the complicated psycho-
physical, technocultural, and  political- economic processes of seeing. MPEG- 2 
puts more pictures, more often, in more places. It moves images further and 
faster in media networks than they would otherwise.

To do that, the code in MPEG- 2 codecs reorganizes images at many scales. 
The code works to reorganize relations within and between images. Algo-
rithmically, MPEG- 2 combines several distinct compression techniques (con-
verting signals from time domain to frequency domain using discrete cosine 
transforms, quantization, Huffman and Run Length Encoding, block motion 
compensation), timing and multiplexing mechanisms, retrieval and sequenc-
ing techniques, many of which are borrowed from the earlier, low- bitrate stan-
dard, MPEG- 1.8

From the standpoint of software studies, how can these different algorithms 
be discussed without assuming a technical background knowledge? The tech-
nical intricacies of these compression techniques are rarely discussed outside 
signal processing textbooks and research literature. Yet these techniques 
deeply affect the life of images and media today. One strategy is to begin by 
describing the most distinctive algorithmic processes present, and then ask to 
what constraints or problems these processes respond. From there we can start 
to explore how software transforms relations.

For instance, we could concentrate on what happens at the lowest levels of 
the picture, the “block” (8 × 8 pixels). Digital video typically arrives at the co-
dec as a series of frames (from a camera, from a fi lm or television source). Each 
frame or static digital image comprises arrays of pixels defi ned by color (chro-
minance) and brightness (luminance) values. Each frame then undergoes sev-
eral phases of cutting and reassembling. These phases probe and re- structure 
the image quite deeply, almost to the pixel level. Digital video pictures are 
composed of arrays of pixels that have much spatial redundancy. Many adja-
cent pixels in an image of a landscape will be very similar, and it wastes stor-
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age space (on a DVD) or bandwidth (on satellite transmitters or internet) to 
repeat the same pixel over and over. A sky could be mostly blue. Rather than 
transmit an exact replica of the sky, why not use an algorithmic process that 
transforms the blue sky into a  quasi- statistical summary of the spatial distri-
bution of blueness?

The so- called I- Picture or Intra- Picture is the product of one phase of en-
coding, transform compression. It is applied to selected frames. The I- Pictures 
effectively become key- frames in the MPEG videostream. This phase relies 
on spectral analysis carried out using Fourier transforms. What does spectral 
analysis do? Broadly speaking, it breaks a complex waveform into a set of com-
ponent waveforms of different amplitude or energy. Many computational pro-
cesses today rely on Fourier Transforms or on a particular variant of the Fourier 
Transform, the Discrete Cosine Transform (DCT). The DCT, implemented in 
silicon or C code, encodes complex signals that vary over time or space into a 
series of discrete component frequencies. They can be added together to recon-
stitute the original signal during decoding. Nearly all video codecs transform 
spatially extended images into sets of simple frequencies. This allows them to 
isolate those components of an image that are most perceptually salient to hu-
man eyes. These would include the brightest or most colorful components.

There is something quite  counter- intuitive in transform compression ap-
plied to images. In what way can a videoframe be seen as a waveform? The 
notion of the transform is mathematical: It is a function that takes an arbitrary 
waveform and expresses it as a series of simple sine waves of different frequen-
cies and amplitudes. Added together, these sine or cosine waves reconstitute the 
original signal. Practically, in encoding a given frame of video, the MPEG- 2 
code divides the 720 × 576 pixel DVD image into 8 × 8 pixel blocks. So ap-
plication of the transform compression is not general or global. The image has 
been turned into in an array of small blocks that can be quickly transformed 
separately. This can be seen by  freeze- framing a complex visual scene on a DVD. 
It will appear “blocky.” The DCT sees each of these blocks as spatial distribu-
tion of brightness and color. It delivers a series of coeffi cients (or multiplicative 
factors) of different frequency cosine waves.

The decomposition of a spatial or temporal signal into a series of different 
frequency components allows correlation with the neurophysiological measure-
ments of human hearing and sight. For instance, because the transform treats 
blocks as spectra of values, some of which are more signifi cant to human eyes 
than others, it converts the spectrum values into a sequence in which the most 
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important come fi rst. Components of the series that have small coeffi cients can 
be discarded because they will not be visually salient. In this way, a block can 
be compressed, transmitted or stored, and decompressed without ever sending 
any information about individual pixels. The cosine wave coeffi cients represent 
amplitudes of different frequency cosine waves. When the block is decoded 
(for instance, during display of a video frame on screen), the coeffi cients are 
reattached to corresponding cosine waves, and these are summed together to 
reconstitute arrays of color and brightness values comprising the block.

What stands out in transform compression is decomposition of the framed 
images through densely complex matrix manipulations occurring on the thou-
sands of blocks. In contrast to fi lm’s use of linear sequences of whole frames, or 
television and video’s interlacing of scan- lines to compose images, transforms 
such as DCT deal with grids of blocks in highly counterintuitive spectral 
analysis that has little to do with space. Blocks themselves are not fragments 
of pictures, but rather distributions of luminosity and chrominance that are 
packed into the bit stream.

Motion Prediction—Forward and Backward in Time

What does it mean to say that codecs catalyze new relations between people, 
things, spaces, and times in events and forms? Software has long been un-
derstood as closely linked to ideation or thought, particularly mathematical 
thought. Despite the mathematical character of the DCT compression just 
discussed, the thinking present in software cannot be reduced to mathemati-
cal thought, or not to mathematical thought as it is usually conceived. Codecs 
perhaps challenge cinematic and televisual perception even as they participate 
in making the world more cinematic or televisual. They deviate radically from 
the normal cinematic or televisual production of frames in a linear sequence. 
Video codecs are very preoccupied with reordering relations between frames 
rather than just keeping a series of frames in order. Indeed just as frames them-
selves are individually reconfi gured as blocks of luminance and chrominance, 
the relation between frames is subject to calculated reordering in the interests 
of accelerated or compressed transport.

In order to gain purchase on the relation between frames, the MPEG co-
dec again breaks the frame into an array of discrete “macroblocks” (usually 
four blocks put together). It compares successive frames to see how a spe-
cifi c macroblock shifts between frames. The working assumption behind the 
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 motion- predicted encoding of video in MPEG- 2 is that nothing much happens 
between successive frames that can’t be understood as macroblocks undergoing 
geometric manipulations (translation, rotation, skewing, etc.). The fact that 
nothing much happens between frames apart from spatial transformation is 
the basis of the interframe compression and the generation of P and B pictures 
(forward and backward motion prediction, respectively). P (Predicted) and B 
(Backward) pictures, the pictures that accompany the I- Picture in a MPEG- 2 
bitstream are, therefore, really nothing like fi lm frames. There will never be 
a fl icker in an MPEG video because the boundaries between pictures are not 
constructed in the same way they are in fi lm or even in television with its 
interlaced scanned images.

If intrapicture compression is the fi rst major component of MPEG- 2, mo-
tion prediction between frames is the second. Interpicture motion prediction 
compression relies on forward and backward correlations, and in particular 
on the calculation of motion vectors for blocks. In the process of encoding a 
video sequence, the MPEG- 2 codec analyzes for each picture how blocks have 
moved, and only transmits lists of motion vectors describing the movement of 
blocks in relation to a reference picture or keyframe, itself coded using DCT 
transform compression. This fundamentally alters the framing of images. We 
have already seen that rather than the raw pixel being the elementary material 
of the image, the block becomes the elementary component. Here the picture 
itself is no longer the elementary component of the sequence, but an object to 
be analyzed in terms of sets of motion vectors describing relative movements 
of blocks and then discarded. The P and I pictures, after encoding, are nothing 
but a series of vectors describing how and where macroblocks move. Decod-
ing the MPEG stream means turning these vectors back into arrangements of 
blocks animated across frames.

Motion prediction takes time to work out, but heavily compresses the video-
stream. Transform compression is fast to calculate, but yields quite a large 
amount of data. Hence, the actual ratio of intraframe and interframe pictures 
in a given bitstream is heavily weighted toward motion prediction. In an 
MPEG datastream, the precise mixture of different  frame- types (I, P- forward, 
and B- backward) is defi ned at encoding time in the Group of Pictures (GOP) 
structure. It is usually 12 or 15 frames in a sequence such as I_BB_P_BB_
P_BB_P_BB_P_BB_. One intracoded frame is followed by a dozen or so 
block  motion- compensation frames. The combination of  forward- prediction 
and  backward- prediction found in the GOP means that the MPEG bitstream 
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 effectively treats the video stream as a massive doubly linked list.9 Each item 
in the list is itself a list describing where and how (rotated, translated, skewed) 
each block should be placed on screen.

The ratio of different frame types to each other affects the encoding time 
because motion compensation is much slower to encode than the highly op-
timized block transforms. Codecs must make direct tradeoffs between com-
putational time and space. The tradeoffs sometimes result in artifacts visible 
on screen as, for example, blocking and mosaic effects. At times, motion pre-
diction does not work. A change in camera shot, the effect of an edit, might 
mean that no blocks are shared between adjacent frames. In that case, a well-
 designed codec falls back on intraframe encoding.

From Complicated to Composite

Many of the complications and counterintuitive orderings of the MPEG- 2 
codecs arise because they try to negotiate a fi t between network bandwidth 
constraints (a commercially marketed service), viewing conventions (the rect-
angular frame of cinema and television), embodied perception (sensations of 
motion, light, and color), and cultural forms (fast- moving images or action). 
They respond to the economic and technical need to reduce the bandwidth 
required to circulate high- resolution digital pictures and sounds. As a con-
vention, the MPEG- 2 standard refers implicitly to a great number of material 
entities ranging from screen dimensions through network and transmission 
infrastructures to semiconductor and data storage technologies. The generic 
method of encoding and decoding images for transmission relates very closely 
to the constraints and conditions of telecommunications and media networks. 
And the codec more or less performs the function of displaying light, color, 
and sound on screen within calibrated  psycho- perceptual parameters.

However, the way the MPEG- 2 codec pulls apart and reorganizes moving 
images goes further than simply transporting images. Transform compres-
sion and motion estimation profoundly alter the materiality of images, all the 
while preserving much of their familiar cinematic or televisual appearance. 
Like so much software it institutes a relational ordering that articulates reali-
ties together that previously lay further apart.

Codecs



55

Notes

1. ISO / IEC 13818- 1, I. I. (1995). “Information technology—Generic coding of mov-

ing pictures and associated audio information: Systems.” ISO / IEC 13818- 2 (1995). 

“Information technology—Generic coding of moving pictures and associated audio 

information: Video.”

2. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, p. 225; 

Wikipedia, 2006, MPEG- 2, available at http: // en.wikipedia.org / wiki / MPEG- 2 / (ac-

cessed Jan. 12, 2006).

3. ffmpeg, FFMPEG Multimedia System, 2006.

4. Wikipedia, “MPEG- 2,” 2006.

5. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, p. 225.

6. ISO / IEC 13818- 2 (1995) (E), vi.

7. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 225.

8. ISO / IEC 11172- 1 (1993).

9. Donald Knuth, The Art of Computer Programming, p. 280.

Computing Power
Ron Eglash

Computational power plays an accelerating role in many powerful social loca-
tions. Simulation models, for example, sneak into our medical decisions, speak 
loudly in the global warming debate, invisibly determine the rates we pay for 
insurance, locate the position of a new bridge in our city, plot the course of our 
nation’s wars, and testify in the courtroom both for and against the defense. 
Other applications in which computing power matters are molecular biology, 
communication surveillance, and nanotechnology. Social scientists concerned 
with the relations of power and society commonly examine who has money, 
who owns property, and who owns the means of production. But the ownership 
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of computing power is more evasive, and far less probed. This paper will out-
line some of the ways in which we might begin to examine the relations be-
tween computing power and social authority.

The Need for Alternatives to the Realist Critique

One of the most common analyses of the relations between computing power 
and social power is what I call the “realist critique.” This analysis goes some-
thing like the following: The computer representation of X is used to substitute 
for the real X, but since it’s an artifi cial version it has certain bad effects (prevents 
us from seeing injustice, from being in touch with people or nature, etc.). There 
are indeed moments in which some form of such realist critiques are applicable. 
But the critique has been overused in ways that are quite problematic.

When we blindly start putting categories of the Real on the ethical side, 
and categories of the Unreal on the unethical side, we imply a system of moral-
ity which mimics the Christian story of the fall from the Garden, or Rousseau’s 
dichotomy between nobility of the natural and the evils of artifi ce. We imply 
that computer simulations are unethical simply because they are unnatural. 
Similar moral assumptions have been used in attacks on the civil rights of gays 
and lesbians (“unnatural sex” is a violation of God’s plan), or arguments used 
for purging Germany of its Jews (because they were not “natural” to Germany), 
or denying citizens the right to birth control. Notions of the Real or Authentic 
have been used in colonialism to differentiate between the “real natives” who 
stayed on their reservation, versus “inauthentic natives” who could thus be im-
prisoned for their disruptions (seen again in recent times during the American 
Indian Movement of the 1960s, when activists were criticized as being “ur-
ban indians”). Thus, when we read critiques that condemn digital activities 
as “masturbation,”1 we need to think not about artifi cial worlds as pathologies, 
but rather about how innocent sexual activity has been used to pathologize and 
control individuals.

Even in cases where scholars of computing have been very aware of the sus-
pect ethics of realism, it can creep in. Take, for example, computer graphics 
representations of the human body, such as the Visible Man project. Investiga-
tions of such anatomical simulations are immediately queried for all the right 
reasons: how the social construction of the technical happened, who benefi ts, 
how it infl uences the viewer’s experience, and so on. But inevitably there rises 
what Wahneema Lubiano calls “the ghost of the real”; we are haunted by some 
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element of the pre- virtual past (almost literally in this case by the donor of the 
body, a 39- year- old prisoner who was executed by lethal injection in Texas).2 
Despite the best intentions of the writers, in the end simulation critiques often 
imply an ethics of the Real. Even Sandy Stone, well known for her commit-
ment to virtual communities and identities, ends her oft- cited essay with the 
line, “No refi gured virtual body, no matter how beautiful, will slow the death 
of a cyberpunk with AIDS.”3 Again the real haunts us; critiques of simulation 
accuracy or realism tend to move us toward an organicist framework.

Even when a realism critique is warranted—in the case, for example, of a 
corporate sponsored simulation that attempts to dupe the public into a false 
sense of environmental or health security—exclusive concern with issues of 
accuracy can be problematic in that they focus on symptom rather than cause. 
Ostensibly one could correct the inaccuracy, and then we would have noth-
ing to complain about. But most critics have a loftier goal in mind: They are 
really trying to show how social elites have managed to manipulate the power 
of computing to support their own interests. By focusing on the accuracy or 
realism of the simulation, we lose sight of the original goal: We focus on get-
ting the American Petroleum Institute to use the right equations rather than 
asking how they managed to control the truthmaking abilities of computing 
in the fi rst place. How can we get at a more fundamental understanding of the 
relationship between social power and computing power, and how might we 
change those relations?

Three Dimensions of Computing Power: 
Speed, Interactivity, and Memory

Let us begin with the technical defi nitions for computing power. On the one 
hand, the mathematical theory of computation has precisely defi ned what we 
mean by saying that one system is computationally more powerful than an-
other. The least powerful system is a fi nite state automaton, the greatest in 
power is a Turing machine, and in between we fi nd machines such as the 
push- down automaton. But such formal defi nitions for computing power, col-
lectively termed the Chomsky hierarchy, are essentially absent in the world 
of commercial computing. There are two reasons for this disconnection. First, 
there is the quite sensible and responsible distinction that real- world comput-
ing systems have multiple physical constraints that are poorly represented by 
such abstract assessment; in fact features that matter a great deal for the real 
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world, such as the amount of time it takes to complete a calculation, are absent 
in the traditional computational models of the Chomsky hierarchy.4 But there 
is also the rather suspect way in which the social authority of computing power 
requires an unfettered ability to make its claims. Let us now look at three cat-
egories for this slippage: speed, interactivity, and memory.

Speed
Consider the simulations which produce special effects for Hollywood movies 
and television commercials. Computing power here is almost entirely a question 
of processing speed, due to the computational requirements of high- resolution 
graphic simulation. Movies like Terminator II and Jurassic Park were milestones 
in visual simulations of physical movement, so much so that they are treated 
like NASA projects whose “spin- offs” are for the general benefi t of humanity. 
Special effects wizards have now become frequent speakers at mathematics con-
ferences; for example, the creator of the wave in the movie Titanic was a featured 
speaker for National Mathematics Awareness Week. Often the visual spectacle 
of their virtual realism is a much greater audience selling point than plots or 
acting; in fact, it is precisely this uncanny ability to (apparently) manipulate re-
ality that becomes the proof of computing power. When the Coca- Cola corpo-
ration spends 1.6 million dollars on thirty seconds of airtime during the super 
bowl, it is no surprise that supercomputing is at the center of their message. Like 
the Marxist observation that “money is congealed labor,”5 special effects are con-
gealed computing. The power to command reality to do your bidding is sexy, 
even if it is only a virtual reality. Marshal McLuhan’s theme that “the medium 
is the message” was always too deterministic for my taste, but I am willing to 
make an exception in the case of computational advertising, where the cliché 
that “sex sells” has been augmented by the sexiness of simulacra.

Interactivity
We can fi nd a similar account of simulation’s sex appeal in the rise of multimedia 
computing, particularly for websites. Here the measure of computing power 
is most often presented in terms of “interactivity.” Yet formal assessments for 
interactivity, as could be produced through the Chomsky hierarchy, are never 
brought to bear. To understand this, it is useful to fi rst examine similar ques-
tions about the assessment of intricate behavior in simple biological organ-
isms. Spiders are not taught how to spin a web; the behavior is genetically 
programmed. Even semi- learned behaviors such as bird songs are often charac-
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terized as the result of a “serial pattern generator.” Tightly sequenced behaviors 
such as spider webs and bird songs can be modeled as fi nite state automata,6 
because they require little adaptive interaction with their environment. They 
may appear to be complicated but they are in fact a “preprogrammed” se-
quence of actions. This stands in strong contrast to animal behaviors that re-
quire spontaneous interaction, as we see for example in the social cooperation 
of certain mammals (wolves, orca, primates, etc.). Even lone animals can show 
this kind of deep interactivity: A raccoon learning to raid lidded trash cans is 
clearly not clocking through a sequence of prepared movements.

In the same way, our interactions with websites can vary from “canned” 
interactions with a limited number of possible responses—pressing on various 
buttons resulting in various image or sound changes—to truly interactive ex-
periences in which the user explores constructions in a design space or engages 
in other experiences with near- infi nite variety. Such deep interactivity does 
not depend on the sophistication of the media. The 1970s video game of Pong, 
with its primitive low- resolution graphics, has far greater interactivity than 
a website in which a button press launches the most sophisticated 3- D fl y-
 though animation. As Fleischmann7 points out in his analysis of web media, 
rather than measure interactivity in terms of two- way mutual dependencies, 
commercial claims for interactivity depend on an “interrealism effect” that 
substitutes fl ashy video streaming or other one- way gimmicks for user control 
of the simulation. Such multimedia attempts to create the effect of interactive 
experience without relinquishing the producer’s control over the simulation. 
At least speed, for all its elitist ownership, has a quantitative measure that 
allows us to compare machines; for interactivity we have only the rhetoric of 
public relations. Even in cases in which we are not duped by this interrealism 
effect, and strive for deep interactivity, the informational limits of interactive 
computing power (the bandwidth of the two- way communication pipeline) is 
carefully doled out in accordance to social standing, with the most powerful 
using high- speed fi beroptic conduits of Internet II, lesser citizens using cable 
connections on Internet I, and the poorest segments of society making do with 
copper telephone wires—truly a “trickle- down” economy of interactivity.

Memory
Third and fi nally, we must evaluate computing power in terms of access to 
memory. Increasingly the users’ local hard drive memory has become aug-
mented or even superfl uous as internet companies such as MySpace or YouTube 
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shift to the “Web 2.0” theme of internet as operating system. In terms of in-
dividual use this is a move toward democratization through lay access, but in 
terms of business ownership it is a move toward monopolization, as only large 
scale corporations such as Google can afford the economy of scale that such mem-
ory demands place on hardware.8 Memory also plays a constraining / enabling 
role in the professional utilization of large databases. Consider, for example, 
the  agent- based simulations that allow massively parallel interactions, such as 
genetic algorithms based on Darwinian or Lamarckian evolution. The epicen-
ter for this activity has been the Santa Fe Institute, where mathematicians like 
James Crutchfi eld have been admonishing researchers in the fi eld of Artifi cial 
Life for their supposed willingness to put public acclaim over formal results.9 
Crutchfi eld is on the losing side of the battle: He is forgetting that science is 
a social construction, and thus those who are able to best exploit computing 
power—in this case the artifi cial life folks—will be able to exploit the social 
power that can defi ne the contours of the fi eld. To take another example, science 
historian Donna Haraway expressed great surprise when she learned that criti-
cal sections of the Human Genome Project were being run out of Los Alamos 
Labs: What in the world was the modernist location for transuranic elements 
doing with the postmodern quest for  trans- species organisms? The answer was 
computing power: Whether modeling nuclear reactions or nucleic acid, the so-
cial authority of science requires the computational authority of machines. 
From the MySpace of layusers to the gene space of molecular biologists, mem-
ory matters.

In sum, these three factors—computing speed, computing interactivity, 
and computing memory—both defi ne the technical dimensions of simulation’s 
computing power, as well as its social counterparts. Indeed, we can think about 
them in terms of information equivalents: Computing memory is comparable 
to social memory, interactivity is comparable to social discourse, and comput-
ing speed is comparable to social rhetoric. Thus we see the rhetorical power of 
special effects, the discursive power of interactive websites, and the mnemonic 
power of  large- scale lay constructions and professional simulations.

Elite versus Lay Public Access to Computing Power

What can be done about this alliance between computing power and social 
authority? Looking at the changes in computing power over time, we can see 
both stable and unstable elements. For example, the public face of comput-
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ing power is typically portrayed as the steady increase in computing speed 
per dollar, often encapsulated in Moore’s Law, which posits that the number 
of components (i.e., transistors) on a chip will double every eighteen months. 
But privately chip manufacturing companies agonize over strategies to main-
tain this pace.10

Contrasting elite versus lay public access to computing power through time 
makes this precarious stability even more apparent. The earlier modeling ef-
forts secured elite access through expertise: Even if laypersons were offered 
access to a timesharing system, they preferred the shallow learning curve of a 
wordprocessor—it was the user- unfriendly interface of text- based UNIX that 
separated the hackers from the hacks. This barrier did not become compro-
mised until the advent of the graphical user interface (GUI) in the late 1970s. 
During the mid- 1980s this sparked an unusual moment of lay access; thus the 
creation of popular “toy” simulations such as SimCity during that time. But 
by the early 1990s a gradient of computing power began to resolidify in which 
the “cutting edge” of elite computer simulations could leverage truth claims in 
ways unavailable to the “trailing shadow” of the lay public’s computer power 
(fi gure 3). The introduction of techniques such as  agent- based modeling and 
genetic algorithms have established trajectories which tend to restabilize this 
relation between the cutting edge and trailing shadow. Yet new technological 
opportunities continue to arise. We have recently seen the birth of the Free 
and Open Source Software movement, of Napster’s challenge to the recording 
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industry, Wikipedia, and other  quasi- popular appropriations. How might 
similar challenges to the social authority of the cutting edge take place in the 
domain of computing power?

In the early 1990s I had lunch one day with some graduate students in 
computational mathematics at the University of California at Santa Cruz. They 
were abuzz with excitement over the use of supercomputers for the design of a 
yacht that might win the Americas Cup. For them, this was an exciting “popu-
lar” application; one that was neither military nor academic big science. But 
I was struck by the ways in which computing power and fi nancial power had 
managed to stick together, even in this ostensibly nonprofessional exception. 
What did the yacht owners have that made their problem more attractive than 
poverty, racism, sexism, and other pressing humanitarian problems? The an-
swer, I believe, is that they had good problem defi nition. Yes it is true that the 
people associated with the Yachting Club of America are generally more fl ush 
with cash than, say, those of the Southern Poverty Law Center, but half the 
challenge is getting problems defi ned in ways that high- end computing power 
can address. We need organizations like the National Science Foundation to 
support research specifi cally directed to the challenge of problem defi nition in 
the application of supercomputing power to nonelite humanitarian causes.11

The other half of the challenge is computing access. A breakthrough in ac-
cess to supercomputing power came as a result of the Berkeley Open Infrastruc-
ture for Network Computing (BOINC). The system was originally created for 
SETI@home, which analyzed data from the Arecibo radio telescope in hopes of 
fi nding evidence of radio transmissions from extraterrestrial intelligence. Or-
dinary lay users installed software that allows the BOINC system to run in the 
background, or run while their computer is not in use, providing spectral anal-
ysis for small chunks of the 35 gigabyte daily tapes from Arecibo, and uploading 
the results back to BOINC where they are integrated together. With over fi ve 
million participants worldwide, the project is the world’s largest distributed 
computing system to date. In upgrading to the BOINC system the program-
mers also called for broadening applications to include humanitarian projects. 
However none of the current projects seem directed at humanitarian causes 
for specifi cally nonelite groups, with the possible exception of Africa@home’s 
Malaria Control Project, which makes use of stochastic modeling of the clini-
cal epidemiology and natural history of Plasmodium falciparum malaria.

What other kinds of problem defi nition might allow greater computing 
power to be applied to the challenges of survival and sustainability for those 
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at the margins of social power? Consider, for example, fl exible economic net-
works (FENs). First observed in the revitalization of regional European econo-
mies,12 FENs allow  small- scale businesses to collaborate in the manufacture 
of products and services that they could not produce independently. These 
networks rapidly form and re- form in response to market variations, creating 
spinoff businesses in the process, which then give rise to further FEN growth. 
More recently the Appalachian Center for Economic Networks (ACENet) has 
demonstrated that this approach can be successfully applied in a low- income 
area of the US. But ACENet found that they were hampered by lack of in-
formation about both the resources of potential participants and the poten-
tial market niches to be exploited. Similar problems in establishing “virtual 
enterprise” cooperatives for  large- scale industrial production—collaboration 
between multiple organizations and companies for the design and manufac-
ture of large, complex, mechanical systems such as airframes, automobiles, 
and ships—has been addressed through the application of  cutting- edge com-
puting.13 Why not apply similar techniques to generate FENs for low- income 
areas in either fi rst or third world contexts?

In conclusion, the social authority of computing power follows the gradi-
ent of cutting edge and trailing shadow, stabilizing what might be gains for 
popular use by always putting that promise for equality in the near future. 
But we can also see ruptures in both technical and social dimensions of these 
relations, which create new opportunities to reconfi gure both social and com-
putational power.
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Concurrent Versions System
Simon Yuill

The highest perfection of software is found in the union of order 
and anarchy.
—pierre- joseph proudhon (patched)1

Concurrent Versions System (CVS) is a tool for managing collaborative soft-
ware development. It enables groups of coders working on the same set of 
source fi les to coordinate and integrate the changes they make to the code, and 
acts as a repository to store all those changes. If, for example, two different pro-
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grammers alter the same section of code, CVS can compare both versions and 
show that there is a difference between them (known as a “confl ict” in CVS) 
that needs resolved or “merged.” Another feature of the system is to keep an 
historical record of the project’s development over time, enabling people to re-
trieve earlier versions. It also supports the possibility of the code “branching,” 
meaning that alternative versions of the same code can be split off from the 
main project and maintained in parallel without causing confl icts. If someone 
wants to experiment with re- writing a certain section of a project, they can do 
so in a new branch while everyone else continues to use the main branch unaf-
fected by the experiment.

The repository is a set of fi les in a directory structure that is maintained by 
the CVS server. Programmers submit updates and new fi les to the repository 
through a CVS client. This enables them to work remotely, with the CVS 
server acting as a central coordination point. Each entry in the CVS repository 
is represented by an individual fi le that maintains a record of both its content 
and changes. Other information relating to the project’s development within 
the repository is stored as metadata. These enable logs of who has done what 
to be retrieved from the repository.

CVS was originally developed as a set of UNIX shell scripts by Dick Grune 
in 1984 as part of the Amsterdam Compiler Kit (ACK), a  cross- platform C 
compiler developed at the Free University in Amsterdam. It was made public 
in 1986 and converted into C by Brian Berliner, from whose code the current 
version of CVS derives.2 Other tools providing similar functionality, such as 
BitKeeper, also exist, and the new Subversion system is emerging as a pos-
 sible replacement for CVS; however, CVS is currently the most widely used code 
management system.3 In many ways CVS has been essential to the success of 
FLOSS (Free / Libre Open Source Software), as it facilitates the collaboration of 
the widely dispersed individuals who contribute to such projects. This facilita-
tion, however, is restricted solely to the archiving of the code and its changes. 
Other aspects of development, such as communication between developers, are 
managed through tools such as mailing lists and IRC (Internet Relay Chat, or 
other online chat systems). Savane, used by the GNU project’s Savannah reposi-
tory, and Trac, are examples of larger toolsets that have been developed to pull 
these different components together.4 Because CVS focuses on cohering code 
implementations, it is arguably not well suited to facilitating discussion of more 
abstract, conceptual aspects of a particular project. While mailing lists and IRC 
are often the forums for such discussions, they do not, by the very temporality 
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of their nature, allow for such discussions to be built into identifi able docu-
ments. Similarly, comments in source code, while also facilitating this, can be-
come too diffuse to gather such ideas together. The Wiki emerged as a response 
to this need, adapting the version control of CVS into a simpler web- based sys-
tem in which the more conceptual modeling of projects could be developed and 
archived, exemplifi ed in the very fi rst Wiki, the Portland Pattern Repository, 
which gathered different programming “design patterns” together.5 CVS, never-
theless, remains a central plenum within which the material origination of soft-
ware is performed.6

Code creation is an inherently social act. It involves processes of collabora-
tion, consensus, and confl ict resolution, and embodies social processes such as 
normalization and differentiation. Software development tools such as CVS 
implicitly formalize such processes and, in doing so, potentially provide means 
of tracking them. As a result of this, forms of sociological analysis have devel-
oped based around “archaeological” studies of CVS repositories.7 These studies 
revolve around questions of how FLOSS development actually works, especially 
given that it runs counter to many conventional models of product creation 
and production management. There is, for example, a lack of clearly delineated 
team structures in FLOSS projects; people can choose what they work on rather 
than being assigned jobs, there are frequently no project roadmaps or contrac-
tual deadlines, and you have a mixture of professional and amateur contribu-
tors, some working from within a paid capacity (such as in commercially or 
institutionally supported projects), others in their spare time.

Rather than following predefi ned managerial models, the practices and 
tools of FLOSS development facilitate emergent organizational structures. 
These can vary from one project to another, and may refl ect aspects of the so-
cial situatedness of a given project, such as whether it is driven by institutional 
research, commercial development, or people with shared interests but no of-
fi cial affi liation. One recurrent form is described as an “onion structure,”8 in 
which a reasonably stable core team of developers who are the main contribu-
tors and maintainers for a project is surrounded by layers of more occasional 
contributors and users. In some projects this may give a highly centralized 
shape to the overall social structure of the project, but in others there may be 
several such “core nodes” with an organizational form that is characterized by 
multiple interacting clusters. This latter formation is particularly evident in 
 large- scale projects with many subareas, such as the KDE or GNOME desktop 
systems, or those that are largely driven by shared interest rather than institu-
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tional or commercial bodies.9 Other studies describe a kind of guild structure, 
in which newcomers to a project have to serve a kind of apprenticeship and 
prove their capabilities before becoming accepted within the core development 
group.10 Shadow networks might also infl uence the social structures of a proj-
ect, such as secondary affi liations constructed through ideological, institutional 
or corporate links.11 These kinds of studies provide an understanding of agency 
and governance within FLOSS, and clarify how software development operates 
as a form of discursive formation.

As Foucault describes it, a discursive formation arises through the relations 
“established between institutions, economic and social processes, behavioural 
patterns, systems of norms, techniques, types of classifi cation, modes of charac-
terization”12 that are not inherent within an object of discourse or practice itself, 
such as a piece of software, but is that which “enables it to appear, to juxtapose 
itself with other objects, to situate itself in relation to them.”13 All software is in-
herently discursive, it exists not as a set of discrete, stable artifacts, but rather as 
interrelated components, entering into various combinations with one another. 
This is evident both in the user experience of software and in how software is 
constructed. At a user level we can see this in the way in which a web browser, 
for example, will interact with various web server systems and the content tools 
they support, which may in turn feed into other pieces of software or  computer-
 mediated processes. If I buy an air ticket online this will connect with other 
processes such as the management of my bank account and that of the airline com-
pany, and then in making my journey, the  check- in process and management of 
the airport and air fl ight itself will utilize various software systems, all of which 
construct and articulate different relations “between institutions, economic and 
social processes, behavioural patterns . . .” etc. Similarly, no piece of software is 
a singular entity. The simple act of writing a piece of code involves the use of 
multiple software tools, such as text editors and compilers, but also issues such 
as which specifi c language the code is written in, whether it uses external code li-
braries and, if so, which choice of libraries, and what design patterns are followed 
in its construction. These derive not solely from pragmatic issues of functional-
ity but also factors such as institutional alignment, the distribution and use of 
the fi nal software, whether it operates by itself or as part of a larger system, and 
whether or not the source code will be made available for others to develop into 
and upon. Numerous decisions underlie the development of a software project: 
which language to develop in—whether to use Python, C or Microsoft’s .Net, for 
example; what external code libraries to use (e.g., Apple’s QuickTime library or 

Concurrent Versions System



68

the open source Simple Direct Media library); what kind of license to use—to 
distribute the code under an open source license that prohibits any commercial 
use, or one that allows the code to be used but not altered by others; and issues 
such as what fi le formats the software will support and what protocols it uses 
to interact with other software—will these be based on open standards such as 
SVG and HTTP, or on closed systems? The outcomes of such decisions are all 
infl uenced by the wider relations in which the production of the software is situ-
ated. The ways in which tools such as CVS are used will carry a residue of these 
factors, and the CVS repository can become a territory in which these issues and 
debates are inscribed. CVS is not simply a tool to manage the production of code 
therefore, but as “the space in which code emerges and is continuously trans-
formed” (to paraphrase Foucault), also an embodiment and instrument of its 
discursive nature.
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Copy
Jussi Parikka

The process of copying is a key cultural technique of modernity. The mechani-
zation of imitatio awed even the hailed Renaissance artist Leon Battista Alberti 
at the dawn of the Gutenberg era: “Dato and I were strolling in the Supreme 
Pontiff’s gardens at the Vatican and we got talking about literature as we so of-
ten do, and we found ourselves greatly admiring the German inventor who to-
day can take up to three original works of an author and, by means of movable 
type characters, can within 100 days turn out more than 200 copies. In a single 
contact of his press he can reproduce a copy of an entire page of a large manu-
script.”1 In Alberti’s time, the spiritual concept of imitatio (Latin) or mimesis 
(remediated from the philosophy of Ancient Greece) became the cornerstone of 
art theory, which lasted for hundreds of years, but also turned at the same time 
into a material process of copying: especially the texts of the ancients.

From the printing press that replaced the meticulous work of monks copy-
ing texts to the technique of mass production of photographs and other techni-
cal media objects, “copy” has become a central command routine of modernity. 
Modern media can be understood as products of a culture of the copy as Walter 
Benjamin has analyzed in relation to fi lm. Paraphrasing Benjamin, mechanical 
reproduction is an internal condition for mass distribution. In contrast to liter-
ature and painting, fi lm production is about mechanical reproduction, which 
Benjamin claims “virtually causes mass distribution.”2 This coupling of copy-
ing and mass distribution is not, however, restricted to the media technology 
of cinema, but also characterizes networked and programmable media such as 
computers. I will return to this point at the end of the text.

Nineteenth- century enthusiasm for the copy was tied to the possibility of 
producing low- cost photographs and fi lms, and the commercial prospects of 
such a process. Similarly the mass production and distribution of printed ma-
terial was inherently connected to material principles of production, notably 
the rotation press, and other factors such as the cheapening of paper. Even the 
Gutenberg printing machine is fundamentally a copy machine, ingenious in 
its use of standardized modular parts for individualized signs. During the nine-
teenth century the fi rst copy machines entered offi ces due to the rising need 
for archiving and distributing documents. Such machines slowly replaced the 
work done by scribes, or copy clerks, such as Bob Cratchit in Charles Dickens’s 
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A Christmas Carol from 1843 or the dysfunctional copy- man in Herman Mel-
ville’s Bartleby the Scrivener from 1853 (who would “rather not” do his work).3

To guarantee obedience and effi ciency, the copy routine was technologically 
automated and also integrated as part of computing systems fairly early on. 
The early punch card machines used standardized copy processes in the form 
of special reproducing  punch- machines (i.e., the IBM 514) to copy the cards 
used as templates for further data processing purposes. Some reproduction ma-
chines apparently also incorporated special control programs. The data fi elds 
of the specifi c cards to be copied were fed to a control panel, and were then du-
plicated onto blank cards.4 In other words, the instructions for making copies 
were in themselves part of the mass- production of copies: recursive algorithms 
are at the heart of modernity. With digital computers, the mechanical process 
is substituted for the informationalization of modular entities and creation of 
abstract mathematical patterns that are the focus of copying and reproduction.5 
This in itself has eased the copying of cultural products and consequently led 
to new techniques of copy protection and consumer surveillance.

In digital software culture “copy” is used in two different ways (1) in the 
context of fi le- management and as a new phase of cultural reproduction and 
(2) as part of copy / paste—a cultural technique and aesthetic principle. The two 
lineages constantly overlap in the modern history of media technologies, where 
copying, the verb, designates a shift in the cultural techniques of reproduction 
from humans to machines, and copy, as a noun, presents itself as the key mode 
of  becoming- object of digital culture—as easily reproducible and distributed 
packages of cultural memory.

With the early computers that used core memory, copy routines were a source 
of maintenance as well as amusement. The cleaning programs used copying 
routines to move themselves from one memory location to the next one. This 
was to fi ll the memory space with a known value, allowing it to be programmed 
with a new application.6 As Ken Thompson recollects, the FORTRAN lan-
guage was employed for the competitive fun of a “three- legged race of the pro-
gramming community”: to write the shortest program that “when compiled 
and executed, will produce as output an exact copy of its source.”7 Several kinds 
of “rabbit” and “bacteria” programs were used to clog up systems with mul-
tiple copies of the original program code. The general idea was to make the pro-
gram spread to as many user accounts as possible on the IBM 360 system. This 
“constipated” the system. The rabbit program could input itself back into the 
jobstream over and over again.8 Such self- referential procedures connect with 
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recursive algorithms, which are part of every major programming language. 
Recursion can be understood as a subroutine that calls (or invokes) itself. The 
very basic memory functions of a computer involve copying in the sense of data 
being continuously copied between memory registers (from cache memory to 
core storage, for example.) Such operations can be termed “copying” but can 
equally justifi ably be given names such as “read” and “write” or “load” and “store 
register” operations.9

With the move from the mechanical programming of computers to infor-
mational patterns, the copy command became integrated as an organic part of 
fi le management and programming languages in the 1960s.10 The UNIX sys-
tem, developed at Bell Labs, was one of the pioneers with its “CP” command. 
The CP command was a very basic fi le management tool, similar to, for in-
stance, the use of the “copy” command in the later DOS environment.

The emerging trends and demands of network computing underlined the 
centrality of the copy command. Instead of mere solitary number crunchers, 
computers became networked and communicatory devices where resource 
sharing was one of the key visions driving the design of, among other things, 
the ARPANET.11 During the same time as the early computer operating sys-
tems for wider popular use were developed, meme theory, originally conceived 
by Richard Dawkins in the mid- 1970s, depicted the whole of culture as based 
on the copy routine. Memes as replicators are by defi nition abstract copy ma-
chines “whose activity can be recognized across a range of material instan-
tiations.”12 Informatics is coupled with meme copying; media technological 
evolution can be seen as moving toward more precise copy procedures, as Susan 
Blackmore suggested. Copying the product (mechanical reproduction tech-
nologies of modernity) evolves into copying the instructions for manufactur-
ing (computer programs as such recipes of production).13 In other words, not 
only copying copies, but more fundamentally copying copying itself. What 
makes meme theory interesting is not whether or not it is ultimately an ac-
curate description of the basic processes of the world, but that it expresses well 
this “cult of the copy” of the digital era while it abstracts “copying” from its 
material contexts into a universal principle.

During the 1990s, copy routines gained ground with the Internet being 
the key platform for copying and distributing audiovisual cultural products. 
Of course, such techniques were already present in early fax machines. Since 
the latter half of the nineteenth century, these routines allowed for the trans-
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mission of ones “own handwriting” over distances. Soon images also followed. 
(Technically, mid- nineteenth- century phototelegraphy already allowed the 
encoding of data into patterns and the transmission of this copy via telegraph 
lines.) Hence, facsimile, factum simile, should be seen as “a copy of anything 
made, either so as to be deceptive or so to give every part and detail of the orig-
inal; an exact copy likeness.”14 Of course, no copy is an exact reproduction of 
the original but an approximation that satisfi es, for example, the expectations 
of the consumer. To guarantee such consumer satisfaction, especially since the 
1970s, with the help of engineers at Philips and Sony, digital optical archiving 
techniques have presented us with a material memetic technology of cultural 
reproduction that happens via a simple command routine: copy.

The material processes of copy routines have often been neglected in cultural 
analysis, but the juridical issue of copyright has had its fair share of attention. 
Yet the issues are intimately tied, both being part of the same key thematics of 
modernization that spring from the fact that automated machines can reproduce 
culture (a major change of the mode of cultural reproduction when compared 
to, e.g., the  nineteenth- century emphasis on civilization). Copy routines that 
originated with medieval monks are integrated in special copy / ripper programs 
with easy  point- click routines and CSS interpretation possibilities. Hermeneu-
tic questions of meaning are put aside and attention is paid to the minuscule 
routines of reproduction: “Thus, it was only after the fall of the Roman Empire 
that writing fell as an obligation on monks, nuns, and fi nally male students. Of 
all forms of manual labor, mechanical copying, just as in present day comput-
ers, most closely corresponded to Saint Benedict’s dictum: ora et labora. Even if 
the writer, simply because his tongue knew only some vernacular dialect, had 
no understanding of the Latin or even Greek words he was supposed to preserve, 
his handicap augmented the monastery library.”15

The difference between such earlier forms of preserving and reproducing 
cultural memory and contemporary digital archiving techniques has to be em-
phasized. Contemporary forms of copy are intimately tied to the consumer 
market and the commercial milieu of the digital culture (especially the inter-
net), whereas the work done by monks was part of the theological networks 
where God, in theory, played the key mediator (and the fi nal guarantor of 
mimesis) instead of, for example, Sony BMG or Microsoft. Theological issues 
defi ned the importance of what was copied and preserved, whereas nowadays 
the right to copy and to reproduce culture is to a large extent owned by global 
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media companies. This illustrates how copying is an issue of politics in the 
sense that by control of copying (especially with technical and juridical power) 
cultural production is also hierarchized and controlled.

The high fi delities of consumer production connect to the other key area of 
copy within computer programming: the copy / paste routine that is part and 
parcel of graphic user interfaces (GUI). Aptly, the Xerox Company, now a kind 
of cultural symbol of the modern culture of copy, and especially its Palo Alto 
research center (PARC), are responsible for the original ideas of graphic user 
interfaces and  point- click user control using the mouse. The Gypsy graphical 
interface system from 1974 / 1975 was probably the fi rst to incorporate the cut 
and paste command as part of its repertoire (although Douglas Engelbart and 
the “Augmentation Research Center” had introduced the idea in 1968). The 
command was designed as a remediation of the  paper- and- scissors era, keeping 
nonprofessionals especially in mind. The interface was designed for effi cient 
offi ce work, where adjustments could be done on screen while always hav-
ing a clean copy in store for backup. The idea at PARC was to create an offi ce 
workstation that would seem as invisible to the lay user as possible. This was 
effected by providing a set of generic commands.16

The Xerox Star (1981) was hailed as the software system of the future, de-
signed as a personal workspace for networks. The Star offi ce system incorporated 
key commands (Move, Copy, Open, Delete, Show Properties, and Same [Copy 
Properties]) as routines applicable “to nearly all the objects on the system: text, 
graphics, fi le folders and fi le drawers, records fi les, printers, in and out bas-
kets, etc.”17 Being generic, such commands were not tied to specifi c objects. In 
addition, the commands were accessible using special function keys on Star’s 
keyboard. Star’s design transferred, then, responsibilities from the user to the 
machine. The user no longer had to remember commands, but could fi nd them 
either in special function keys or in menus.18 The desktop became for the fi rst 
time the individualized Gutenberg machine, or the hard- working and pious 
medieval monk that followed the simple commands universalized as generic.

The very familiar  point- click copy- paste routine originates from those sys-
tems, and is now integrated into everyday consumer culture. This, as Lev Man-
ovich suggests, is perhaps how Fredric Jameson’s ideas of postmodernization 
should be understood: Copy production as the dominant mode of cultural pro-
duction culminated in the digital production techniques of GUI operating sys-
tems that originated in 1980s. Manovich notes that “[E]ndless recycling and 
quoting of past media content, artistic styles and forms became the new ‘in-
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ternational style’ and the new cultural logic of modern society. Rather than 
assembling more media recordings of reality, culture is now busy reworking, 
recombining, and analyzing already accumulated media material.”19 In addi-
tion, recycling is also incorporated as part of the actual work routines of pro-
gramming in the sense of reusing already existing bits and pieces of code, and 
pasting them into novel collages (so- called copy and paste programming). Since 
the 1960s, copying has been elevated into an art practice but it is more likely to 
be articulated in monotonous offi ce work context or as pirate activity.20

In general, “CTRL + C” functions as one of the key algorithmic  order- words 
piloting the practices of digital culture. This returns focus on the key  economic-
 political point: who owns and controls the archives from which content is 
quoted and remediated? The question does not only concern the software pro-
ducers who are in a key position to defi ne the computer environment but also 
the large media conglomerates, which have increasingly purchased rights to 
the audiovisual archives of cultural memory. Purchasing such rights means 
also purchasing the right to copying (as a source of production) and the right 
to the copy as an object of commercial distribution. The archive functions as 
the key node in the cultural politics of digital culture. One alarming trend is 
how such key nodes are being defi ned in commercial interests, such as in the 
1996 Copy Protection Technical Working Group, in which technical manufac-
turers (Panasonic, Thomson, Philips), content producers (Warners Bros, Sony 
Pictures), Digital Rights Management (Macrovision, Secure Media), telecom-
munications (Viacom, Echostar Communications) and the computer industry 
(Intel, IBM, Microsoft) are represented.21 The issue under consideration is not 
only about content that is archived in private corporate collections but about 
how copying is subject to technical, commercial, and political restrictions.

“Postmodernization” should be understood as a media technological condi-
tion. Aesthetic and consumer principles have been intimately intermingled 
with the engineering and programming routines of modern operating systems 
that are part of the genealogy of modern technical media. For Friedrich Kittler, 
the Turing machine as the foundation of digital culture acts as a digital ver-
sion of the medieval student, “a copying machine at almost no cost, but a 
perfect one.” Similarly for Kittler, “The internet is a  point- to- point transmis-
sion system copying almost infallibly not from men to men, but, quite to the 
contrary, from machine to machine.”22 Hence we move from the  error- prone 
techniques of monks to the  celluloid- based cut and paste of fi lm, and on to the 
copy machines of contemporary culture, in which digitally archived routines 
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replace and remediate the analog equivalents of prior discourse networks. 
With computers, copying becomes an algorithm and a mode of  discrete- state 
processing. Digital copying is much more facile (if not totally  error- free) than 
mechanical copying, and copies are more easily produced as mass- distribution 
global consumer products. In digital products the tracking and control of the 
objects of copying is easier, and there is the added capability to tag the copies 
as copyright of the producer or the distributor. The novelty of the digital copy 
system is in the capability to create such copy management systems or digital 
rights management (DRM) techniques, which act as microcontrollers of user 
behavior: Data is endowed with an inherent control system, which tracks the 
paths of software (for example, restricting the amount of media players a digi-
tally packed audiovision product can be played on).

In addition, copying is intimately entwined with communication as a cen-
tral mode of action of network culture. Such sociotechnological innovations 
as  nineteenth- century magnetic recording, the modem (1958), the c- cassette 
(1962), the CD- disc (1965), the Ethernet local network (1973), and Napster 
(1999) and subsequent fi le- sharing networks can be read from the viewpoint of 
the social order words, “copy” and “distribution.” The act of copying includes 
in a virtual sphere the idea of the copy being shared and distributed. What 
happens in copying is fi rst the identifi cation or framing of the object to be cop-
ied, followed by the reproduction of a similar object whose mode of existance 
is predicated upon its being distributed. There is no point in making copies 
without distributing them. Copying is not merely reproducing the same as 
discrete objects, but coding cultural products into discrete data and commu-
nicating such coded copies across networks: seeding and culturing. Similar to 
how Benjamin saw mechanical reproduction and distribution as inherent to 
the media technology of cinema, copy routines and distribution channels are 
intimate parts of the digital network paradigm: connecting people, but also 
copying machines.
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Data Visualization
Richard Wright

Any transformation of digital material into a visual rendering can arguably 
be called a visualization, even the typographic treatment of text in a termi-
nal window. Conventionally, however, “data visualization” is understood as a 
mapping of digital data onto a visual image. The need for visualization was 
fi rst recognized in the sciences during the late 1980s as the increasing power 
of computing and the decreasing cost of digital storage created a surge in the 
amount and complexity of data needing to be managed, processed, and under-
stood. In 1987 the US National Science Foundation published their “Visual-
ization in Scientifi c Computing” report (ViSC) that warned about the “fi rehose 
of data” that was resulting from computational experiments and electronic 
sensing.1 The solution proposed by the ViSC report was to use visualization to 
quickly spot patterns in the data that could then be used to guide investiga-
tions toward hypotheses more likely to yield results. By using these “intuitive 
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perceptual qualities as a basis for evaluation, verifi cation and understanding,” 
the ViSC panelists intended to put “the neurological machinery of the visual 
cortex to work.”

In a book published in 2000, visualization scientist Colin Ware concisely 
summed up the main advantages of modern visualization techniques.2 As men-
tioned above, visualization permits the apprehension of large amounts of data. 
The fl exibility of human vision can perceive emergent properties such as subtle 
patterns and structures. It can compare small scale and large scale features at 
the same time. It can also help with the discernment of artifacts or mistakes in 
the gathering of the data itself. Yet despite these observations being at the in-
tuitive level it is still possible to use them to suggest more formal hypotheses 
about the data in question. The early criticism that “pictures don’t prove any-
thing” has gradually been mitigated by the promise that apparent relation-
ships can be later confi rmed by applying more exact analytical methods.

Visualizations are created for people rather than for machines—they imply 
that not all computational processes can be fully automated and left to run 
themselves. Somewhere along the line a human being will need to evaluate or 
monitor the progress of the computation and make decisions about what to 
do next. Yet despite the fact that the material operations of software and data 
processing are perfectly objective and describable, they are rarely directly ac-
cessible to us. One of the fundamental properties of software is that once it is 
being executed it takes place on such a fi ne temporal and symbolic scale and 
across such a vast range of quantities of data that it has an intrinsically differ-
ent materiality than that with which we are able to deal with unaided. Visu-
alization is one of the few techniques available for overcoming this distance. 
In the visualization process, the transformations that lead from data to digital 
image are defi ned through software, often in a direct or “live” relationship 
with it, yet aim to be apprehended at a level of human sensibility far beyond 
it. A visualization is therefore distinguished by its algorithmic dependence on 
its source data and its perceptual independence from it.

Early writers on visualization such as Edward Tufte developed guidelines 
and examples for how to design information graphics that are still infl uen-
tial today. Tufte’s main concern is now referred to as the principle of being 
“expressive”: to remove all unnecessary graphical ornamentation and show as 
much data as possible; to “let the data speak for itself.”3 To some extent, when 
we use computer graphics we can often “express” so much data that we do 
not have to choose which is the most signifi cant. But even if we are able to 
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show everything we may still not know how to show it—how do we order the 
variables into an image in a way that expresses their interrelationships? The 
semiologist Jacques Bertin did important early work during the 1970s on how 
to organize a “visual structure” that refl ects the features and relations between 
the data.4 The usual approach is to start from some basic knowledge about the 
data’s internal structure. In theory the data we start with is raw and uninter-
preted, but in practice there is always some additional information about its 
composition, usually derived from the means by which it was gathered. For 
instance, if the data has up to three variables it can be directly mapped into a 
 three- dimensional graph of x, y, z values (or by transforming it using an inter-
mediate stage called a “data table”). Ware provides a typical example of such a 
visualization from oceanography—a multibeam echo sounder scanning of the 
tides at Passamoquoddy Bay in Canada, which produces a  three- dimensional 
array of height fi elds, rendered as a color image (fi gure 4).5 This data used to be 
sampled and rendered as a set of contour lines, but the continuous  computer-
 generated image allows us to clearly see the more subtle features, textures, and 
artifacts in all the millions of measurements made. Of course, we do not have 
to render it in this way—if we chose to we could unravel the array into a one-
 dimensional sequence of values, interpret each one as a frequency and “play” 
the data as a series of tones. But this would be to ignore the variables’ posi-
tional structure and we would almost certainly not be able to “see” the ripples 
and pockmark patterns that we can in the image. Ordering the values into a 
linear sequence might also imply precedence or ranking not in the original 
data. The internal structure of the data is spatial rather than temporal.

If we are using visualization to forage for particular known pieces of infor-
mation such as which stocks are rising most steeply or in creating a graphic 
notation for structuring conceptual propositions, then we are dealing with 
more explicit functions of data catered to by specialized fi elds of information 
visualization, “data mining,” or knowledge visualization. These disciplines are 
often closer to interface design, employing popular techniques such as interac-
tive “fi sheye” views, “table lens” document graphs, or spatial “mind mapping” 
tools.6 But in a more general context, if the properties of the data are yet to 
be discovered, then visualization has less to do with retrieval, monitoring, or 
communication and is more of an experimental technique. In contrast to a dia-
gram that is constructed on the basis of a preestablished set of signifi cances, a 
visualization is about fi nding connections (or disconnections) between dataset 
attributes like amounts, classes, or intervals that were previously unknown. 
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Visualizations are always partial and provisional and they may entail the ap-
plication of a number of different methods until the data gives up its secrets. 
The images frequently exhibit the continuous qualities of the familiar visual 
world despite the fact that they are utterly constructed. It is these implicit 
visual properties that are valued for their openness to perceptual inference—a 
continuous interplay of surface features rather than discrete graphic elements 
or symbols. At this end of the spectrum, visualization is nonrepresentational 
because it is speculatively mapped from the raw, isolated data or equations and 
not with respect to an already validated representational relation. A visualiza-
tion is not a representation but a means to a representation.

As recently as 2004, visualization scientist Chaomei Chen described visual-
ization as still being an art rather than a science.7 There is still no taxonomy of 
techniques that might help designers select one that is more effective for their 
requirements, and no generic criteria with which to assess the value of a visu-
alization once they have. In the absence of guidance, there has been a tendency 
by some scientists to seize upon the underlying code of a successful visualiza-
tion and make it a de facto standard. Colin Ware has tried to remedy this by 
grounding visualization as a specifi cally scientifi c discipline by combining the 
fi elds of physiology, human perception, and cognitive studies.8 This feeds into 
a desire among many scientists to conform visualization to scientifi c method 
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by treating visual perception and cognition in terms of computation itself, to 
be harnessed as an instrumental resource. For instance, the ability of the eye 
to instantly see that one visual feature is bigger than another is referred to as 
“computational offl oading” in some places: “a diagram may allow users to avoid 
having to explicitly compute information because users can extract information 
‘at a glance.’”9 There is now a push to try to streamline visualization by design-
ing it for the faster “automatic processing” stage of human vision that deals 
with the unconscious detection of light, pattern, orientation, and movement. If 
the abilities of this retinal level of processing can be defi ned and standardized 
then the hope is that visualization can be freed of the ineffi ciencies and contin-
gencies of learned visual conventions, that it can promise a fast and universal 
“understanding without training” that crosses all cultural boundaries.10

In the literature there is little emphasis on how to see visualizations, only 
on how they are seen. Despite the fact that low level perceptual mechanics 
may not be formally learned, they can still be exercised, sensitized, tuned, and 
focused as an acquired skill. The editor of a fi lm can see a hair on an individual 
frame that appears far too briefl y for his audience to be conscious of it. Visual-
ization as a practice is not just a question of designing for human perception 
but of being perceptive. In fact, some people’s eyes have been “retrained” by 
visualization itself until it has altered their apprehension of the world. Some 
of the earliest and most ubiquitous forms of scientifi c visualization were im-
ages of fractals, chaos theory, and complex systems of the late 1980s.11 De-
spite the fact that, as media theorists such as Vilém Flusser pointed out, these 
pictures were “images of equations” rather than “images of the world,” they 
were frequently used to model the appearance of natural phenomena such as 
mountains, plants, and marble textures.12 Some scientists working with fractal 
modeling, such as Michael Barnsley, found that after a while they began to 
“see” the rivers, trees, and clouds around them in terms of fractal mathemat-
ics,13 internalizing concepts of self- similarity and strange attractors until they 
had become a way of thinking and perceiving itself, as though turning the 
whole world into a “natural” visualization. Both algorithm and sensory vision 
are thus fi nally reunited in the cortex, in an endless circularity of computation 
and perception.

Visualization is usually separated out as a tool for knowledge formation 
rather than a visual form of knowledge itself. Although forms such as “analogi-
cal representation” (which preserves some structural features of the object such 
as visual resemblance) or “enactive knowledge” (which is bound to actions 
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such as a certain skill) are recognized as valid forms of knowledge, scientists 
still mainly characterize their aims in terms of “conceptual knowledge”: that 
which can be symbolically represented or discursively expressed.14 This causes 
some uncertainty in the status of visuality; the literature frequently switches 
between statements like “using vision to think,” “using visual computation to 
think,” and “visual sense making.”15 Michel Foucault described a similar situ-
ation in his study of the origins of modern systems of knowledge at the end of 
the Renaissance.16 He pointed out how the principle of “resemblance,” which 
had previously been so important, became relegated to a preliminary stage on 
the borders of knowledge during the Enlightenment. This was despite the 
fact that at the dawn of representational knowledge, as now, no order could be 
established between two things until a visual similarity had occasioned their 
comparison. The use of memory and imagination in the discovery of a latent 
resemblance is what makes the creation of knowledge possible. Whether such 
visual relations will continue to be restricted to the rudimentary status of per-
ceptual pre- processing under the reign of visualization will defi ne one of the 
most important characteristics of knowledge in the age of computer software.

Although initially applied to imagery, visualization has now become a more 
generic term that covers the sensory presentation of data and processing using 
interactive techniques, animation, sonics, haptics, and  multi- user VR environ-
ments. Over the course of the 1990s, visualization has spread from the sciences 
into engineering disciplines, marketing, law, policy making, and art and en-
tertainment, indeed to any fi eld that has found its object of interest replaced 
by datasets or computer models. It helps make visible the fl uctuations in the 
international money market, defends the innocent through accident recon-
struction, discloses network traffi c in order to detect telephone fraud, and re-
ports the proportion of fi les consolidated by one’s disk defragmenter.

These new fi elds obviously exceed the original scientifi c aims of visualiza-
tion, yet even in art and design applications some form of cognitive knowledge 
may still be the intention. Christian Nold is an artist who has been building 
“bio maps” of communities using a mixture of consciously and unconsciously 
recorded data.17 For the “Greenwich Emotion Map” (fi gure 5), groups of local 
residents each received a Galvanic Skin Response unit which measured their 
emotional arousal as they went for a walk around the neighbourhood. Every 
four seconds their level of excitation was recorded along with their geographi-
cal location as they reacted or failed to react to whatever coincidence of en-
counters, sights, and smells the city channelled to them that day. When they 
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returned, their data was uploaded and plotted onto a map of Greenwich and 
annotated with written notes and photos they made at the time. When up-
loaded and rendered as an overlay of nervous peaks and troughs, markers, and 
pop- ups over a Google Earth satellite image, we are able to pick apart Google’s 
naturalistic photographic image of Greenwich in terms of a mass of individual 
responses and rejoinders. “BioMapping” recreates the urban crowd using data 
visualization to become a dynamic object of fl uctuating emotional intensities, 
informal commentaries, and subjective trajectories.

There also exist many noncognitive “visualizations” in common use. In 
some cases this is because they move so far from their source data that the data 
disappear from relevance entirely. For example, it is easy to take any arbitrary 
data including random, unstructured data and contrive a rich pattern from it 
using elaborate visualization tools. Noise functions are widely used in media 
production software as the starting point for synthetic image generation. By 
repeatedly applying a barrage of frequency fi lters, scalings, and interpolation 
methods it is routinely possible to design the convincing appearance of natural 
phenomena such as marble, wood, smoke, or fi re, or the vertiginous synaes-
thetic abstractions familiar to users of the Windows Media Player. In these 
cases we move away from “data visualization” as such to the more general cat-
egory of computer generated “visualization.”

Figure 5 Christian Nold, detail from Greenwich Emotion Map, 2006.
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But there are other noncognitive visualizations whose power is derived from 
the very strain of stretching yet maintaining a connection to their original data-
base. “Lungs: Slave Labour,” (fi gure 6), by Graham Harwood, is an acoustic, 
affective visualization based on Nazi records of the foreign laborers that were 
forced to work in the ex- munitions factory that now houses the Centre for Me-
dia Art in Karlsruhe.18 By interrogating their age, sex, and height, “Lungs” is 
able to calculate their vital lung capacity and emit a “breath” of air for each 
worker through a speaker system. The general aim of the “Lungs” project is to 
take computer records of local events or communities that have been reduced 
or demeaned to the status of information and to allow people to re- experience 
and recover their own value. This attempt to give a database a pair of lungs 
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reconnects people with a political atrocity in a very visceral way that seems to 
belie the muteness of the bureaucratic records themselves.

This last example might be seen as highly tendentious, but it factually 
elaborates the politics involved in any representation of data. It still meets the 
central requirement for data visualization of algorithmically deriving a sensory 
expression from the structures implicit in digital data, even when, and espe-
cially when, that expression takes us far from the realm of computer code. The 
greatest material distance between human senses and computer code, when 
compared to the simplest material connections between them, delineates the 
imaginative possibilities of data visualization. Within this area we can explore 
the most extreme perspectives that software can create of itself. It is its ability 
to put cognitive and affective modes of perception into creative tension with 
data structures and with each other, and to articulate the gap between the pro-
cessing of data, social life, and sensory experience, that will allow visualization 
to reach its full potential, both as a scientifi c and as an artistic technique.
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Elegance
Matthew Fuller

In Literate Programming,1 Donald Knuth suggests that the best programs can 
be said to possess the quality of elegance. Elegance is defi ned by four criteria: 
the leanness of the code; the clarity with which the problem is defi ned; spare-
ness of use of resources such as time and processor cycles; and, implementation 
in the most suitable language on the most suitable system for its execution. 
Such a defi nition of elegance shares a common vocabulary with design and en-
gineering, where, in order to achieve elegance, use of materials should be the 
barest and cleverest. The combination is essential—too much emphasis on one 
of the criteria leads to clunkiness or overcomplication.
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Such a view of elegance is supported by Gregory Chaitin’s formulation of 
 program- size defi nition of complexity: A measure of the complexity of an an-
swer to a question is the size of the smallest program required to compute it. 
The resulting drive to terse programs produces a defi nition of elegance being 
found in a program “with the property that no program written in the same 
programming language that produces the same output is smaller than it is.”2

The benefi t of these criteria of elegance in programming is that they estab-
lish a clear grounding for the evaluation of approaches to a problem. This set 
of criteria emerging from programming as a self- referent discipline it works on 
the level of disciplinary formalization, as a set of metrics that allow for a scale 
of abstraction. This formalization can also be politically crucial as a rhetorical 
and intellectual device that allows programmers to stake their ground in con-
texts where they might be asked to compromise the integrity of their work, 
and something that allows them to derive satisfaction from work that might 
otherwise be banal.

When writing code to test compilers, Knuth takes the opposite route. He 
writes test programs that are, “Intended to break the system, to push it to its 
extreme limits, to pile complication on complication, in ways that the system 
programmer never consciously anticipated.” He continues, “To prepare such 
test data, I get into the meanest, nastiest frame of mind that I can manage, 
and I write the cruelest code I can think of; then I turn round and embed that 
and embed it in even nastier constructions that are almost obscene.”3 There is 
a clear  counter- position between code that contains as much vileness as one 
could want and model code that is good. For users of software confi gured as 
consumers such “metaphysical” questions aren’t often the most immediately 
apparent, although questions of elegance, as will be suggested below are also 
recapitulated at the scale of interface.

To return to the politics of elegance at the level of programming practice it 
is also useful to think about those contexts where paradoxically, in order to be-
come more adequately self- referent, the process of writing software fi nds itself 
constituted in combination with other elements. In working conditions where 
programmers might be concerned with conserving elegance against other im-
peratives, such as the cutting of costs, the criteria are often posed in terms of 
benign engineering common sense, or the ethics of satisfying the needs of the 
user in the clearest way possible, or the onus of clarity to one’s collaborators. 
Elegance is often invoked defensively. In each case however, elegance remains 
a set of parameters against which a program can be measured.
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In the four criteria proposed by Knuth, elegance is constructed between the 
machine and the talents of the programmer, with the context of the program 
occurring as something already fi ltered into a problem defi nition. Elegance in 
this sense is defi ned by its containment within programming as a practice that 
is internally self- referent and stable.

Knuth’s criteria for elegance are immensely powerful when evaluating pro-
gramming as an activity in and of itself. It might be useful, however, to think 
about the terms against which they might be modifi able, or for the context 
of elegance to be allowed to roam, to make obscene couplings, to fi nd other 
centers of gravity. In such cases, software is not simply software, and it in turn 
conjugates those other realities with which it mixes with computation. Differ-
ent criteria for elegance pour into the domain of software, and those of software 
begin to manifest in combination with other scales of reality.

At the same time, something interesting happens to stability at the level 
of software. Further work by Gregory Chaitin has revealed that the decision as 
to whether a program is the shortest possible is complicated by a fundamen-
tal incompleteness.4 As a program’s complexity increases, and concomitantly 
that of the problem it deals with, there is an increasing diffi culty in accurately 
stating the most concise means of answering it. At a certain threshold, the 
possibility of stating the tersest formula for arriving at an answer is undecid-
able. The elegance of software then, by at least one of the above criteria, is not 
absolutely defi nable at a mathematical level. This is not the same as saying, 
as of software debugging, “If you don’t have an automated test for a feature, 
that feature doesn’t really exist.”5 Elegance, because it cannot be proven, comes 
down to a rule of thumb, something that emerges out of the interplay of such 
constraints, or as something more intuitively achievable as style (in Knuth’s 
terminology, an “art”). Like William Burroughs’ proposal for an informal self-
 discipline of movement, “Do Easy,”6 it is something that can be practiced and 
learned, the dimensions, weights, capacities of objects dancing in an endless 
dynamic geometry incorporating the body of the adept and the repositories 
of heuristics that have gone before in the form of languages, institutions, ar-
chives, books, and techniques. Eventually, a certain effortlessness is achieved.

Effortlessness is offered straight out of the box in the vision of computing 
which sees interaction with information as being best achieved through simple 
appliances that are easy to use and which operate with defi ned, comprehen-
sible scopes. At this point, elegance gives way to another set of criteria, which 
provide powerful, occasionally even fundamental constraints. Such constraints 
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act as limiting devices that force a piece of software toward elegance. A condi-
tion of elegance, however, is that it charts a trajectory, often an unlikely one, 
through possible conditions of failure. Finding a way of aligning one’s capaci-
ties and powers in a way that arcs through the interlocking sets of constraints 
and criteria, the material qualities of software, and the context in which it is 
forged and exists is key to elegance.

Achieving striking effects with an economy of means has been crucial to for-
mulating elegance within software, particularly within the domain of graphic 
interaction. To produce a convincing animated sprite within a tiny cluster of 
pixels, to develop a bitmapped font working at multiple scales, or to develop a 
format allowing for the fast transfer and calculation of vector graphics over lim-
ited bandwidth requires a variation in criteria from those Knuth set for elegance 
at the level of programming. (For instance, one might be working for a pre-
defi ned platform or a range of them, or within a particular protocol.) Equally, at 
the level of the operating system, a language, a data- structure, or within a pro-
gram, defi ning the core grammars of conjunction and differentiation of digital 
objects each provide scalar layers wherein elegance might be achieved or made 
diffi cult. In such cases, elegance can be found in the solutions that allow a user 
to get as close to the bare bones of the underlying layer of the system, without 
necessarily having to go a layer deeper. In proprietary software, a good example 
of such elegance is the formulation of the Tool Kit, built into the ROM of the 
early Macintoshes, which defi ned the available vocabulary of actions, such as 
cut, paste, save, copy, and so on that were able to work powerfully across many 
different applications.7 Such work builds upon the particularity of digital and 
computational materials. Crucially, however, it also abstracts from the many 
potential kinds of interaction with data that might be desirable to produce a 
limited range of operations that can be deployed across many different kinds 
of information. While the range of such a vocabulary of functions might be 
constrained, the concrete power that arises from the conjoint and recursive use 
of these operations elegantly directs the power of computation in a trajectory 
toward its conjugation with its outside. The outside in this case consists of the 
multiple uses of these functions in programs aimed at the handling of multiple 
kinds of data. Elegance then is also the capacity to make leaps from one set of 
material qualities and constraints to another in order to set off a combinatorial 
explosion generated by the interplay between their previously discrete powers.

Elegance can also be seen in the way in which a trajectory can be extended, 
developing the reach of an abstraction, or by fi nding connections with do-
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mains previously understood as being “outside” of computation or software. A 
fi ne example of such elegance would be achieved if a way was found to conjoin 
the criteria of elegance in programming with constraints on hardware design 
consonant with ecological principles of nonpollution, minimal energy usage, 
recyclability or reusability, and the health requirements of hardware fabrica-
tion and disposal workers.8 Good design increasingly demands that elegance 
follows or at least makes itself open to such a trajectory. The criteria of mini-
mal use of processor cycles already has ecological implications.

While elegance, then, demands that we step outside of software, keep com-
bining it with other centers of gravity, computation also suggests a means by 
which we can think it through, prior to its formulation. The virtual has be-
come an increasingly signifi cant domain for philosophical thought, but it is 
also one that is always simultaneously mathematical. Steven Wolfram’s fi gure 
of the “computational universe”9 suggests that it is possible to map out every 
possible algorithm, and every possible result of every algorithm. A concept of 
the virtual reminiscent of Linneas’s attempts to graph the entirety of specia-
tion, this is a decisive imaginal fi gure, if not quite a mapping, of the constraint 
of computability itself. It follows from Emile Borel’s idea that it would be 
possible to construct a table containing every possible statement in the French 
language, and indeed from Turing’s formalization of all possible computa-
tions. Needless to say, Borel’s table did not account for irony, that multiple 
semantic layers can be embedded in the same string of characters. If an ironic 
computational universe is not the one we currently inhabit, it will inevitably 
occur as soon as computation snuggles up to its outside. The condensation of 
multiple meanings into one phrase or statement turns elegance from a set of 
criteria into a, necessarily skewed, way of life.

Here we can see a further clue to elegance within multiscalar domains, that 
is to say, how it is produced in most actual computing work. The transversal 
leap or arc characteristic of elegance does not necessarily depend on a struc-
tural, ethical, or aesthetic homomorphy between code, the problem it treats, 
and the materials it allies itself with (such as hardware, language and people). 
Elegance also manifests by means of disequilibrium, the tiny doses of poison, 
doping, required to make a chip functional, to make it hum: a hack can be el-
egant, a good hack is inherently so. Elegance exists in the precision madness of 
axioms that cross categories, in software that observes terseness and clarity of 
design, and in the leaping cracks and shudders that zigzag scales and domains 
together.
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Ethnocomputing
Matti Tedre and Ron Eglash

Social studies of the relations between culture and knowledge in science and 
technology have in general been approached from three directions. First, in 
the ethnosciences approach, the study of the knowledge of indigenous so-
cieties has been given terms such as ethnobotany, ethnomathematics, and 
 ethno- astronomy.1 Second, in the social constructionist approach, the cultural 
dimensions of contemporary science and technology have been analyzed as a 
“seamless web” of both social and natural constraining and enabling factors.2 
Third, in the interactionist approach, the researchers take into account that 
after technology has been designed and produced, its use may vary depending 
on cultural context, adaptation, appropriation, and reinvention.3 Ethnocom-
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puting is an umbrella term that encompasses all three of these approaches to 
examine the relations between computing and culture.

The technical elements of ethnocomputational practices include (formal or 
non- formal) (a) data structures: organized structures and models that are used 
to represent information, (b) algorithms: ways of systematically manipulating 
organized information, and (c) physical and linguistic realizations of data struc-
tures and algorithms: devices, tools, games, art, or other kinds of realizations 
of computational processes.4 Non- Western examples of the fi rst element can 
be found in, for instance, Inca Quipu5; examples of the second element include 
techniques for calculating textile lengths and costs6; examples of the third ele-
ment can be found in, for instance, the Owari game.7

The foregoing examples are manifestations of computational ideas in indig-
enous cultures, and they exemplify the diversity of computational ideas. There 
are two central arguments in ethnocomputing: a design / social justice argu-
ment and a theoretical / academic argument. The fi rst argument is that a better 
understanding of the cultural dimensions of computing can improve the de-
sign of computational devices and practices in disadvantaged groups and third 
world populations. The second argument is that an understanding of the cul-
tural dimensions of computing can enrich the disciplinary self- understanding 
of computer science at large.

Theory: Conceptual Starting Points

One of the most diffi cult barriers to the research of ethnocomputational ideas 
is the unequal assessment of knowledge in locations of high social power (e.g., 
Western,  fi rst- world, high- tech) and knowledge at the margins of social power 
(e.g., indigenous,  third- world, vernacular). By using the term ethnocomputing 
to encompass both domains, the tendency to privilege the Western version as 
the universal, singularly correct answer is avoided: all computing can be seen 
as equally cultural, and cultural variation should be seen as a resource for di-
versity in theory, design, and modeling.

Stressing the sociocultural construction of computing does not mean advo-
cating ontological or epistemological relativism, that is, it does not mean ques-
tioning the existence of the real world or its underlying principles of physics 
and mathematics. However, all human attempts to derive these laws and ex-
ploit them through technology are done through cultural lenses. Computing is 
a fi eld in which sociocultural factors play a big role. Unlike the natural sciences, 
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where most theoretical and practical problems arise from the complexity of the 
physical world, in computer science the diffi culties usually stem from computer 
scientists’ earlier work—computer scientists have created the complexity of 
their own discipline. Earlier design choices in control structures, architectures, 
languages, techniques, data structures, syntax, semantics, etc., affect future de-
sign choices.

However, the sociocultural infl uences in computing—whether in the fi rst 
world or third world—should not be considered to be a problem, but rather 
means for the design and understanding of effective computing technologies 
and practices. For instance, Andrew Pickering8 has argued that science pro-
ceeds by accommodations, not by replacement. He argued that scientists ac-
commodate for whatever anomalies experiments may reveal, by reconfi guring 
various elements of a model’s technical, social, and natural relations. There 
are undoubtedly universal physical laws that govern the operation of compu-
tational devices, but only through a multiplicity of experiments—whether 
carried out by silicon chips, carved African game boards, or the generation of 
theorems and proofs—can one learn those principles.

Research Directions

As an umbrella term, ethnocomputing entails a number of active research di-
rections, of which three examples are presented here. Firstly, there is the project 
that focuses on the history of computer science. Compared to the  millennia-
 long history of mathematics, the standard history of computer science is very 
short. As a discipline, computer science is typically thought of as having arisen 
only with the advent of electronic computers. From the small group of coun-
tries that have led the computer revolution, an even smaller segment of people 
have set the development trends of Information and Communication Technol-
ogy (ICT). The early development of computer science was mostly determined 
by military and industrial priorities. Not surprisingly, home computers are also 
designed for the Western knowledge worker.9

Computers are cultural artifacts in which a Western understanding of logic, 
inference, quantifi cation, comparison, representation, measurement, and con-
cepts of time and space are embedded at a variety of levels. That is not to say 
that all aspects of the computer should be redesigned to aid its cultural fi t but 
that one needs to be aware of the underlying viewpoints of computing. Because 
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of a lack of knowledge about the sociocultural history of computing, the lack 
of cultural diversity in its teaching material, literature, and problems are more 
easily overlooked. One project of ethnocomputing is to reassess the history of 
computer science,10 just as ethnomathematics has inspired a reconsideration 
of the infl uence of non- Western cultures in mathematics.

Secondly, there is the project of ethnocomputing that focuses on cultural is-
sues in  human- computer interaction. It has been argued that there is an ongo-
ing shift from  computer- centered computer science to user- centered computer 
science.11 At the same time, computers, ICT in general, and the internet are 
spreading to the developing countries. The ongoing diffusion of computing 
technology in developing countries is increasingly diversifying the user base.12 
Consequently, there is a clear motivation for learning more about users rather 
than thinking of them as superfi cial “cultural markers,” and to take more re-
sponsibility for the effects modern ICT may have on people’s everyday lives.

Thirdly, there is the project of ethnocomputing that focuses on translations 
between indigenous / vernacular and high- tech representations of computing. 
For example, Ron Eglash describes a project that began with modeling tradi-
tional African architecture using fractal geometry. Field work in Africa showed 
that these architectural fractals result from intentional designs, not simply 
unconscious social dynamics, and that such iterative scaling structures can be 
found in other areas of African material culture—art, adornment, religion, 
construction, games, and so forth—often as a result of geometric algorithms 
known (implicitly or explicitly) by the artisans.

Computational models of these fractals have been developed into a suite 
of interactive tools in which grade 4–12 students could control simulation 
parameters (such as geometric transformations and iterative levels) and create 
not only simulations of the original indigenous designs, but also new creations 
of their own making. The tools also include modeling computational aspects 
of Native American design (such as iterative patterns in beadwork, basketry, 
and weaving), Latino design (such as least common multiple relations in tra-
ditional drumming patterns and the iterative construction of pyramids), and 
youth subculture designs (linear and nonlinear curves in graffi ti). The collec-
tive website, titled “Culturally Situated Design Tools”13 has been successfully 
used in math, art, and technology education classes, primarily with minor-
ity students from African American, Native American, and Latino cultures 
(fi gure 7).
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Applications in ICT Education

Information and Communication Technology research has created many gains 
for majority populations in Western countries. But both students from dis-
advantaged groups in the West and the general population in non- Western 
nations have had substantially fewer gains from ICT research. Some of this is 
attributable to economic factors. Schools with concentrations of disadvantaged 
groups in Western nations tend to have fewer ICT resources, and non- Western 
general populations have much less computer access. There are also cultural 
factors that hinder ICT education and its use in developing countries. ICTs are 
not  culturally- neutral objects and concepts.

The cultural specifi city of ICTs is perhaps most evident in the case of peda-
gogy. Different kinds of curricula, textbooks and other study material, the ex-
amples used, the choice of pedagogical approaches, and even what is considered 
a “valid problem” in ICT education often have a heavy Western bias. This bias 
sets expectations that only the students with a Western cultural background 
can meet without extra cognitive overhead. Students from other cultures expe-
rience more diffi culties than Western students when trying to adapt to cultur-
ally specifi c examples and applications that the current ICT education exhibits, 

Figure 7 Cornrow curves design tool.
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and when the non- Western students’ own mental imagery is not supported. 
The problem with the cultural specifi city of ICT education in developing coun-
tries has been addressed on a number of levels ranging from mere importing of 
technology, to technology transfer, application, and contextualization.14

Applications in Innovation and Diffusion

Technological decisions are often made on grounds other than technical limi-
tations: for instance, on economic, political, ideological, or cultural grounds.15 
Several motivations can be attributed, for example, to the development of 
GNU / Linux and its introduction into use.16 Arguably, GNU / Linux is advanced 
(technical motivation), free of initial investment (economical motivation), its 
roots are in hacker ethics and the free software movement (ideological and social 
motivations), and sometimes it can emphasize a cultural or political message 
(e.g., IMPI Linux in South Africa and RedFlag Linux in China). If one wants to 
really understand why GNU / Linux has developed as it has, these motivations 
cannot be ignored, and the same applies to all other computational systems.

Modern ICT tools are not detached from other technologies, but because 
complete systems are bound to and based on the design decisions of pre- existing 
tools,17 they have to be relevant to the existing infrastructure.18 ICT can be im-
plemented in highly variable situations, as long as the local infrastructure (e.g., 
electricity, phone lines, or OSI layers) is known. Second, the ICT systems have 
to be relevant to local needs. Technologies that are not advantageous from the 
viewpoint of the users are not easily taken into use, no matter how great their 
“objective” advantage is.19 Third, ICT systems have to be relevant to the local 
users. Systems that are hard to use are adopted more slowly than those that are 
easy to use, or they may be rejected altogether. Fourth, ICT systems have to be 
relevant to the local culture and society. The structure of a social system may 
facilitate or impede the diffusion of technologies. Technology transfer from 
Western countries to developing countries often ignores aspects of relevance.

Other Ethnocomputing Exemplars

Examples of ethnocomputational phenomena are numerous and they range 
from social to technical, from theoretical to practical, from low- tech to high-
 tech, and so forth. A number of different ethnocomputing projects are pre-
sented below.
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Cellular Automata Model for Owari
Aspects of the Ghanaian game Owari have been modeled in computational terms 
such as one- dimensional cellular automata.20 But cellular automata have their 
own history and cultural dimensions. For example, John von Neumann, the 
founder of cellular automata, was motivated by his interest in self- reproducing 
robots; his interest has been attributed to the uncertain environment of his child-
hood as a Jew in Eastern Europe.21 The particular form of cellular automata that 
von Neumann chose—two- dimensional cells with only four  nearest- neighbors 
that are oriented vertically and horizontally—was a result of the computa-
tional restrictions of his day. Later models utilized eight  nearest- neighbors (the 
additional four at each corner), hexagonal cells, one- dimensional and  three-
 dimensional arrays, and even (e.g., in the case of Sugarscape, one of the fi rst 
artifi cial society models) a return to von Neumann’s four  nearest- neighbor con-
fi guration. Each of the varieties of cellular automata, including the Ghanaian 
game Owari, is the result of a combination of technical and social features.

Simputer and the $100 Laptop
The famous Simputer project provides an example of the hardware side of ethno-
computing. Conceived during the organization of the International Seminar on 
Information Technology for Developing Countries (Bangalore, October 1998), 
the original Simputer (simple, inexpensive, multilingual computer) plan dis-
cussed the need for a low- cost device that will bring  local- language IT to the 
masses. Another  technology- oriented project, the OLPC (one laptop per child) 
project (also dubbed “the $100 laptop”), developed by researchers at MIT, uses 
open- source software focused on education, and is connected with several in-
dustrial partners. However, at a UN conference in Tunisia, several African offi -
cials were suspicious of the motives of the project, suggesting it was excessively 
infl uenced by an American framework for development. The important point 
here is not the outcomes of Simputer and OLPC projects, but that such designs 
must be considered from a wide range of  socio- technical intersections.

IAAEC Alternative to the Desktop Metaphor Project
Brian Smith from MIT Media Lab and Juan Gilbert from Auburn University 
have explored  culturally- specifi c alternatives to the desktop metaphor. They 
note that prior attempts to redesign the graphical user interface (GUI) by re-
placing the desktop with spatial metaphors (e.g., rooms, buildings, villages) 
had largely failed—they were more cumbersome than the desktop metaphor. 
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The aim of Smith and Gilbert is to focus on  African- American populations and 
to explore the various approaches to information manipulation that are already 
in use in these communities. While replacing the desktop GUI is one pos-
sible outcome, it is not necessarily the ultimate goal. Rather the aim is to use 
the metaphor research as a spring board for broader research that aims to cap-
ture aspects of use that have been neglected by the dominance of the desktop 
metaphor.

Culturally Embedded Computing Group
Headed by computer scientist Phoebe Sengers, this Cornell University group 
has been generating collaborations between the Department of Information Sci-
ences and the Department of Science and Technology Studies. They emphasize 
critical technical practice (a term coined by Phil Agre) as a means of integrat-
ing IT design with cultural, philosophical, and social analysis. Many of their 
projects make use of culturally and individually unique home environments, 
fusing various IT devices with new modes of communication and self- refl ection. 
For example, a mailbox that responds to the affective content of postcards (via a 
hidden barcode) becomes a social probe for various human interactions.

Native American Language Acquisition Toys
With the support of the Cherokee Nation tribal council, fi lmmaker Don 
Thorton teamed with the Neurosmith Corporation to create a version of their 
educational toy for Native American languages. Neurosmith provided the pro-
prietary software, and Thorton himself digitized the script. The resulting toy, 
“Little Linguist,” became commercially available in 2001. It is physically the 
same toy used for all the languages; the only difference is the cartridge con-
taining the digitized script. A similar project is planned for the Cree language 
from an MIT team headed by Vinay Prabhakar and Carlos French, with the aim 
of providing a more  culturally- specifi c physical device as well as its digital 
scripting.

Conclusion

The multidimensional approach that ethnocomputing promotes encourages a 
partnership between computer science and social science. The common goal 
is to bring the historical and societal constructions of the computational prac-
tices of different cultural groups to bear on technological design and practice.
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Function
Derek Robinson

A word is a box containing words.
—gertrude stein1

A function in programming is a self- contained section of code (one still comes 
across the term “subroutine,” which is the same thing) that is laid out in 
a standard way to enable deployment and re- use at any number of different 
points within a program. It’s a way of minimizing the duplication of intel-
lectual effort, of making things routine, and as Alfred North Whitehead 
remarked, “Civilization advances by extending the number of important op-
erations which we can perform without thinking about them.”2

Functions are usually small and limited to performing a single task. They 
are active, they do things to things. Some typical examples of functions would 
be arithmetic operators like “plus,” “times,” and “square root,” which can be 
combined with other arithmetic operations to compose expressions. If they 
might be useful in the future, these expressions can be named and turned into 
functions. Programmers will often keep personal fi les of utility functions for 
importing into projects; collections of greater breadth and size are made into 
libraries and maintained in repositories for use by other coders. It wasn’t so 
long ago that libraries of machine code subroutines, with a light dusting of 
syntactic sugar, formed the basis of the fi rst high level computer languages.3
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Programming is a  civic- minded activity. Politeness counts. Intense thought 
is expended in the hope that others, including most importantly one’s future 
self, will not have to keep repeating the same tired phrases again and again. 
We try to be smart about parameterizing and abstracting, about dignifying 
as Variables those parts of things that vary, and as Functions the parts that do 
not, and which are to this degree redundant, vulnerable to automation, ripe 
for refactoring or removal. The activity of programming, like Jean Tinguely’s 
famous self- destroying automaton (“Homage to New York,” 1960), occupies 
the peculiar position, part teleological and part topological, of existing, ulti-
mately, to obviate its own existence. (Q: “If computers are so smart, why don’t 
they program themselves?” A: “Somebody would fi rst have to write the pro-
gram, and no- one has yet been that smart.”)

When defi ning a function, there is some sort of preamble establishing its 
identity (usually a name, although sometimes not) and declaring any arguments 
or parameters that it will require. Something like “function defunknose 

(x,y)”—defunknose here being the name and x and y the arguments—fol-
lowed by the function’s “body,” the block of code that actually carries out the 
computation the function was designed to perform. When later this function 
is called (by invoking “defunknose (5,6)” for example) each instance of an ar-
gument found in the function’s body gets replaced by its corresponding value. 
In general, calling a function with different argument values produces differ-
ent results. In the more sophisticated languages like Lisp or JavaScript, func-
tions can be passed as arguments to functions (it might well be an anonymous 
“lambda” function that is passed). Finally it is customary (but not obligatory) 
for functions to return results to their callers. The code that invokes a function 
should have no reason to care how the result was produced.

A function’s defi nition is a symbolic expression built up recursively from 
previously defi ned functions. The regressus of expressions composed of func-
tions whose defi nitions are expressions composed of functions ultimately bot-
toms out in a small and irreducible set of atomic elements, which we may call 
the “axioms” or “ground truths” of the symbol system. In a computer these are 
the CPU’s op- codes, its hardwired instruction set. In the system of arithmetic 
they would be the primitives “identity” and “successor,” from which the four 
basic arithmetic operations can be derived and back into which they can be re-
duced. Such radical atomism was a favorite pastime of analytical philosophers 
of the mid- twentieth century, prefi guring the development of electronic giant 
brains designed to tirelessly carry out just this sort of task (which our little 
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human brains have diffi culty keeping straight). (This is why writing software 
is so hard.)

Functional Programming

Functional Programming is an approach to programming and programming 
language design that uses only functions. It abjures any assignment of values to 
variables on the grounds that this can lead to unexpected side effects and thus 
compromise correct execution of programs. A function ought not, according to 
this philosophy, affect anything outside its scope; consequences shall owe only 
to results returned, and the only proper way to interact with a function is by 
means of the values passed to it as arguments when the function is invoked.

The fi rst functional programming language was GEORGE, created in 1957 
by Charles Hamblin for use on DEUCE, an early Australian computer. (Every-
thing was upper case in those days.) The design was termed a zero- address 
architecture, because no memory was allocated for named, persistent variables; 
thus no symbol table was needed either. Any argument values needed by a 
function were accessed though a special dynamically growing and shrinking 
range of addresses called the “stack.” (Imagine a stack of plates: the last plate 
added is the fi rst removed.) A function could count on its arguments having 
been the last things pushed onto the stack before it was called; a stack pointer 
kept track of the current “top” cell as data were added to and removed from it. 
All calculations used the stack to store intermediate results, and the fi nal result 
would be left on top of the stack as an argument for the next function in line. 
GEORGE programs used Reverse Polish Notation, a  strange- looking syntax 
where operands precede their operators. Today’s programming languages will 
often translate their code into RPN internally, and use a data stack for expres-
sion evaluation. Again, functions are recursively constructed symbolic expres-
sions, and stacks are essential to their unraveling.4

Purely functional programs, despite or because of their elegant construc-
tion, are rarely found outside computer science textbooks. Most programming 
jobs involve states of affairs and making changes thereto conditional thereupon, 
but functions of the purer stripe don’t acknowledge the concept of “mem-
ory”—for them there is only a continual process of transformation. It’s very 
Zen, very committed, very macrobiotic. A  function- ish style of programming, 
on the other hand, is encouraged in languages like Lisp, Forth, or JavaScript; 
it is empirically,  programmer- lines- of- code- measurably a very productive way 
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to realize interesting and useful things in software. It’s about writing many 
little functions that you then get to reuse inside the defi nitions of not yet de-
fi ned little functions, and so on, and so on, bootstrapping one’s way up a per-
sonal tower of metalinguistic abstraction until at the very top there is perched 
one fi nal function: the program itself. (Think of a bathtub full of mousetraps, 
and yourself poised there, ping- pong ball in hand. Think cascades, fusillades, 
think detonations of denotations. Now let go, let fl y.)

Functions as Mappings

But real mathematical functions aren’t executable subroutines. A function is 
an ideal abstract consensual cerebration, and the code a programmer commits 
is only one out of indefi nitely many possible materializations, each a pale sub-
lunary refl ection of the ideal. A function proper is propaedeutic, telling how 
the thing should behave, giving the theory but not concerning itself with how 
it is to be implemented. The “real” sine function, for example, defi ned over the 
real numbers, would require  infi nite- precision arithmetic—demanding an in-
fi nite supply of memory to inscribe its unscrolling digits, and asking all eter-
nity for its satisfaction.

Our familiarity with functions like the sine curve shouldn’t get in the way of 
a more general, modern conception of functions as mappings. Functions as un-
derstood by programmers are pretty close to the modern idea. That computers 
can’t represent continuous values isn’t really a big deal; human mathematicians, 
after all, share the same limitation. (Even if by dint of drill and long contempla-
tion they learn to conceive in themselves a supple, subtle, logical intuition of the 
infi nitely great and the vanishingly small, to the point where they may indeed 
come to see their occult fi ctions as Reality. As actually the realer Reality. As in-
deed, gone far and deep enough into their cups, the very thoughts of God.)5

A function can be regarded as a look- up table (often enough it may be 
implemented as one too) which is to say a mapping from a certain symbol, the 
look- up key, to a value associated with this key. Modern scripting languages 
typically include as a native data type the “associative array” (also known as 
hash table, dictionary, or map) for managing look- up tables of arbitrary com-
plexity. In JavaScript associative arrays are at the same time “objects,” the 
main building blocks (as “lists” are in Lisp) out of which all other entities are 
constructed. Associative arrays, as the name suggests, can, with a bit of coding 
cleverness, give software an associative capability, permitting programmers 
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to emulate (after a fashion) the more fl exible, soft- edged categories of natural 
cognition,6 against the all- or- nothing, true- or- false Boolean logic, which many 
people still seem to think is all that computers are capable of.

To briefl y pursue the organic analogy: individual neurons, while glacially 
slow by comparison with CPU switching speeds, in their imprecise massively 
parallel way still vastly “outcompute” (buying the theory that computations are 
what brains do) the swiftest supercomputers. It’s a version of the classic algo-
rithmic  trade- off between processing time and memory space, fi rst essayed by 
the  nineteenth- century computing pioneer Charles Babbage.7 It may often be 
advantageous to precompute a function and save having to recalculate it later 
by compiling the results into a table of key- value pairs (with its argument vec-
tor as the look- up key and the result returned as the key’s value), perhaps with a 
rule for interpolating (or “connecting the dots”) between tabulated data values 
at look- up time. In cases where all one has is a collection of discrete samples—
where the function that generated the data isn’t known a priori, for example 
measurements of things and events taking place in the world—a look- up table 
and a rule for smoothing the data belonging to nearby or similar points is hard 
to beat. (Many of the techniques used in statistics and neural network modeling 
can be seen as wrinkles on this “nearest neighbors” idea.) Such numerical meth-
ods date back to the Ptolemys, when trigonometric  tables were fi rst compiled 
for use by astronomers, navigators, and builders.

Functions and Logic

A function is an abstract replica of causality. It’s what it is to be a simple, de-
terministic machine: the same input must always map to the same output. 
This intuition is at the heart of logic. If repeating the same operation with the 
same input gives a different output, you know without a doubt that something 
changed: it isn’t the function you thought it was, it isn’t a simple machine. Or 
perhaps one’s measuring instrument was faulty; maybe you blinked. Still you 
will know for certain that something went sideways since (it is of our human-
ness to believe) nothing happens without a reason. This inferential form was 
anciently termed “modus tollens.” It says that “A implies B; but not B; hence 
not A.” In other words, there is some theory “A” with testable consequence “B,” 
but when the experiment is performed the predicted outcome wasn’t observed, 
so we must conclude (assuming that the twin constancies of nature and reason 
haven’t failed us) that the theory was wrong.8
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There’s a one- wayness to functions, an asymmetry. They can be one- to- one, 
where a single input value (which could be an argument list or vector made up 
of several values) is associated with a single output value. Or they can go from 
many- to- one: two or more inputs arrive at the same output. But they can never 
go from one- to- many. The same input must always—if this thing is rational, 
if it’s a machine—produce the same result. One can’t in general simply replace 
a function’s inputs by its outputs, run the function backwards and expect to 
get the inputs back as the result; that isn’t deterministic, it’s not a function, 
it will not work.

The exception to the above would be a class of reversible logic functions that 
at some point might emerge from pure theory to fi nd practical uses in cryptog-
raphy and / or quantum computing.

Theoretically, a universal computer could be made entirely out of reversible 
logic gates; in principle therefore any irreversible function can be replaced by 
a reversible function having certain nice theoretical properties like extremely 
low or even nonexistent power dissipation. It will certainly be interesting to 
see what comes of it. There are a few well- known examples of simple reversible 
functions: multiplication by – 1, which toggles the sign of a number; the Bool-
ean NOT (turning 0 into 1, and 1 into 0); and EXCLUSIVE OR. This last-
 named is a personal favorite: given two  equal- length bit- patterns as inputs, 
XOR will yield a bit- pattern which XORed with either of the two original 
bit- patterns reproduces the other one. But these simple reversible functions 
are not suffi cient for universal reversible computation.9

A corollary of the asymmetry of functions is that observing a function’s out-
put, even when we know its internal mechanism, doesn’t allow inferring with 
certainty the input that caused the output. What is past is past, nor is it logi-
cally valid to adduce absent causes from present signs: a moment’s refl ection will 
reveal that any state of affairs could be a consequence of many different possible 
causes. How odd then, that this native forensic mode of reasoning, in real life 
so relied upon, should be logically invalid. Aristotle called it the “enthy meme” 
or “logically fallacy” of “affi rming the consequent.” (An unfortunate transla-
tion: logical fallacies though fallible need not always lead to false conclusions.) 
To affi rm the consequent reverses the deductive syllogism (“modus ponens”) 
which states, “If A implies B, and A, then B.” It is to say rather, “If A implies 
B, and B, then A.” The American philosopher C. S. Peirce thought affi rming 
the consequent (which he termed “abduction”) was after deduction and induc-
tion, the missing but vital third form of reasoning without which any account 
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of logic or science would remain incomplete. It’s what the palaeontologist does 
in reconstructing a whole brontosaurus from a brontosaur’s toe- bone; or the de-
tective, in reconstructing a crime. It is the fallible anti- logic, the “analogic,” of 
sense perception, pattern recognition, diagnosis: how we read the signs and in-
 between the lines.10 Computer science rediscovered abductive inference in the 
1980s; it had been neglected since AI broke with cybernetics and information 
theory some twenty years before.

Abductive or analogical  pattern- matching is easily realized by means of an 
inverted index, a variant form of look- up table where rather than having keys 
mapped to single values they are mapped to sets or lists of values. (An inverted 
index therefore isn’t a function but rather a “relation.”) Nothing too com-
plicated, it’s how a book index or search engine works. The words given in a 
search query will have already been associated by the search engine with lists 
of spidered web pages where these terms have occurred. The best matching 
pages are identifi ed by superimposing the result lists belonging to the given 
terms, so that the more times a page is cited in the aggregated multiset, then 
the higher, all else being equal (indexes also employ statistical methods that 
assign numeric “weights” to terms and items to better refl ect their probable 
relevance) it will be placed in the outcome.11

The index, as it were, “reverses time.”12 It is an imperfect, indeterminate, 
in logical terms strictly illegitimate one- to- many mapping that goes from a 
single “effect” (the input key) to the set of its multiple possible “causes” (the 
key’s inverted fi le). It is a kind of abstract deconvolution, a way to tackle what 
physical scientists call the “general inverse problem.” The evidential traces 
or signs of an event are convolutions (literally “enfoldings”) of the event with 
whatever objects or medium its nth- order effects encounter and become mixed 
up with. The material imparts its own intrinsic bias or twist to the event 
record; it acts like a fi lter or lens. To recover an “image” of the time- and-
 space- distant original entails superimposing many scattered, diffuse, faint, re-
dundant, and to unknown degree  noise- corrupted13 signals from its spreading 
“event- cone.” A term from physical optics perfectly captures the idea: “circles 
of confusion.” Drawn together14 and superimposed, the circles of confusion re-
solve an image (doubtless rather blurry, but still useful) of the original event. 
(The “circles” are really  cross- sectional slices of a spherical (roughly) wavefront 
of effects propagating outwardly in space and forward in time to intersect the 
plane of image formation in what I hope isn’t too strained an analogy.)
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Embedding Functions

Computers and software, for all that they have become ordinary parts of life 
and when working correctly are as much taken for granted as sewers or electric-
ity, are scaffolded upon certain inviolable rules, “deep structures” that under-
lie (we are led to infer) both physical reality and the mental apparatus by whose 
aid we are able to recognize and grasp reality, to name and shape it. The ele-
ments of software, its functions and variables, are at bottom simple things; as 
equally, in the faith of scientists and philosophers, must be the elements and 
principles which make up the world.

But software also teaches that the simplicity is hard- won; it is hard to slow 
thoughts down to allow their dissection into irreducible, atomic components 
of structure and action that permit reconstructing them into something that 
behaves the way you imagined it would when you had the idea. Underwrit-
ing the ability of people to create software is a bedrock gnosis of “how things 
work,” a kinesthetic intuition of causes and effects that is as much physical 
as logical. The function is a mental diagram of an ideal machine. With the 
development of computers, so deeply enmeshed in the semiconductor phys-
ics of the substrate, it became evident (if it wasn’t before) that thought’s rig-
ging of logic—the “it- is- so”- ness of recognizing when a thing makes sense and 
when it doesn’t, quite—is at least conditioned by the basic construction of the 
world; and that to know one clearly is also to know the other.15

Notes

1. Gertrude Stein, as quoted in William Gass, The World Within the Word.

2. Alfred North Whitehead, Introduction to Mathematics.

3. Pride of place goes to the “A- O compiler,” created in 1952 for the Remington Rand 

UNIVAC computer by a team under Grace Hopper’s admiralship. Also notworthy is 

Kenneth Iverson’s APL, which was an early functional programming language originat-

ing in a Fortran matrix subroutine library. (K. E. Iverson, A Programming Language.)

4. For stacks, see Phil Koopman’s defi nitive, Stack Computers: The New Wave, now avail-

able online from the author’s home page.

5. No one save the mathematician or theologian could get so precise about something 

that by its defi nition is so indefi nite. It’s not for nothing (it was rather for  aleph- null) 
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that the fi nest speculative theologist of the modern era was Georg Cantor, inventor of set 

theory and the transfi nite numbers. (Even while his career in the higher abstraction was 

punctuated by periods of enforced repose in asylums for the deeply spiritually affl icted.)

6. The psychologist Roger Shepard, in an essay on the preconditions of knowing, de-

scribes how the world transduced by the sensory enfi lade serves as an index into “con-

sequential regions of psychological space” where are found and activated a suite of 

innate and acquired propensities and preparednesses—memories and knowledge that 

will likely prove equal to the circumstances at hand. Vertebrate brains seem to be orga-

nized in such a way that a high- dimensional feature vector (a “sparse population code” 

representing the animal’s ensemble sensory nerve activity) acts as an “address” into, in 

effect, a very large, wet, sloppy look- up table. (R. N. Shepard, “Towards a Universal 

Law of Generalization for Psychological Studies.”) in Science Vol. 237 Issue 4820.

7. Charles Babbage, The Ninth Bridgewater Treatise.

8. Sir Karl Popper was knighted for, among other things, having pointed out that the 

power of science is mostly negative, and that scientifi c progress proceeds by disproving 

erroneous theories (i.e., by modus tollens) not by proving “correct” theories true. The 

latter possibility obtains only in tightly circumscribed synthetic worlds like Euclidean 

geometry or deductive logic—or, in principle, software. Resolution theorem prov-

ing—the basis of the logic programming language Prolog—does its stuff by disprov-

ing in a reductio ad absurdum the logical complement of the proposition whose truth 

one wishes to prove. Obviously it can only work under the  closed- world assumption 

that each concept has one and only one antithesis whose negation exactly reproduces 

and so vouchsafes true the original proposition. Full certainty can only be had in a de-

ductive system whose logical, causal constitution has been established from the bottom 

up. (Descartes: “If you want to know how a body works, or a world, then build one.”)

9. Pop science treatments of quantum computing (and the role of reversible functions 

therein) include Julian Brown, Minds, Machines, and the Multiverse. People who are tired 

of being told that quantum mechanics (and with it virtually the entire past hundred 

years of physics) must lie forever beyond the grasp of ordinary understanding will ap-

preciate Carver Mead’s well- credentialed demurral, Collective Electrodynamics.

10. On abduction: Carlo Ginzburg, “Clues: Morelli, Freud, Sherlock Holmes.”

11. For best matching see Derek Robinson, “Index and Analogy: A Footnote to the 

Theory of Signs.” The fi rst inverted index was the Biblical concordance undertaken 

in 1230 by an ecclesiastical data processing department of fi ve- hundred monks, 
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directed by Hugo de Sancto Caro (Hugues de Saint- Cher), a Dominican friar later 

made a cardinal.

12. In an intriguing if eccentric book, Symmetry, Causality, Mind, computer vision 

researcher Michael Leyton proposes that “time reversal” is the sole task undertaken by 

intelligence. He sees vision as a two- fold problem: fi rst, the eye must reverse the forma-

tion of the optical image incident on the retina (a classic “inverse problem”) to identify 

objects and the spatial relations between them; secondly, the mind must “reverse the 

formation of the environment”—it must adduce reasons why these objects should be 

where they are, and should have the forms they have, and it must ascertain as best it 

can the intentions or implications of these things with respect to its own needs and 

goals. Only then can it be in a position to decide what, if anything, to do about the 

situation.

13. “Noise- corrupted” is synonymous with “massively convolved with impractically 

many broadly diffused and attenuated traces of events that we happen not to be inter-

ested in right now.”

14. “Drawn together”—see Bruno Latour’s essay “Drawing Things Together” for an 

account of broadly analogous issues in the social production of knowledge.

15. Readers with a taste for such deliberations might enjoy following the elegant turns 

Paul Valery’s curiosity takes in his essay, “Man and the Seashell.”

Glitch
Olga Goriunova and Alexei Shulgin

This term is usually identifi ed as jargon, used in electronic industries and 
services, among programmers,  circuit- bending practitioners, gamers, media 
artists, and designers. In electrical systems, a glitch is a  short- lived error in a 
system or machine. A glitch appears as a defect (a  voltage- change or signal of 
the wrong duration—a change of input) in an electrical circuit. Thus, a glitch 
is a  short- term deviation from a correct value and as such the term can also de-
scribe hardware malfunctions. The outcome of a glitch is not predictable.

When applied to software, the meaning of glitch is slightly altered. A 
glitch is an unpredictable change in the system’s behavior, when something 
obviously goes wrong.
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Glitch is often used as a synonym for bug; but not for error. An error might 
produce a glitch but might not lead to a perceivable malfunction of a system. 
Errors in software are usually structured as: syntax errors (grammatical errors 
in a program), logic errors (error in an algorithm), and exception errors (arising 
from unexpected conditions and events).

Glitches have become an integral part of computer culture and some phe-
nomena are perceived as glitches although they are not glitches in technical 
terms. Artifacts that look like glitches do not always result from an error. What 
users might perceive as “glitchy” can arise from a normally working function of 
a program. Sometimes these might originate from technical limitations, such as 
low  image- processing speed or low bandwidth when displaying video. For ex-
ample, the codecs of some  video- conferencing software, such as CU- Seeme,1 vis-
ibly “pixelize” the image, allowing the compression of parts of the images that 
remain static over different frames when, for instance, the transfer speed drops.

To comply with the customary usage of “glitch” we propose to think of 
glitches as resulting from error, though in reality it might be diffi cult or im-
possible to distinguish whether the particular glitch is planned or results from 
a problem. To understand the roles glitches play in culture, knowing their ori-
gin is not of primary importance. Understanding glitches as erroneous brings 
more to a comprehension of their role than trying to give a clear defi nition that 
would include or subordinate encoded glitches and glitches as malfunctions.

Glitches are usually regarded as marginal. In reality, glitches can be 
claimed to be a manifestation of genuine software aesthetics. Let us look at 
machine aesthetics as formed by functionality and dysfunctionality, and then 
proceed to the concept of glitches as computing’s aesthetic core, as marks 
of (dys)functions, (re)actions and (e)motions that are worked out in  human-
 computer assemblages.

Computers do not have a recognizable or signifi cant aesthetic that possesses 
some kind of authenticity and completeness. It is commonplace that the aes-
thetics of software are largely adopted from other spheres, media, and conven-
tions. Thus, the desktop is a metaphor for a writing table, icons descend from 
labels or images of objects, while the command line interface is inherited from 
telegraph, teletype, and typewriter.

The aesthetics of computers that developed over a few decades from the 
early 1950s to the early 1980s, when they were fi rst introduced to the public 
and on to the current time (consisting of dynamic menus, mouse, pointer, 
direct manipulation of objects on the screen, buttons, system sounds, human 
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computer interaction models) are, in our opinion, not rich and self- suffi cient 
enough to be called the aesthetic of the computer.

On top of that the current aesthetic of software is not complete; it does 
not work very well as it does not contribute enough to the computer’s user-
 friendliness. Besides, it is a widely acknowledged problem that the customary 
information design principles of arranging computer data, derived from ear-
lier conventions (such as the treelike folder structure), result in users having 
problem, with data archiving and the memorization of document names and 
locations.

Historically, the shape, style, and decoration of every new technology has 
been introduced in a manner owing much to the aesthetics and thinking cus-
tomary of the time. Thus, when mechanism had not yet replaced naturalism as 
means of framing reality, Lewis Mumford argues, mechanisms were introduced 
with organic symbols. For instance, a typical eighteenth century automaton, “the 
clockwork Venus,” consisted of a female mannequin resting on top of a clock-
work mechanism.2 As technology developed further, some genuine machine 
aesthetics were born, primarily derived from machine functionality. And it was 
their functionality that some  avant- garde movements of the twentieth century 
admired in the machine. For instance, among the Russian  avant- garde move-
ments of the beginning of the twentieth century (e.g., Cubo- Futurism, Abstrac-
tionism, Rayonism, Suprematism) artists such as Mayakovsky, Gontcharova, 
Kandinsky, Larionov, and Malevich poeticized new machines for their speed, 
energy, and dynamics. The methods they used to depict movement, light, 
power, and speed could be regarded aesthetically as grandparents of some of 
today’s glitches (certain correlation of color mass; unlimited diversity of colors, 
lines and forms; repeating geometrical structures, fi gures, lines, dots, etc.).

Rationalism and the precision of technical creation inspired many. Thus, 
Meyerhold writes: “Arts should be based on scientifi c grounds.”3 Russian con-
structivists such as Tatlin established a compositional organization based on 
the kinetics of simple objects and complex ideas of movement—rotating in-
ner mechanisms and open structure, using “real” materials—all intended to 
function for utilitarian use. Punin writes of Tatlin’s Tower: “Beneath our eyes 
there is being solved the most complex problem of culture: utilitarian form 
becomes pure creative form.”4

Functional machines, primarily built by engineers, established strong aes-
thetic principles that have defi ned technological design for years. Functional 
elements are later used as nonfunctional design elements that are appreciated 
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as “beautiful” by users not least due to the cultural memory of their origin. For 
instance, the curved part of the wing over the tire of some car models repro-
duces the guards used in  horse- driven vehicles and early automobiles to pro-
tect users and vehicle from dust and to affi x lights onto. It does not carry any 
advance in function, but is used in automobile design as a recognizable and 
nostalgic element.

Today, the functionality of the computer is concealed inside the gray / white / 
beige box that covers the cards, slots, motherboard, and wires. In modding5 
these parts are reimagined as elements of visual richness that convey a sym-
bolism. Hardware elements are aestheticized: Users might install neon lights, 
weird jumbo fans and colorful wires into a transparent computer case or even 
build an entirely new one from scratch. Electronic boards jutting out at 90 
degree angles and architectures of twisted wire are widely used, as in cinema 
and design, to represent technical substances.

By contrast, the way data is presented on a hard drive is not  human- readable. 
It is stored in different segments of the disk and reassembled each time the 
documents are retrieved according to a plan kept as a separate fi le. Software 
functionality here is invisible and an interface is needed to use the machine. 
Modern software almost always conceals its functionality behind the window. 
It provides us instead with images such as a page fl ying from one folder to an-
other, an hourglass, or that of a gray line gradually being fi lled with color.

There are moments in the history of computer technology that are rich in 
computer functionality producing distinct aesthetics. At such times, computer 
functionality reveals itself through technological limitations. Bottlenecks, such 
as processor speed, screen resolution, color depth, or network bandwidth—
4- bit, 8- bit music, 16- color pixelized visuals, slow rendering, compressed im-
age and video with artifacts—create an authentic computer aesthetics, that is, 
the aesthetics of low- tech today.

There are vast contemporary 8- bit music communities (such as Micromusic
.net), based entirely on producing music on emulators or surviving models of 
the early home computers of the 1980s, such as Atari or Commodore. Along-
side producing sine waves, the sound chips of such computers attempted to 
simulate preexisting musical reality: guitar, percussion, piano. Imperfect and 
restricted, the chips could only produce idiosyncratic, funny and easy to rec-
ognize sounds which were far from the originals. Scarcity of means encouraged 
a special aesthetics of musical low- tech: of coolness, romanticism and imper-
fection. People making 8- bit music nowadays relate back to their childhoods’ 
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favorite toys, memories that are shared by many people. Returning to a genu-
ine computer aesthetics of obsolete technology is not a question of individual 
choice, but has the quality of a communal, social decision.

Functionality, as a characteristic of established machine aesthetics is al-
ways chased by dysfunctionality (if not preceded by it). Functional machines, 
robots, mechanized people (from Judaism’s Golem,6 Frankenstein’s monster7) 
to the rebellious computers of the twentieth century) are interpreted as alien 
to human nature, sooner or later becoming “evil” as they stop functioning 
correctly. Thus, the dysfunctional mind, conduct, and vision become human, 
compelling, sincere, meaningful, revelatory. As aesthetic principles, chance, 
unplanned action, and uncommon behaviors were already central to European 
and Russian literature of the nineteenth century in the work of writers such as 
Balzac, Flaubert and Dostoyevsky.

In the technological era, society became organized according to the logic of 
machines, conveyor belt principles, “rationally” based discrimination theories, 
and war technology, with an increase in fear, frustration, refusal, and protest. 
As a response, errors, inconsistencies of vision, of method, and of behavior be-
come popular modernist artistic methods used in Dadaism, Surrealism, and 
other art movements. One of Surrealism’s declared predecessors, the Comte 
de Lautréamont, provided us with the lasting phrase that something could be 
as “beautiful as the chance encounter of a sewing machine and an umbrella on 
a dissection table.”8 The introduction of chance, “hasard,” (fr.), subconscious-
ness, and irrationality into art and life was seen as being both opposed to and 
deeply embedded in rationality and functionality.

Dysfunctional machines are not only those that are broken (images and 
fi gures of crashed cars and other mass produced imperfections fi gure in the 
aesthetics of Fluxus and Pop Art); they are also those that do not comply with 
the general logic of machines, by acting irrationally and sometimes even turn-
ing into humans. Thus, at the end of the Soviet movie Adventures of Electronic 
Boy (1977), a robotic boy starts crying and this emotion symbolizes that he has 
become human.

A glitch is a singular dysfunctional event that allows insight beyond the 
customary, omnipresent, and alien computer aesthetics. A glitch is a mess that 
is a moment, a possibility to glance at software’s inner structure, whether it is 
a mechanism of data compression or HTML code. Although a glitch does not 
reveal the true functionality of the computer, it shows the ghostly convention-
ality of the forms by which digital spaces are organized.

Glitch



115

Glitches are produced by error and are usually not intended by humans. 
As a not- entirely  human- produced reality, its elements are not one- hundred 
percent compatible with customary human logic, visual, sound, or behavioral 
conventions of organizing and acting in space. Aesthetically some glitches 
might inherit from  avant- garde currents, but are not directly a product of the 
latter (fi gure 8). Avant- garde artists inspired or disgusted by technology and 
its societal infl uence have created a range of artistic responses, the aesthetics of 
which today’s glitches strangely seem to comply with. A glitch reminds us of 
our cultural experience at the same time as developing it by suggesting new 
aesthetic forms.

A glitch is stunning. It appears as a temporary replacement of some boring 
conventional surface; as a crazy and dangerous momentum (Will the computer 
come back to “normal”? Will data be lost?) that breaks the expected fl ow. A 
glitch is the loss of control. When the computer does the unexpected and goes 
beyond the borders of the commonplace, changes the context, acts as if it is not 
logical but profoundly irrational, behaves not in the way technology should, 
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it releases the tension and hatred of the user toward an ever- functional but 
uncomfortable machine.

Error sets free the irrational potential and works out the fundamental concepts and 

forces that bind people and machines. An error [is] a sign of the absence of an ideal 

functionality, whether it be understood in the technical, social or economic sense.9

As with every new aesthetic form, glitches are compelling for artists and 
designers as well as regular users. Glitches are an important realm in elec-
tronic and digital arts. Some artists focus on fi nding, saving, developing, and 
conceptualizing glitches, and glitches form entire currents in sonic arts and cre-
ative  music making. For example, the Dutch- Belgian group Jodi are known 
for their attention to all kinds of computer visual manifestations that go be-
yond well- known interfaces. It’s enough only to look at their web- page http: // 
wwwwwwwww.jodi.org to get a sense of their style (fi gure 9). On http: // text
.jodi.org a user browses through an endless sequence of pages that are obviously 

Figure 9 JODI, http: // text.jodi.org.
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of computer origin, and appear to be both meaningless and fascinatingly 
beautiful.

Video gamers practice glitching (exploiting bugs in games).10 Game modi-
fi cations by Jodi, such as Untitled Game,11 as well as by other artists, such as 
Joan Leandre’s (Retroyou) R / C and NostalG12 are achieved by altering parts 
of the code of existing games (fi gure 10). The resulting games range from ab-
surd environments in which cars can be driven, but with a distinct tendency 
to sometimes fl y into outer space, to messy visual environments one can hardly 
navigate, but which reveal dazzling digital aesthetic qualities.

In his aPpRoPiRaTe! (fi gure 11) Sven Koenig exploits a bug found in a video 
player that makes a video compression algorithm display itself.13 By deleting 
or modifying key frames (an encoded movie does not contain all full frames but 
a few key frames, the rest of the frames are saved as differences between key 
frames) he manages to modify the entire fi lm without much  effort. As a result 

Glitch
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we get excitingly distorted yet recognizable variants of videos popular in fi le 
exchange networks, where such algorithms are widely used. And, of course, 
with this much work already done for them in advance, we’ll see the power of 
the new aesthetics of the glitch used in commercial products very soon.

Notes

1. Traces of CU- SeeMe can be found through http: // archive.org by searching for http: // 

cu- seeme.com.

2. Lewis Mumford, Technics and Civilization, 52–55.

3. Vsevolod Meyerhold, “Artist of the Future,” in Hermitage, no. 6, 10.

4. Nikolay Punin, The Memorial to the Third International, 5.

5. See “case modifi cation” in Wikipedia: http: // en.wikipedia.org / wiki / Case_modifi cation / .

6. For an excellent account of Golem, see: http: // en.wikipedia.org / wiki / Golem / .

Figure 11 Stefan Koenig, aPpRoPiRaTe!.
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Import / Export
Lev Manovich

Although “import” / “export” commands appear in most modern media au-
thoring and editing software running under GUI, at fi rst sight they do not 
seem to be very important for understanding software culture. You are not 
authoring new media or modifying media objects or accessing information 
across the globe, as in web browsing. All these commands allow you to do is to 
move data around between different applications. In other words, they make 
data created in one application compatible with other applications. And that 
does not look so glamorous.

But think again. What is the largest part of the economy of the greater Los 
Angeles area? It is not entertainment—from movie production to museums 
and everything in between accounts for only around 15 percent. It turns out 
that the largest part is import / export business, accounting for over 60 percent. 
A commonly invoked characteristic of globalization is greater connectivity—
places, systems, countries, organizations, etc., becoming connected in more 
and more ways. And connectivity can only happen if you have certain level 
of compatibility: between business codes and procedures, between shipping 
technologies, between network protocols, and so on.
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Let us take a closer look at import / export commands. As I will try to show, 
these commands play a crucial role in software culture, and in particular in 
media design. Because my own experience is in visual media, my examples 
will come from this area, but the processes I describe apply now to all media 
designed with software.

Before they adopted software tools in the 1990s, fi lmmakers, graphic design-
ers, and animators used completely different technologies. Therefore, as much 
as they were infl uenced by each other or shared similar aesthetic sensibilities, 
they inevitably created  different- looking images. Filmmakers used camera 
and fi lm technology designed to capture  three- dimensional physical reality. 
Graphic designers worked with offset printing and lithography. Animators 
worked with their own technologies: transparent cells and animation stands 
with stationary fi lm cameras capable of making exposures one frame at a time 
as the animators changed cells and / or moved background.

As a result,  twentieth- century cinema, graphic design, and animation (that 
is, standard animation techniques used by commercial studios) developed dis-
tinct artistic languages and vocabularies both in terms of form and content. 
For example, graphic designers worked with a two dimensional space; fi lm di-
rectors arranged compositions in  three- dimensional space; and cell animators 
worked with a “two- and- a- half” dimensional space. This holds for the over-
whelming majority of works produced in each fi eld, although of course excep-
tions do exist. (For instance, Oscar Fishinger made one abstract fi lm that in-
volved moving  three- dimensional shapes, but as far as I know, this is the only 
time in the whole history of abstract animation where we see an abstract  three- 
dimensional space).

The differences in technology infl uenced what kind of content would appear 
in different media. Cinema showed photorealistic images of nature, built en-
vironment, and human forms articulated by special lighting. Graphic designs 
featured typography, abstract graphic elements, monochrome backgrounds, 
and cutout photographs. And cartoons showed hand- drawn fl at characters and 
objects animated over hand- drawn but more detailed backgrounds. The ex-
ceptions are rare. For instance, while architectural spaces frequently appear in 
fi lms they almost never appeared in animated fi lms in any detail—until ani-
mation studios started using 3- D computer animation.

Why was it so diffi cult to cross boundaries? In theory one could imagine 
making an animated fi lm in the following way: printing a series of slightly dif-
ferent graphic designs and then fi lming them as though they were a sequence 
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of animated cells. Or in a fi lm, a designer could make a series of hand drawings 
that use the exact vocabulary of graphic design and then fi lm them one by one. 
And yet, to the best of my knowledge, such a fi lm was never made. What we 
fi nd instead are many abstract animated fi lms that refl ect the styles of abstract 
painting. We can fi nd abstract fi lms, animated commercials, as well as movie 
titles in the graphic design style of the times. For instance, some moving im-
age sequences made by motion graphics pioneer Pablo Ferro around 1960s dis-
play psychedelic aesthetics which can be also found in posters, record covers, 
and other works of graphic design in the same period.1

And yet, it is never exactly the same language. Projected fi lm could not ad-
equately show the subtle differences between typeface sizes, line widths, and 
grayscale tones crucial for modern graphic design. Therefore, when the artists 
were working on abstract art fi lms or commercials that used design aesthetics 
(and most key abstract animators produced both), they could not simply expand 
the language of printed page into time dimension. They had to invent a parallel 
visual language that used bold contrasts, more easily readable forms and thick 
lines, which because of their thickness were in fact no longer lines but shapes.

Although the limitations in resolution and contrast of fi lm and television 
image compared to that of the printed page played a role in keeping the dis-
tance between the languages used by abstract fi lmmakers and graphic design-
ers for the most of the twentieth century, ultimately I do not think it was the 
decisive factor. Today the resolution, contrast, and color reproduction between 
print, computer screens, and television screens are also substantially different, 
and yet we often see exactly the same visual strategies deployed across these 
different display media. If you want to be convinced, leaf through any book 
or a magazine on contemporary 2- D design (i.e., graphic design for print, 
broadcast, and the web). When you look at a spread featuring the works of a 
particular designer or design studio, in most cases it is impossible to identify 
the origins of the images unless you read the captions. Only then do you fi nd 
that this image is a poster, that one is a still from a music video, and this one 
is a magazine editorial.

Taschen’s Graphic Design for the 21st Century: 100 of the World’s Best Graphic 
Designers has several good examples.2 Peter Anderson’s images showing a head-
ing against a cloud of hundreds of little letters in various orientations turn out 
to be the frames from the title sequence for a television documentary. Another 
of his images, which similarly contrasts jumping letters in a large font against 
irregularly cut planes made from densely packed letters in much smaller 
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fonts turns to be a spread from IT Magazine. Since the fi rst design was made 
for broadcast while the second was made for print, we would expect that the 
fi rst design would employ bolder forms; however, both designs use the same 
scale between big and small fonts, and feature texture fi elds composed from 
text that does not need to be read. A few pages later we encounter a design by 
Philippe Apeloig that uses exactly the same technique and aesthetic as Ander-
son. In this case, tiny lines of text positioned at different angles form a 3- D 
shape fl oating in space. On the next page another design by Apeloig also cre-
ates a fi eld in perspective made from hundreds of identical abstract shapes.

These designs rely on software’s ability (or on the designer being infl uenced 
by software use and following the same logic while doing the design manu-
ally) to treat text as any graphical primitive and to easily create compositions 
made from hundreds of similar or identical elements positioned according to 
some pattern. Since an algorithm can easily modify each element in the pat-
tern, changing its position, size, color, etc., instead of the completely regular 
grids of modernism we see more complex structures that are made from many 
variations of the same element.

Each designer included in the Taschen book was asked to provide a brief 
statement to accompany the portfolio of their work, and the design studio Lust 
provided this phrase as their motto: “Form- follows- process.” So what is the 
nature of the design process in the software age, and how does it infl uence the 
forms we see today around us?

Everybody who is involved in design and art today knows that contem-
porary designers use the same set of software tools to design everything. The 
crucial factor is not the tools themselves but the workfl ow process, enabled by 
“import” and “export” operations.

When a particular media project is being put together, the software used at 
the fi nal stage depends on the type of output media and the nature of the project. 
For instance, After Effects is used for motion graphics projects and video com-
positing, Illustrator or Freehand is for print illustrations, InDesign for graphic 
design, Flash for interactive interfaces and web animations, and 3DS Max or 
Maya for 3- D computer models and animations. But these programs are rarely 
used alone to create a media design from start to fi nish. Typically, a designer 
may create elements in one program, import them into another program, add 
elements created in yet another program, and so on. This happens regardless 
of whether the fi nal product is an illustration for print, a website, or a mo-
tion graphics sequence, whether it is a still or a moving image, interactive or 

Import/Export



123

noninteractive, etc. Given this production workfl ow, we may expect that the 
same visual techniques and strategies will appear in all media designed with 
computers.

A designer can use Illustrator or Freehand to create a 2- D curve (technically, 
a spline). This curve becomes a building block that can be used in any project. 
It can form a part of an illustration or a book design. It can be imported into 
an animation program where it can be set into motion, or imported into 3- D 
program where it can be extruded in 3- D space to defi ne a solid form.

Each of the types of programs used by media designers—3- D graphics, 
vector drawing, image editing, animation, compositing—excel at particular 
design operations, that is, particular ways of creating a design element or mod-
ifying on already existing element. These operations can be compared to the 
different blocks of a Lego set. While you can make an infi nite number of proj-
ects out of these blocks, most of the blocks will be utilized in every project, 
although they will have different functions and appear in different combina-
tions. For example, a rectangular red block may become a part of the tabletop, 
part of the head of a robot, etc.

Design workfl ow that uses multiple software programs works in a similar 
way, except the building blocks are not just the different kinds of visual ele-
ments one can create—vector patterns, 3- D objects, particle systems, etc.—but 
also various ways of modifying these elements: blur, skew, vectorize, change 
transparency level, spherisize, extrude, etc. This difference is very important. 
If media creation and editing software did not include these and many other 
modifi cation operations, we would see an altogether different visual language at 
work today. Instead of “digital multimedia”—designs that simply combine el-
ements from different media—we see what I call “metamedia”—the remixing 
of working methods and techniques of different media within a single project.

Here are a few typical examples of this media remixability that can be seen 
in the majority of design projects done today around the world. Motion blur is 
applied to 3- D computer graphics; computer generated fi elds of particles are 
blended with live action footage to produce an enhanced look; fl at drawings 
are placed into virtual spaces where a virtual camera moves around them; fl at 
typography is animated as though it is made from a  liquid- like material (the 
liquid simulation coming from computer animation software). Today a typical 
short fi lm or a sequence may combine many of such pairings within the same 
frame. The result is a hybrid, intricate, complex, and rich media language—or 
rather, numerous languages that share the basic logic of remixabilty.
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The production workfl ow specifi c to the software age has two major con-
sequences: the hybridity of media language we see today in the contemporary 
design universe, and the techniques and strategies used are similar regardless 
of the output media and type of project. Like an object built from Lego blocks 
today’s typical design combines techniques coming from multiple media. It 
uses the results of the operations specifi c to different software programs that 
were originally created to imitate work with different physical media (e.g., 
Illustrator was created to make illustrations, Photoshop to edit digitized pho-
tographs, After Effects to create 2- D animation, etc.). While these techniques 
continue to be used in relation to their original media, most of them are now 
also used as part of the workfl ow on any design job.

The essential condition that enables this new design logic and the resulting 
aesthetic is compatibility between fi les generated by different programs. In 
other words, “import” and “export” commands of graphics, animation, video 
editing, compositing, and modeling software are historically more important 
than the individual operations these programs offer. The ability to combine 
raster and vector layers within the same image, to place 3- D elements into a 
2- D composition and vice versa, and so on, is what enables the production 
workfl ow with its reuse of the same techniques, effects, and iconography across 
different media.

The consequences of this compatibility between software and fi le formats 
that was gradually achieved during the 1990s are hard to overestimate. Besides 
the hybridity of modern visual aesthetics and the reappearance of the same 
design techniques across all output media, there are also other effects. For in-
stance, the whole fi eld of motion graphics as it exists today came into existence 
to a large extent because of the integration between vector drawing software, 
specifi cally Illustrator, and animation / compositing software such as After Ef-
fects. A designer typically defi nes various composition elements in Illustrator 
and then imports them into After Effects, where they are animated. This com-
patibility did not exist when the initial versions of different media authoring 
and editing software initially became available in the 1980s. It was gradually 
added in subsequent software releases. But when it was achieved around the 
middle of the 1990s, within a few years the whole language of contemporary 
graphic design was fully imported into the moving image area—both literally 
and metaphorically.

In summary, the compatibility between graphic design, illustration, ani-
mation, and visual effects software has played the key role in shaping the visual 
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and spatial forms of the software age. On the one hand, never before have we 
witnessed such a variety of forms as today. On the other hand, exactly the same 
techniques, compositions, and iconography can now appear in any media. And 
at the same time, any single design may combine multiple operations that pre-
viously only existed within distinct physical or computer media.

Notes

1. Jeff Bellantoni and Matt Woolman, Type in Motion: Innovations in Digital Graphics, 

26–27.

2. Charlotte Fiell and Peter Fiell, eds., Graphic Design for the 21st Century: 100 of the 

World’s Best Graphic Designers.

Information
Ted Byfi eld

“Information” can describe everything from a precise mathematical property 
of communication systems, to discrete statements of fact or opinion, to a staple 
of marketing rhetoric, to a  world- historical phenomenon on the order of agri-
culture or industrialization. The frequency and disparity of its use, by special-
ists and lay people alike, to describe countless general and specifi c aspects of 
life, makes it diffi cult to analyze; no single academic discipline or method can 
offer an adequate explanation of the term or the concept, to say nothing of the 
phenomena it encompasses.

A typical approach to a problem of this kind is to address it on the level 
of the word as such: to gather examples of its use, codify their meanings, and 
arrange them into a taxonomy, whether “synchronic” (limited to a specifi c pe-
riod—say, current usage), or “diachronic” (as they have transformed over time). 
This has been done, of course, with varying degrees of success. One prominent 
 American- English dictionary defi nes the word in slightly less than two hun-
dred words. These efforts are admirable, but the popularity of claims that we 
live in an “information society” (or even more grandly in an “information age”) 
suggest, in their inclusiveness, that information is the sum of the word’s mul-
tiple meanings. Apparently, it—the word or, more properly, the category—
is sui generis, and in a particularly compelling way. What qualities make it so?
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The word itself dates in English to the late fourteenth century, and even 
so many centuries ago was used in ways that mirror current ambiguities. The 
Oxford English Dictionary cites early attestations (in, among other sources, Chau-
cer’s Canterbury Tales) as evidence for defi ning it variously as “The action of 
informing” and the “communication of instructive knowledge” (I.1.a); “Com-
munication of the knowledge or ‘news’ of some fact or occurrence” (I.2); and 
“An item of training; an instruction” (I.1.b)—generally, an action in the fi rst 
cases, and a thing in the last case. Even the ambiguity of whether it is singular 
or plural, which is still unclear, seems to date to the early sixteenth century (“an 
item of information or intelligence,” curiously “with an and pl[ural]” [I.3.b]).

As the word came into wider use in the centuries leading up to the twen-
tieth, it took on a variety of additional meanings. Of these, the most striking 
trend was its increasingly legalistic aspect. This included informal usages (for 
example, related to or derived from “informing” on someone [I.4]) as well as 
narrow technical descriptions of charges lodged “in order to the [sic] institu-
tion of criminal proceedings without formal indictment” (I.5.a) This incon-
sistency—in one instance referring to particular allegations of a more or less 
precise factual nature and, in another, to a formal description of a class or type 
of assertion—is still central to current usage of the word; so are connotations 
that information relates to operations of the state.

Yet it was in the twentieth century that the word was given decisively dif-
ferent meanings. The fi rst of these modern attestations appears in the work of 
the British statistician and geneticist R. A Fisher. In his 1925 article, “Theory 
of Statistical Estimation,” published in Proceedings of the Cambridge Philosophical 
Society,1 he described “the amount of information in a single observation” in 
the context of statistical analysis. In doing so, he appears to have introduced 
two crucial aspects to “information”: that it is abstract yet measurable, and 
that it is an aspect or byproduct of an event or process.

“Fisher information” has had ramifi cations across the physical sciences, but 
its most famous and most infl uential elaboration was in the applied context of 
electronic communications. These (and related) defi nitions differ from Fisher’s 
work, but they remain much closer to his conception than to any earlier mean-
ings.2 Three years after Fisher’s paper appeared, the  American- born electron-
ics researcher Ralph V. L. Hartley, who had studied at Oxford University at 
almost exactly the same time that Fisher studied at Cambridge (1909–1913) 
before returning to the United States, published a seminal article in Bell Sys-
tem Technical Journal.3 In it, he built upon the work of the  Swedish- American 
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engineer Harry Nyquist (who was working mainly at AT&T and Bell Labora-
tories), specifi cally on Nyquist’s 1924 paper “Certain Factors Affecting Tele-
graph Speed,”4 which sought in part to quantify what he called “intelligence” 
in the context of a communication system’s limiting factors. Hartley’s 1928 
article, “Transmission of Information,” fused aspects of Fisher’s conception of 
information with Nyquist’s technical context (albeit without citing either of 
them, or any other source). In it, he specifi cally proposed to “set up a quan-
titative measure whereby the capacities of various systems to transmit infor-
mation may be compared.” He also added another crucial aspect by explicitly 
distinguishing between “physical as contrasted with psychological consider-
ations”—meaning by the latter, more or less, “meaning.” According to Hart-
ley, information is something that can be transmitted but has no specifi c 
meaning.

It was on this basis that, decades later, Claude Shannon, the American 
mathematician and geneticist turned electrical engineer, made the most well 
known of all modern contributions to the development of the idea of infor-
mation.5 At no point in his works did he ever actually defi ne “information”; 
instead, he offered a model of how to quantitatively measure the reduction of 
uncertainty in receiving a communication, and he referred to that measure as 
“information.” Shannon’s two- part article in 1948, “A Mathematical Theory 
of Communication,”6 and its subsequent reprinting with a popularizing expla-
nation in his and Warren Weaver’s book, The Mathematical Theory of Commu-
nication,7 are widely heralded as the founding moment of what has since come 
to be known as “information theory,” a subdiscipline of applied mathematics 
dealing with the theory and practice of quantifying data.

Shannon’s construction, like those of Nyquist and Hartley, took as its con-
text the problem presented by electronic communications, which by defi nition 
are “noisy,” meaning that a transmission does not consist purely of intentional 
signals. Thus, they pose the problem of how to distinguish the intended sig-
nal from the inevitable artifacts of the systems that convey it, or, in Shannon’s 
words, how to “reproduc[e] at one point either exactly or approximately a 
message selected at another point.” Shannon was especially clear that he didn’t 
mean meaning:

Frequently the messages have meaning; that is they refer to or are correlated according 

to some system with certain physical or conceptual entities. These semantic aspects of 

communication are irrelevant to the engineering problem.8
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In The Mathematical Theory of Communication, he and Weaver explained that 
“information is a measure of one’s freedom of choice when one selects a mes-
sage” from a universe of possible solutions.9 In everyday usage, “freedom” and 
“choice” are usually seen as desirable—the more, the better. However, in try-
ing to decipher a message they have a different consequence: The more free-
dom of choice one has, the more ways one can render the message, and the less 
sure one can be that a particular reproduction is accurate. Put simply, the more 
freedom one has, the less one knows.

Small wonder that the author of such a theory would view efforts to apply 
his ideas in other fi elds as “suspect.”10 Of course, if Shannon sought to limit the 
application of his “information” to specifi c technical contexts—for example, 
by warning in his popularizing 1949 book that “the word information, in this 
theory, is used in a special sense that must not be confused with its ordinary 
usage”—he failed miserably. The applications of his work in computational 
and communication systems, ranging from read- write operations in storage 
devices to the principles guiding the design of sprawling networks, have had 
pervasive effects since their publication.”11 Those effects offer quite enough 
reason for “nonspecialists” to take a strong interest in information, however 
it is defi ned; their interests, and the “popular” descriptions that result, surely 
carry at least as much weight as Shannon’s mathematical prescription.

However disparate these prescriptions and descriptions may be, both typi-
cally have one general and essential thing in common: mediation. Where 
Shannon’s information is an abstract measure, analogous to the negative space 
around a sculpture in a crate, the common experience of what is often called 
information is indirect, distinguished from some notional immediate or imma-
nent experience by mediation—say, through a commodity (hardware, software, 
distribution, or subscription) and / or an organization (a manufacturer, a devel-
oper, or a “resource”). So, to the growing list of paradoxes that have marked 
information for centuries—whether it is an action or a thing, singular or plu-
ral, an informal assertion of fact or a procedure for making a formal statement, 
its ambivalent relationship to operations of state, and so on—we can add some 
modern ones: It is abstract yet measurable, it is signifi cant without necessarily 
being meaningful, and, last but not least, it is everywhere and nowhere.

It’s tempting to ask how a single category that has come to encompass such 
a babel of ideas could be very useful, of course; the underlying assumption of 
such a question is that a word’s worth is measured by the consistency or speci-
fi city of its meanings. That assumption is false: very common words—“stuff,” 
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say, or “power”—are useful because they are indiscriminate or polysemic. But 
those are very different qualities12; for now—which may be very early in terms 
of historical periodization—information is (or does) both.

On the one hand, it seems to proffer an indiscriminate  lumping- together 
of everything into a single category in common phrases such as “information 
society,” “information age,” and “information economy.” And those phrases, 
in turn, are fairly specifi c compared to the wild (and wildly contradictory) 
implications attributed to information in commercial communications (for 
example, advertising and marketing). In those contexts, at one extreme, in-
formation appears as a cudgel—a driving, ubiquitous, relentless, inevitable, 
almost malevolent historical force that overturns assumptions, disrupts and 
threatens institutions, and forces adaptation. At the other extreme it appears as 
a carrot—an enticing, endless, immaterial garden of delights in which instan-
taneous access to timeless knowledge promises the opportunity of transforma-
tion for individuals and for the globe as a whole. On the other (equally woolly) 
hand, information is widely thought to mark a historical divide, for example, 
in the  urban- legend- like claim that people today are exposed to more infor-
mation in some small unit of time than their indeterminate ancestors were 
in their lifetime.13 What remains unclear in these popular claims is whether 
information itself is new in the sense of a recent historical invention (akin to 
nuclear fi ssion, for example) or, rather, whether its pervasiveness is new.

Even if we limit ourselves to more sober usages, we are still left with a 
category that variously includes assertions of specifi c fact or belief; some type 
of assertion made in a specifi c (for example, technical) context; a statement 
or instruction to be acted upon or executed; a kind of knowledge or commu-
nication, maybe vaguely related to “intelligence”; a specifi c communication, 
which, additionally, may or may not mean something; an aspect of commu-
nication that specifi cally means nothing; an aspect of specifi c or general com-
munications that can be measured; and, more loosely, archives and catalogs, 
facts and factoids, static and streaming data, opinions and ideas, accounts and 
explanations, answers to questions; and / or virtually any combination thereof.

As noted, the theory of information has played a pivotal role in systems 
 automation and integration, a dominant—maybe the dominant—development 
in postindustrial social and technical innovation. Given the dizzying complex-
ity, breadth, and interdependence of these developments, a single category 
that provides (if only illusorily) a common reference point for myriad social 
actors, from individuals right up to nations, might be useful precisely because 

Information



130

it is tautological. The reduction to a single term, which itself might mean any-
thing or literally nothing, offers a sort of lexical symbiosis in which technical 
and popular usages inform each other: Technical usages derive implications 
of broad social relevance from popular usages, and popular usages derive im-
plications of rigor and effectiveness from technical usages. Yet what’s hardest 
to hear through this cacophony is what might be most useful of all: Gregory 
Bateson’s enigmatic and epigrammatic defi nition of information as “the differ-
ence that make a difference.”14
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Intelligence
Andrew Goffey

Although Alan Turing’s 1950 paper on “Computing Machinery and Intel-
ligence” was not the fi rst time humans had speculated on the question of 
whether or not machines can think—and whether or not that was indeed an 
intelligent question to ask—the famous test Turing proposed in this paper 
testifi ed to the existence of an enduring problematic within which questions 
of machine intelligence have been framed. The Turing Test fi rst proposed in 
this paper provided a staged relay of the crucial feature of the Turing machine 
as a universal machine—a machine that can simulate all others.

Turing sought to answer the question, “can machines think?” by asking 
the question: can a man pretending to be a woman in a  three- way “imitation 
game” comprising a man, an interlocutor, and a woman (whose role is to help 
the interlocutor make the correct identifi cation) be successfully replaced by a 
computer? That is to say, can the interlocutor, whose role is to ask the man 
questions, be fooled as often by a computer as by a man? Turing’s answer, of 
course, was that this would indeed be the case in time and that an interlocu-
tor could be fooled, to the extent that one would eventually be able to talk of 
machines thinking “without expecting to be contradicted.”1 It is by virtue of 
its programmability that the Turing machine could be made to reasonably ap-
proximate the behavior of all other machines. Turing was perfectly aware that 
claiming that in principle a machine could imitate a human was not the end 
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of the story. Indeed, how one might then program a machine to do this was 
a much more complicated problem. Turing’s provisional plan was to suggest 
that one might initially program the machine to imitate a child, and then 
subject it to a course of education, in which it would learn to follow the com-
mands it was given.

Both the Turing test and the Turing machine are indicative of how ma-
chine intelligence has historically been conceptualized as imitation. The ma-
chine is imagined not only having an uncanny ability to mimic other machines 
but also to imitate humans. But the nature of the problem of machine intel-
ligence is badly understood if the properly libidinal dimension of phenomena 
of imitation is overlooked. Turing’s statement that “we may hope eventually 
that machines will compete with men in all purely intellectual fi elds”2 (my em-
phasis) not only initiated a whole generation of research into the development 
of machines that could play chess but couldn’t open a packet of crisps, but also 
pointed towards the dimension of rivalry which, according to anthropologist 
Réné Girard, underlies all phenomena of imitation.3

Before sketching out a defi nition it is useful to acknowledge the libidinal 
dimension to the problem of intelligence, because it offers an entry point into 
the analysis of the confusion and ambivalence in the relationship between hu-
mans and machines.4 It is not just that computing science has pondered the 
question of whether machines might think like humans. The confusion and 
ambivalence is highlighted by a commonplace observation that in order to 
work well with computers (to program them or to use them) it is necessary to 
think like a machine. This, ostensibly, was the virtue of the early female pro-
grammers of computers. It is not clear whether the problem is one of machines 
thinking like humans or humans thinking like machines. Little wonder that 
Joseph Weizenbaum’s 1965 AI program ELIZA became notorious for the way 
that it attempted to imitate a psychotherapist.5

A problematic of imitation is not the only way to approach the question 
of machine intelligence, but it does have the merit of encouraging a specula-
tive exploration of the cultural aspects of computing. The rivalry and confl ict 
characteristic of the libidinal underpinnings of the ways in which issues of 
machine intelligence have been posed tap into a far broader material and con-
ceptual issue. Debates about the deskilling resulting from the use of comput-
ers in the workplace and about the role of information technology in shifting 
the composition of the workforce only make sense to the extent that machine 
intelligence is understood as a possible substitution for human intelligence. 
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That humans and machines can compete with each other for jobs is indicative 
of a rivalry in the purposive,  command- driven, goal- oriented activity of the 
contemporary economy. But it is entirely debatable whether framing the issue 
of machine intelligence in the mirror of the human will allow us to understand 
what the real problem is. That machines can replace humans tells us nothing 
special about intelligence, particularly if this is as part of an economy that, in 
its entropic repetition of the eternally self- same, generally produces stupidity 
rather than intelligence. As critic Avital Ronell puts it, “stupidity can body-
 snatch intelligence, disguise itself, or, indeed, participate in the formation of 
certain types of intelligence with which it tends to be confused.”6

An example will make the anthropocentric prejudices of this way of under-
standing intelligence more evident. In a chapter of his book, How The Mind 
Works, entitled “Thinking Machines,” the psychologist Steven Pinker suggests 
that despite the diffi culties we have in defi ning intelligence “we recognize it 
when we see it.” He asks what an alien would have to do to “make us think 
it was intelligent.”7 We must assume, as Pinker does, that the alien actually 
wants to be recognized by us (a debatable assumption but one that is often 
made in discussions of self- other,  master- slave relationships). Pinker argues 
that we recognize an alien as intelligent if it displays “the ability to attain goals 
in the face of obstacles by means of decisions based on rational (truth- obeying) 
rules.”8 This amounts to saying that we can recognize something as intelligent 
to the exact extent that it recognizes, or wants to be recognized by, us. (Pre-
sumably, if the alien didn’t want recognition it wouldn’t bother trying to per-
suade us that it was the same as us . . .). If this sounds a little complicated, it is. 
It summarizes the logic of alienation (or of desire in the Lacanian view). Ap-
plied to the problem of intelligence, it amounts to saying that all intelligence 
is alienated intelligence.

The question this entry poses, by contrast, is the following: Is it possible 
to arrive at an understanding of intelligence without implicitly or explicitly 
referring to the human as our model? Is it possible, in other words, to think of 
the intelligence that traverses machines and our relations with them as really 
alien? Let’s call this conception of intelligence machinic intelligence, to underline 
simultaneously its proximity to and distance from the machine intelligence 
with which computing science has been preoccupied.9 This idea is grounded 
in some simple conceptual observations. The fi rst is that it is diffi cult to grasp 
the creative potential of thinking machines while one’s measure of what makes 
them intelligent is explicitly or implicitly human. The second is that what 
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makes intelligence interesting is that it marks something in excess of the con-
genitally human. This is why the new is so frequently fi gured in terms of the 
monstrous or the inhuman.10

Critical common sense would fi nd the idea of an alien, machinic intelli-
gence not only rebarbative but contradictory. Because humans program ma-
chines, machines must in principle be under the control of humans. The tacit 
assumption here is that it is impossible to make something autonomous. To 
think otherwise would be fetishism or reifi cation and, in the case of comput-
ing, to subscribe to the dehumanizing effects of instrumental rationality. But 
for all its sophistication, a demystifying critique of this sort, although quite 
rightly pointing towards the labour of fabrication, fails to make the imagina-
tive leap outside of the sort of  human- centred thinking which views all non-
 human reality as purely inert, dumb mechanism until animated by human 
labor. And it doesn’t really matter whether we think of the cultural construc-
tion of machine intelligence in a sort of historical materialist way, or in a 
 quasi- Foucauldian way as the production of discursive rules, or, indeed, as the 
artifact of networks of texts and their traces: it’s often enough to fi gure some-
thing as a cultural / historical / discursive / textual construction for the unstated 
inference that it is nothing but . . . to follow on quite readily.

Fortunately a conceptual framework is available to enable us to combat 
this false dichotomy. Calling into question the reductive implications of so-
cial construction need not imply falling back on the contrary position (that 
intelligence is some unproblematic and self- evidently measurable property of 
things—usually people—themselves). The research of  actor- network theorist 
Bruno Latour and philosopher of science Isabelle Stengers has alerted us to the 
ways in which the world gets divided by scientists, technologists, and their 
cultural critics into the unproblematically real and the socially or culturally 
constructed.

In her book, The Invention of Modern Science, Stengers characterizes the specifi c 
event of modern science as “the invention of the power to confer on things the 
power of conferring on the experimenter the power to speak in their name.”11 
Where we normally see nature “speaking for itself” or see society speaking 
through the scientist’s erstwhile facts, Stengers and Latour encourage us to see 
instead a complex assemblage in which things (in this instance, scientifi c facts) 
become autonomous through a process of fabrication. Simply because there is 
immense labor involved in the production of a scientifi c fact does not mean 
that that is all there is to it. Andrew Pickering has suggested that the endeavor 

Intelligence



136

of science and technology to capture the agency of things themselves is a little 
like the sort of disciplinary setup explored by Michel Foucault, involving the 
same relationship of power and resistance.12 That the computer scientist op-
erates on symbols and codes or the chip designer on the properties of silicon, 
silicon dioxide, and so on is little different from the complex set of processes 
characteristic of disciplinary society. In each case the aim is to construct a co-
 functioning ensemble of elements that acts autonomously, in a stable and pre-
dictable fashion. Alan Turing’s biographer, Andrew Hodges, provides a vivid 
account of Turing’s attempts at constructing computers and the experimental 
processes of tinkering with the properties of various machinic “phyla” in order 
to produce a relatively stable synthesis of machine components.13 An overheat-
ing battery on a laptop is a reminder of the fragile equilibrium, the machinic 
ecology, within which software operates: beyond a certain latitude of tempera-
ture variation, the machine will start to act up. This is because a computer, 
like pretty much anything else, is made up of a series of agents that through a 
process of interactive stabilization have been tamed enough to work together 
on their own. Most of the time, at least.

A speculative hypothesis, derived from Gilles Deleuze and Alfred North 
Whitehead, holding that reality is a network of events caught up in divergent 
and convergent series, an ensemble of contingent processes, will clarify this 
more general point. The autonomous agents that have been the province of 
Artifi cial Intelligence and subsequently Artifi cial Life research, the bots and 
spiders that daily scuttle around the internet, and the Java code that controls 
a toaster or washing machine are perfectly autonomous—both despite and 
because of the logic and control provided by algorithms—because they are 
networks of events as are we.14 The autonomous reality of software, however, 
is a contingent achievement: not just because a programmer may leave bugs 
in code or because component elements may be faulty but because the reality 
within which software and hardware operates and of which it is a part is itself 
inherently buggy. But, of course, the issue is whether or not the reality of soft-
ware is itself intelligent.

(It is worth recalling here Avital Ronell’s observation that stupidity and in-
telligence can get mistaken for one another. A convenient myth in the world of 
software development holds that machines, are really just dumb and inert un-
til they are told what to do. This is a myth, not because computers don’t need 
to be plugged in or programmed, but because intelligence isn’t something 
that simply comes to inform dumb matter: the programmer works within a 
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highly complex balance of forces and a material infrastructure that is no simple 
tabula rasa.)

Much early AI research conceptualized intelligence in terms of the ma-
nipulation of abstract symbol systems. Robots (such as the delightful Shakey 
discussed by Daniel Dennett) essentially attempted to accomplish real world 
actions by retaining an encoded representation of the things it might fi nd in 
its environment. A series of rules that followed from a set of initial axioms 
could then be used to build up a logical schema for an action to accomplish, 
given sensory input parsed in a pre- defi ned way. In this respect the concept of 
intelligence operative in AI was effectively prefi gured in the research of Tur-
ing, since the purpose of the Turing machine was to mechanize the intelligent 
activity of a mathematician. As Robert Rosen put it, “If this aspect of human 
mental activity can be ‘mechanized,’ why not others? Why not all?”15 To put it 
differently: The concept of intelligence operative in AI is closely related to the 
intelligence of computing, as both rely on the formal possibilities of symbol 
systems (and such systems have the engineering advantage of being relatively 
easy to implement physically).16 It is perhaps not that surprising then that 
cognitive science subsequently found itself arguing, as a consequence of the 
success of the abstractions of symbol manipulation, that human intelligence 
itself was computation. But as Ed Hutchins has pointed out, “the physical 
 symbol- system architecture [exemplifi ed in many good old fashioned AI proj-
ects] is not a model of individual cognition. It is a model of the operation of a 
 social- cultural system from which the human actor has been removed.”17

Translated into the chains of  formal- logical implication that  symbol- system 
architectures cater for, it is easy to mistake the contingencies of intelligence 
for the epistemological problem of truth and falsity, keeping the logical form 
of reasoning (call it “overcoding”) intact and ignoring the surplus, the excess 
over itself that projects the intelligent agent into futurity. Reducing that ex-
cess by attempting to make an action and its consequences deducible from 
an initial set of axioms, early AI quickly found that on the margins of its 
“microworlds”18 the creative possibilities of programmed intelligence quickly 
produced machinic catatonia, the complete inability to act. The “frame prob-
lem,” recurrent in AI, is a telling reminder of some of the problems inherent 
in a formalist, symbolic conception of intelligence. The frame problem can be 
glossed as concerning the knowledge needed to accomplish some task: given 
some identifi able sensory input (“this is a block of wood”), what part of that 
input gives rise to relevant logical implications (“do I need to know what type 
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of wood it is to move it?” for example)? It is typically understood as an epis-
temological issue; for AI researchers part of the problem is fi nding criteria to 
determine what information is pertinent in any situation. The very fact that 
the matter is considered an epistemological problem is itself indicative of the 
assumption that intelligent activity necessarily follows some kind of  formal-
 logical set of rules or law.

One response to this problem has been to claim that computers can’t be 
intelligent because they are unable to recover the kind of meaning that would 
allow them to do what humans, with all the tacit knowledge their culture sup-
plies, do with little diffi culty. However, that, rather obviously, is to use the 
failings of AI and the prejudices of anthropocentric pragmatism to resolve the 
problem.19

Research in the areas of artifi cial life, complexity theory, and connection-
ism has developed a conception of intelligence supposedly capable of coun-
tering the problems that arise from unduly subsuming intelligence under a 
model of formal symbol manipulation. Such work follows the lead of War-
ren McCulloch and Walter Pitts, whose 1943 paper, “A Logical Calculus of 
the Ideas Immanent in Nervous Activity,” thematically explored a concep-
tion of intelligence based on the idea that certain logical functions could be 
proved calculable by fairly simple networks of neurons.20 In place of a brittle 
axiomatic / theorematic intelligence that must code in advance the territory 
within which it operates (by specifying what is signifi cant and what not) these 
more recent kinds of research do not defi ne in advance the salient features of 
the environment within which their agents operate. Repeated contact with an 
environment for an agent with a “plastic” cognitive system (one which is not 
rigidly hard- coded and is thus susceptible to modifi cation over time) allows 
that agent to learn inductively about relevant features of its environment and 
thus to evolve appropriate responses. Neural networks, for example, will use 
known patterns within data to set the weights on nodes in an artifi cial network 
of software neurons in order to develop probabilistic correlations between sets 
of input data and likely output data. The programmer will typically random-
ize the weightings to all the neurons at the outset, leaving the fi nal confi gura-
tion of the network to be generated by the patterns or resonances existing in 
the data itself. The ability of a neural network to converge on a solution to a 
problem is not a formal certainty, only a likelihood deriving from a series of 
heuristic measures that researchers have developed.2l

Intelligence



139

But the newer research paradigms, for all their interest in ethology, in evo-
lutionary processes, and in intelligence as an emergent phenomenon, remain 
resolutely territorial:  retina- scanning, handwriting recognition, or the sim-
ulation of  predator- prey relationships are conspicuously bounded processes. 
One trains a neural network on specifi c, fi nite datasets. The ability to  pattern-
 match more generally presupposes the existence of redundancy in the data and 
thus self- similarity. So, one could argue that the ability to discern redundancy 
in data is the ability to learn about how things imitate or repeat themselves 
(like the data- mining software that tells us which books we want to buy).

Both artifi cial intelligence and artifi cial life research provide us with some 
interesting insights into the kind of intelligence that is operative within soft-
ware, but neither are well equipped to help us understand the exteriority of 
a kind of intelligence that exceeds both software and its human users. Our 
contention is that such intelligence must be understood in terms of a logic of 
events: It is the  process- fl ux of events of which software is a part that bears the 
intelligence, not the relatively closed systems that we program and over which 
believe we have control.

The concept of the natal proposed by Gilles Deleuze and Félix Guattari in 
A Thousand Plateaus provides a helpful way to work through this argument. 
The natal “consists in a decoding of innateness and a territorialisation of learn-
ing”22 and as such overcomes the  innate- acquired dichotomy that has dogged 
theories of learning. Behavior or activity specifi ed in advance (maybe in the 
form of specifi c sets of axioms or rules of inference) ceases to be entirely innate 
(preprogrammed), to the extent that the code that specifi es it has a margin 
of indeterminacy—an obvious point if it is accepted that formal systems are 
inherently incomplete. Likewise, the learning of behavior is not a completely 
random process of empirical induction because it takes place within territories 
that constrain it in certain ways. Rodney Brooks’s concept of a “subsumption 
architecture” (in which the order and combination of behaviors in a robot 
are not specifi ed in advance but prescribed by the constraints presented by 
the environment) confi rms this,23 while the failings of good old- fashioned AI 
might be traced to its unwillingness to concede that learning only takes place 
because all systems are open systems (in effect, this is what the concept of the 
natal shows us). However, AI’s emphasis on abstract symbol systems itself pro-
duces a disjunction between code and territory with its own deterritorializing 
effects.24 Computer scientist Robert Rosen’s argument that “there are (a) for-
mal constructions without material counterpart, and conversely, (b) material 
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constructions without formal counterpart” is indicative of both the decoding 
and deterritorializing aspects of machinic intelligence which the concept of 
the natal points out.25 What this means, very crudely, is that because mate-
rial reality and symbol systems do not “add up,” there is an unformalized ex-
cess that undercuts our understanding of intelligence. This excess continues 
to undermine attempts to manage intelligence by means of coded, rationally 
deductible properties.

Friedrich Kittler’s amusing view of computers as operating like the Laca-
nian unconscious, expressed best in his statement that all coding operations 
are ultimately “signifi ers of voltage differences”26 casts light on why machine 
intelligence has been and needs to be seen as a libidinal problem. If Kittler’s 
view is followed programmable machines would be, as Turing imagined, like 
the child in the proverbial family triangle: in training them to do what we 
ask them, they internalize the (formal) law on which the desire for recognition 
depends and give us the answers we deserve to the questions we ask. How-
ever as Gilles Deleuze and Félix Guattari have shown, the artifi cial isolation 
of a “primal scene” (of programming, in this instance) makes it all too easy to 
forget the fl ux of events that gnaws away at the laws of formalism and that 
makes intelligence something in excess of the symbols that we might choose 
to represent it.27

To summarize then: In the fi elds of computing and cognitive science, the 
question of intelligence has been posed historically in terms of imitation. The 
reason for understanding intelligence this way, it has been suggested, derives 
from how machine intelligence discloses the libidinal dimension of software. 
Breaking out of an implicitly or explicitly  human- centered understanding of 
machine intelligence (while also acknowledging the enormous labor that goes 
into constructing that intelligence) requires a theoretical framework which al-
lows us to understand how something can be fabricated as autonomous. With 
this framework in place it becomes easier to understand the “intelligence” put 
into play by of computers and the creation of software as an alien, machinic 
intelligence, a fact partially grasped by AI, artifi cial life, and cognitive science 
but without the means to fully project that intelligence into a reality outside 
of itself.
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Interaction
Michael Murtaugh

Types of interaction can be categorized in a variety of ways. One popular sort 
of interaction consists of the user making choices, either textual or via a graph-
ical user interface: selecting items from a menu; typing bits of information 
into a form; moving a mouse; clicking;  double- clicking. The popularity of the 
web and hypertext has bound the idea of interaction to branching link struc-
tures. The word “interactive” has become so overused in relation to computing 
and new media that, for instance, Lev Manovich describes its use in relation to 
computing as “tautological” and takes care to qualify any employment of the 
word when unable to avoid it altogether.1

Interaction is also linked to a tradition of engineers, mathematicians, and 
software hackers looking for a way to break out of the rigidity and the strict-
ness of their systems—out, as it were, of the black box. Interaction in the 
1960s represented reaction against, and liberation from, the mainframe  batch-
 processing computer center. It proposed a radical usage of computers: giving 
(untrained) groups of users “live” contact with the machine.

Input Tape

An early proponent of this new approach to computation was J. C. R. Licklider, 
a researcher with a background in psychoacoustics. In the 1950s Licklider had 
access to the TX- 2, an experimental computer developed at MIT that, along 
with having a Cathode Ray Tube display, speaker, control knobs, and a light 
pen, was fully  transistor- based. The TX- 2 could be readily reprogrammed from 
its keyboard instead of requiring physical rewiring or the use of punchcards.2

It was on the TX- 2 that Ivan Sutherland would later develop his Sketchpad 
program, cited by many, including Licklider, as a groundbreaking demonstra-
tion of the potential for truly interactive software.3 Licklider describes the then 
“state of the art”:

Present- day computers are designed primarily to solve preformulated problems or 

to process data according to predetermined procedures. The course of the computa-

tion may be conditional upon results obtained during the computation, but all the 

alternatives must be foreseen in advance. If an unforeseen alternative arises, the whole 
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process comes to a halt and awaits the necessary extension of the program. . . . If the 

user can think his problem through in advance, symbiotic association with a comput-

ing machine is not necessary. . . One of the main aims of man- computer symbiosis 

is to bring the computing machine effectively into the formulative parts of technical 

problems.4

Licklider links interaction to a crucial shift from computer as  problem- solver 
to computer as  problem- fi nder or  problem- explorer in a space of necessarily 
unforeseen possibilities.

Writing in the 1980s, cybernetician Stafford Beer describes an algorithm 
as “a technique, or mechanism, which prescribes how to reach a fully specifi ed 
goal.” He contrasts this with the idea of a heuristic (method), a word derived 
from the adjective meaning “to fi nd out”:

An heuristic specifi es a method of behaving which will tend towards a goal which 

cannot be precisely specifi ed because we know what it is but not where it is. . . . The 

strange thing is that we tend to live our lives by heuristics, and try and control them 

by algorithms. Our general endeavour is to survive, yet we specify in detail (“catch the 

8.45 train,” “ask for a raise”) how to get to this unspecifi ed and unspecifi able goal. We 

certainly need these algorithms, in order to live coherently; but we also need heuris-

tics—and we are rarely conscious of them.5

Writing in the 1990s, computer science theorists Peter Wegner and Dina 
Goldin provide another description of an algorithm: “A systematic procedure 
that produces—in a fi nite number of steps—the answer to a question or the 
solution to a problem.6

Wegner and Goldin propose an alternative to the Turing Machine based 
around a unifying concept of interaction. In the classic formulation, a Tur-
ing machine is an idealized computer that reads and writes symbols from an 
endless tape and has a notion of “state,” allowing a program written in these 
symbols to control the operation of the machine. The rules for this particular 
model dictate that once the machine begins operation, no new input may be 
received, and it must be guaranteed to reach a fi nal state in a fi xed amount of 
time. In addition, the starting state for the machine is precisely specifi ed and 
must be identical each time the machine is started.

In contrast, Wegner and Goldin propose “interactive computation” based 
on “interaction with an external world, or the environment of the computa-
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tion, during the computation—rather than before and after it, as in algorith-
mic computation.7

In one alternative model called a Persistent Turing Machine, Wegner and 
Goldin describe a variation on the classic Turing machine, now with tapes. 
The crucial differences in this model are: (1) the use of an input and an output 
tape to interface with the dynamic environment of the machine, (2) the provi-
sion for a work tape that remembers results from previous operation, and (3) 
the allowance for the machine to run continuously (no requirement to reach a 
fi nal state). By writing to and subsequently reading from the environment, the 
potential for feedback occurs. It is, however, a noisy channel, as the environ-
ment is explicitly allowed to be unpredictable, and potentially acted upon by 
other processes. Allowing past operation to infl uence the starting state also in-
troduces a greater degree of uncertainty. Allowing indefi nite operation refl ects 
a more  heuristic- driven approach as a result may be “tended towards” without 
necessarily being defi nitively reached.

By explicitly representing a place “outside” of the machine, Wegner and 
Goldin show that the resulting model is more expressive, able to describe ma-
chines that are not possible to fully represent as traditional Turing machines. 
In addition, they show how such a model fi ts much more readily with the 
realities of contemporary computation such as operating systems, networked 
software, and portable devices.8

Wegner and Goldin point out that Turing himself acknowledged other 
potential models that might include human interaction (choice- machines) or 
other external inputs (oracle- machines).9

Talking to to Stuart Brand in the 1980s, Andy Lippmann, director of an early 
experimental videodisc called the Aspen Movie Map, provided the following work-
ing defi nition of interactivity: “Mutual and simultaneous activity on the part of 
both participants usually working toward some goal, but not necessarily.”10

The Aspen Movie Map was an attempt to recreate the experience of exploring 
a city by virtually driving through the city’s streets, selecting points of inter-
est along the way to view in depth. The challenge for Lippman and the other 
designers of the project was to realize that goal within the extreme limitations 
of a static and limited storage medium.

Lippman describes fi ve “corollaries” or properties he felt were necessary to 
add to this to attain true interactivity: interruptibility; graceful degradation; 
limited look- ahead (not pre- computed); no default pathway, and; the “impres-
sion of an infi nite database.”11
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Work Tape

Surveying these different perspectives, some themes seem to emerge as central 
to interaction in relation to computation: liveness, plasticity and accretion, in-
terruption and incompleteness.

Liveness
A key recurrent theme in interactivity is liveness. Licklider states that a cen-
tral aim for  human- computer symbiosis is “to bring computing machines ef-
fectively into processes of thinking that must go on in ‘real time.’” Lippman’s 
“limited look ahead,” the importance of computational decisions happening 
“on the fl y” is paralleled by Wegner and Goldin’s notion of noncomputability, 
the idea that not all possible pathways can be precomputed.

The idea of the “infi nite database” is the subjective counterpoint to this 
noncomputability and liveness of the system: the feeling that there are infi nite 
possibilities to explore. A result of this liveness is that an interactive system is 
one that supports a sense of playing or performing with the system.

An important consequence of liveness is that interaction always occurs over 
time. In black box computation, time is neglible—the only requirement is 
that computation completes in a fi nite time. There is no sense of the “mutual” 
or simultaneous in algorithmic computation, all computation is completed 
before any results are passed on to the next process.

Interaction always involves simultaneity, as computation occurs iteratively 
through feedback to a shared and changing environment. Designing with in-
teraction requires a sensitivity to the timing of the processes involved.

Plasticity and Accretion
Licklider, formulating the idea of the computer as a communication device uses 
the term “cooperative modeling,” writing, “Creative, interactive communica-
tion requires a plastic or moldable medium that can be modeled, a dynamic me-
dium in which premises will fl ow into consequences, and above all a common 
medium that can be contributed to and experimented with by all.”12

Lippmann’s notions of interruptibility and graceful degradation express the 
desire for a kind of plasticity to the experience; the participant can push with-
out breaking the system.

The idea of malleability and plasticity connects back to the central role of 
persistence in Wegner and Goldin’s interactive computation. The fact that 
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the computation “holds its shape” in some sense requires that the interaction 
have some lasting effect (if only  short- term). Interaction includes the poten-
tial for processes to improve or evolve with accretion. The lack of a fi xed start-
ing state or default pathway underscores the importance of accretion to the 
computation.

Interruption and Incompleteness
For Lippman, it is the potential for interruption that keeps a conversation from 
becoming merely a lecture. In Wegner and Goldin’s interactive computation, it 
is in the noisy channel of the environment that interuption potentially occurs. 
The environment of the computation serves as the interface between the various 
processes, be they purely computational or the result of human intervention.

The desire for graceful degradation relates to the idea that the computation 
must not only be open to unpredictable input, but should use it well.

Models of the real world and even of integers sacrifi ce completeness in or-
der to express autonomous (external) meanings. Incompleteness is a necessary 
price to pay for modeling independent domains of discourse whose semantic 
properties are richer than the syntactic notation by which they are modeled.13

The components of an interactive system are inherently incomplete. Inter-
action always involves a tension between autonomous operation and  cross-
 infl uence of a system’s parts. The challenge for authors is to design processes 
that tend to steer the system toward desirable states rather than hard coding 
those states. An interactive process exploits its environment in order to fully 
realize its own functionality.

Output Tape

For the software designer, programming with interaction involves seeking a 
kind of magical moment of transformation, a moment when one begins to get 
back more than what was put in; an unexpected moment when the system 
seems not only just to work, but to almost come to life; a moment when what 
had previously been a noisy mess of buggy half- working mechanisms seems to 
fl ow together and become a kind of organic whole.

The elusive chase for this kind of transformative moment is the essential 
reason why geeks keep banging away at their keyboards, deep into the night, 
deprived of sleep and propped up by caffeine and sugar and the adrenaline of 
the experience of feeling in contact with something larger than oneself.
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Interaction rips computation out of the clean room of the algorithm and 
thrusts it into the tainted and unpredictable space of dynamic and shared 
environment.

Interaction forces a rethinking of algorithmic approaches toward those that 
perform a kind of dance alternating between active computation and respon-
sive strategies to a changing environment.

Embracing interaction requires the programmer or designer to break open 
the black boxes of algorithmic processes and acknowledge the incompleteness 
of what they create in the pursuit of experiences that are playful, insightful, 
and potentially surprising.
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Interface
Florian Cramer and Matthew Fuller

The term “interface” appears to have been borrowed from chemistry, where it 
means “a surface forming a common boundary of two bodies, spaces, phases.”1 
In computing, interfaces link software and hardware to each other and to their 
human users or other sources of data. A typology of interfaces thus reads:

1. hardware that connects users to hardware; typically input / output devices such 
as keyboards or sensors, and feedback devices such as screens or loudspeakers;
2. hardware that connects hardware to hardware; such as network interconnec-
tion points and bus systems;
3. software, or  hardware- embedded logic, that connects hardware to software; 
the instruction set of a processor or device drivers, for example;
4. specifi cations and protocols that determine relations between software and 
software, that is, application programming interfaces (APIs);
5. symbolic handles, which, in conjunction with (a), make software accessible to 
users; that is, “user interfaces,” often mistaken in media studies for “interface” as 
a whole.

While all of these categories of interface are signifi cant in relation to comput-
ing as a whole, only the last three, (3), (4), and (5), are discussed here.

Regarding (3), software typically functions as an interface to hardware. Com-
puter programs can be seen as tactical constraints of the total possible uses of 
hardware. They constrain, for example, the combination of a CPU, RAM, hard 
disk, mainboard, video card, mouse, keyboard, and screen with its abundant 
possible system states to the function of a word processor, a calculator, a video 
editor, etc. In other words, they interface to the universal machine by behaving 
as a specialized machine, breaking the former down to a subset of itself. This 
operation is linguistic because it reformulates the totality of available machine 
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instructions into a new control language. This language acts as an “abstraction 
layer.” It is either a subset of the total available instructions when it is Turing 
incomplete, or a redressing of them with different symbolic handles when it is 
Turing complete.

“User interface” and “programming interface” have not always differed. 
They had been identical in many operating systems and including the 8- bit 
home computers in the 1980s that booted into a BASIC programming lan-
guage prompt, or MIT’s Lisp machines, which had a Lisp programming envi-
ronment as their user interface.  Character- based shells such as DOS and Unix 
are used both as programming and user interfaces. The same is true, to a lesser 
degree, for graphical user interfaces when they are scriptable. But even if they 
are not scriptable, they still effectively act as specialized symbolic computer 
control languages. The distinction between a “user interface,” an “Application 
Program Interface” (API), and a computer control language is purely arbitrary. 
That more complex interfaces to computer functions tend to be called “pro-
gramming languages” and less complex, more specialized ones are known as 
“user interfaces” is simply a nomenclature arising out of convention. Since the 
user interface to a computer program is always symbolic, and involves syntacti-
cal and symbolic mappings for operations, it always boils down to being a for-
mal language. To the extent that they are understood symbolically, everything 
that can be said about software interfaces falls under the entry on language.

Similar to both its meaning in chemistry and to the meaning of “language,” 
“interfaces” are the point of juncture between different bodies, hardware, soft-
ware, users, and what they connect to or are part of. Interfaces describe, hide, 
and condition the asymmetry between the elements conjoined. The asymme-
try of the powers of these bodies is what draws the elements together. Un-
less they are savants, human users cannot quickly calculate Pi to the 100th 
place, or generate a model world in which the dimensions and trajectory of 
its every element are mapped, as a computer is able to do. In this sense the 
term interface emphasizes the representation or the re- articulation of a pro-
cess occurring at another scalar layer, while the term language, in a computer 
context, emphasizes control. The condensations of computational power that 
computers embody and that are differently articulated by individual pieces of 
software. Such condensations of power are of intense fascination and generate 
such productivity, and, at the same time, are radically alien to most human 
experiences of the world. It is this alienness that allows software, particularly 
at moments when one is attempting to understand its workings or to pro-
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gram it, that engenders the delicious moments of feedback between the styles 
of perception and ordering, logic and calculation, between the user and the 
computer to be so seductive and compelling. At the same time, this initially 
rich engagement with an interface tends to lose its luster once users realize the 
limitations of the programmed system. Equally, as when software is used to 
monitor, queue, and structure the fl ow of work, the compulsion provided by 
an interface can be of a different kind. The asymmetric powers conjoined by 
means of  human- machine interfaces, also fi nd themselves arranged in other re-
lations which themselves articulate, fi lter, and organize the activities modeled 
and modulated by the interface.

This asymmetry, while fundamental to the differences between human and 
machine operations, can further materialize in other levels of machine control 
granted to the user. While any user interface, including every programming 
language, mediates machine functions, the mediation can be deliberately 
(Turing- )incomplete or (Turing- )complete. But even the latter usage and pro-
gramming interface—Unix shells or the turtle of the Logo programming lan-
guage for example—like any language or instrument still impose and enhance 
particular workfl ows, thought modes, and modes of interaction upon or in 
combination with human users.

Asymmetry of powers is also mapped and sieved through interfaces in other 
ways. A search engine operates as an interface of many layers, ostensibly that 
between the user and the data being sought. Crucially, it also establishes an 
interface whereby the database can read the user, by means of records of pat-
terns of search terms and choices. And asymmetry is not simply a means of 
recognizing the associations made between computers and humans. APIs, as 
well as protocols that operate as interfaces between computers linked over a 
network, also establish descriptions of operations that are allowed and assigned 
a priority or blocked. APIs are increasingly important to the development of 
networks that rely on data and software working without being constrained 
by hardware platform, and the formulation of the algorithms that govern their 
operation has become of particular interest.

Within the paradigm of “user- friendliness,” that which is most easily rec-
ognizable and visible, software has been traditionally understood to place the 
user as its subject, and the computational patterns and elements initiated, used, 
and manipulated by the user as the corresponding grammatical objects. As soft-
ware is diffused through urban, social, and institutional contexts, the design 
of interfaces and even the basic level of awareness about what does or does not 
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constitute part of an interface, or that triggers a computational event, becomes 
increasingly important. Learning to recognize a human functioning as an in-
terface to a spreadsheet, or, as in much of generic electronic art, being able to 
read the sensors and interaction grammars deployed in a constructed space, are 
increasingly useful skills as interfaces not only spread out from the screen and 
the keyboard, but are also designed to dissimulate their function as interfaces.

Addressing item 5 in our initial list, the user interface articulates asym-
metry via different means: by the use of text;  visual- spatial structuring devices 
such as a window and its subcomponents, timeline or button; sounds, such as 
system event sounds; animated representations of running data- processes such 
as a “loading” bar, “throbbers” (used in web browsers), spinning cursors; wid-
gets; menus, which describe available functions; and other elements. Because 
such interface elements provide a mode of access to data and data structures, 
the ordering and occurrence of such elements are usually describable by and 
at a lower level designed using formalisms,  context- free grammars that at-
tempt to describe a metasyntax comprising every possible use of the computer 
or within a language or application. If the universal machine describes every 
possible rational computation, such systems set out the syntax for all possible 
interactions within the domain they describe. While the syntax of an interac-
tion is logically describable, no such constraint is necessary for visual or audio 
elements of interface within item 5. Such interfaces, and especially the “skin-
ning” systems that provide users with the opportunity to personalize the visual 
appearance of interface elements in applications or operating systems, conjoin, 
even if only at the representational level, formal grammars with assemblages of 
visual codes drawn from domains as diverse as heavy metal and manga graph-
ics. Low- level formalisms articulated through the representational matrices of 
high- trash genre conventions provide a refreshing break from the pretensions 
of computing to objectivity.

The meshing of poetic and formal language in the area of writing known 
as “codeworks” explores the rich experimental and speculative potential of 
alphanumerical computer control languages. Other net and software artists 
have demonstrated how audiovisual computer control languages (user inter-
faces) can be a playground for subjective, ironical, and epistemological dis-
ruptions, experiments, and critique. These interventions become all the more 
important the more the deliberate separation between “user” and “program-
ming” interfaces and languages is maintained.
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Notes

1. According to Webster’s Ninth Collegiate Dictionary, which dates the term to 1882.

Internationalization
Adrian Mackenzie

Enumerated entities are historical objects.
—helen verran1

The questions of “otherness” is rarely posed in relation to software. This is be-
cause universality fi gures so large in software. Software makes historically and 
materially specifi c claims to universality (think of Java’s “Write once, run any-
where” promise). This tends to push questions of otherness in software aside. 
By virtue of the notions of universality attached to numbering systems (such as 
decimal and binary), to computation (Universal Turing Machine), and to global 
technoculture itself, software seems virulently universal. When fi gures of oth-
erness appear around software, they tend to be pathological. Pathological soft-
ware forms such as viruses, worms, trojan horses, or even bugs are one facet of 
otherness marked in software. Much of the architecture and design, as well as 
much everyday work, pivots on security measures meant to regulate the entry 
and presence of these others, and at the same time to permit software to translate 
smoothly between institutional, political, linguistic and economic contexts.

“Greetings,” “Inquiry,” “Farewell”: Technical Universality

Within the design and architecture of much contemporary software, differ-
ent strategies of coping with otherness have developed. In the software in-
dustry, one of the main strategies for fi guring others is a process known as 
“internationalization” or “i18n” (for the 18 letters between i and n in “in-
ternationalization”). Techniques of internationalization allow software to be 
readily adapted to different local conventions, customs, and languages. Take 
an industry standard programming language of the late 1990s, Java a product 
of Sun Microsystems Corporation. As a programming language and software 
platform, Java’s claims to technical universality include  cross- platform exe-
cution, numerous network programming constructs and code portability. As 
Sun’s Java documentation states,
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Internationalization is the process of designing software so that it can be adapted 

(localized) to various languages and regions easily, cost- effectively, and in particular 

without engineering changes to the software. Localization is performed by simply add-

ing  locale- specifi c components, such as translated text, data describing  locale- specifi c 

behavior, fonts, and input methods.2

“Internationalized” Java software makes use of classes from the java.util pack-
age to separate universal components from local components. Local compo-
nents may have linguistic, symbolic, cultural, and geographic specifi cities. In 
the tutorial on Sun’s Java Tutorial site, the following code demonstrates this 
elementary separation:

import java.util.*;3

This sample code declares variables that hold values for “language,” and 
“country,” and it invokes classes (bundles of methods, functions, and data) 
that represent combinations of language and country called Locales. A Locale 
is used to choose appropriate resources from the ResourceBundle, a collection 
of  language- specifi c property fi les distributed with the program. For instance, 
a German resource bundle might contain the following entries:

greetings = Hallo.

farewell = Tschüß.

inquiry = Wie geht’s?

Java supports a standard set of locales that correlate with well- developed, af-
fl uent countries.4 These include messages, writing systems, and symbols such 
as currency displayed to users, as well as more basic algorithmic processes such 
as counting, searching, and sorting, which often need to be internationalized. 
For instance, dates are formatted differently in different locales, and need to be 
sorted according to their format. The concept of the locale points to another 
key aspect of internationalization: As software is distributed globally, it has to 
take into account where and when it is running. Time zones form key parts of 
the infrastructural relations that situate software geographically. Most software 
needs to be able to represent where and when it is running. Time zones form 
part of the  cross- hatched texture of actions in other spaces and times articulated 
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in software. Additionally, practices of sorting (a key consideration in any soft-
ware) shift radically between writing systems. For instance, sorting alphabeti-
cally, a straightforward task in European writing systems, cannot be taken for 
granted in Asian writing systems. In Java, all text characters are encoded in 
Unicode, a character set that represents all characters in all written languages 
by unique numbers (in fact, Unicode itself constitutes a primary component of 
present day software internationalization processes; it merits discussion in its 
own right5). In the character series for European languages, the order of Uni-
code characters corresponds to alphabetical order. This is not guaranteed for all 
languages. Sorting strings in non- European languages requires different tech-
niques. Assumptions about order, sequence, and sorting go to the heart of the 
design of software. Interestingly, the closer one moves to the core of the Java 
programming environment, the more restricted the set of supported locales be-
comes. For instance, whereas Java graphic user interface components display 
messages in roughly a dozen different languages, the messages displayed by the 
Java Software Development Kit (the bundle of tools used to develop Java soft-
ware) only display messages in English and Japanese.

Software for “Human Beings”: Fictitious Universality

Technically universal yet abstractly local, commercial internationalization fo-
cuses on consumption and use of software, not its distribution or production. 
Wider distribution may be the purpose of internationalization, but the nature 
of distribution and production themselves does not change through techniques 
of internationalization, no matter how thoroughly carried through into different 
aspects of software. Yet distribution is perhaps the key issue in software today 
because changes in the nature of distribution of software change what can be 
done with and through software. Software is becoming social. Ubuntu, “Linux 
for Human Beings,” a project supported heavily by Mark Shuttleworth, a South 
African entrepreneur,6 is a Linux / GNU distribution in which internationaliza-
tion of distribution itself fi gures centrally as part of the project. Ubuntu repre-
sents a politically progressive open source or FLOSS alternative to commercial 
strategies of internationalization represented by Sun’s Java or various equiva-
lents found in Microsoft’s .NET, etc. The Ubuntu Manifesto states that “Soft-
ware should be available free of charge, that software tools should be usable by 
people in their local language, and that people should have the freedom to cus-
tomize and alter their software in whatever way they need.”7
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Whereas the techniques of internationalization are concerned with the cost-
 effective entry of products into different markets, the Ubuntu distribution 
makes use of the “very best in translations and accessibility infrastructure that the 
Free Software community has to offer, to make Ubuntu usable for as many 
people as possible.” (my emphasis) The “translation and accessibility infrastruc-
ture” that the manifesto has in mind are none other than Rosetta (a web- based 
system for translating open source software into any language)8 and LaunchPad 
(a collection of services built by Shuttleworth).9 These software services coor-
dinate the localization of software by allowing volunteers and other partici-
pants to supply the translation of menu items, dialogs, and other text- based 
elements of the user interface and help fi les. The distribution of Ubuntu is 
predicated partly on the redistribution of the work of translating to cohorts of 
volunteer translators who are explicitly assured that “Ubuntu will always be 
free of charge.”10

Like i18n, Ubuntu assumes a great deal about the universal relevance of 
its code. This is a point that Soenhke Zehle has recently highlighted.11 Code 
is produced for Ubuntu (and many other software projects) in technically ad-
vanced contexts in Europe, North America, India, and East Asia, and then lo-
calized for execution in less developed countries by volunteers (who themselves 
may or may not be local). Ubuntu introduces a multinational dimension to the 
internationalization of software, but the software itself remains universal in its 
aims and expectations because code and software themselves are presumed to 
be universal as text and as a practice. In this respect, no matter how distributed 
its production might become, and how many eyes and hands contribute to it, 
there is no Other fi gured in software because software itself now garners uni-
versality from that other universal, “human beings,” free individuals who are 
normalized in important ways. Despite the reorganization of distribution and 
production to include collective modes of localization, and the corresponding 
overcoming of institutional, national, and economic discrimination against cer-
tain ethnic groups, the code itself makes assumptions about computing plat-
forms, network infrastructures, information environments, and people that 
may not be universally relevant.

Tropically Relevant Code and Ideal Universality

Could i18n be done differently? This question touches on political struggles 
over the value of universals that have been at the heart of much theoretical 
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debate in the last decade. It is diffi cult to articulate any viable alternative to 
technical universality (software that runs anywhere, as Java claims) or to fi cti-
tious universality (Ubuntu’s software for human beings) because universality 
itself is a deeply ambiguous concept.12 To highlight this ambiguity, I want to 
point out some of the underpinnings of all software: reliance on practices of 
numbering, enumerating, and sorting.

In volume 1 of The Art of Computer Programming, Donald Knuth wrote: 
“Computer programs usually operate on tables of information. In most cases 
these tables are not simply amorphous masses of numerical values; they in-
volve important structural relationships between the data elements.”13 The keys 
terms are already highlighted by Knuth. Software never deals with amorphous 
masses of value, but structural relationships. The properties of these relation-
ships, and the value accorded to different relations are not universal. They ex-
ist in particular places, histories, and contexts. The panoply of data structures, 
algorithms, database designs, protocols, and network topologies developed by 
programmers over the last fi fty years attest to the singularity of these relation-
ships. Software concatenates every single value, no matter how trivial, in re-
lationships that are essentially social, communicative, and corporeal or living.

These relationships afford some kinds of universality and not others. To 
understand this, we need only turn to recent anthropological studies of math-
ematics. Ethnomathematics is motivated by the problem of universality and, 
in particular, how to make sense of different ways of dealing with unity and 
plurality without bogging down in relativism. It offers leads on how we might 
begin to think about universality more concretely and thereby begin to radi-
calize software internationalization. Such analysis points to forms of univer-
sality that ultimately call into question existing fi gures of consumer, user or 
human. In Science and an African Logic, Helen Verran writes, “numbers are lo-
cated in the embodied doing of rituals with hands, eyes, and words, but if this 
is so, how is it that they seem to have the capacity to be defi nitive even in the 
absence of any bodily doings?”14 Her answer to this question is highly germane 
to software. It pivots on the idea that certain practices transform written forms 
of numerals (Knuth’s “numerical values”) into numbers (Knuth’s “structural 
relationships”): “Enumeration ‘transforms’ all numerals to numbered bodies 
by the very precise operation of interpellating, and likewise transforms non-
enumerated bodies to enumerated.”15 That is, numerals are elements in a writ-
ing system, but numbers are things that marshal, order, and defi ne bodies in 
the most general sense. The translation from inscribed numeral to embodied 
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number occurs through practices of enumeration that are lived, singular, and 
specifi c.

For instance, the Yoruba numbering practices described by Verran are  multi-
 base (base 5, base 10, and base 20). This affords highly fl exible and rapid mental 
calculation far surpassing what can be done in base 10 mental calculation that 
appeared in European cultures sometime around 1300.16 This implications of 
this go far: Yoruba numbers are different to European numbers in the way they 
deal with unity and plurality. Rather than projecting outwards in long series 
or sets of numbers as European practices of enumeration tend to, they incor-
porate inwards, in numbers nested in each other.17 That is, numbers are gener-
ated by differing forms of  number- naming that themselves stem from different 
bodily and linguistic practices. Distinctions between hands and feet, left and 
right fi gure directly in Yoruba multibase numbering, whereas ten fi ngers “are 
treated as a set of homogeneous elements taken as linearly related.”18

In a less radical difference, programming languages could be analyzed in 
terms of their enumeration strategies and the ways they generate unities and 
pluralities. Lisp differs from Python by virtue of the emphasis it puts on recur-
sion as a way of enumerating, but recursion is sometimes diffi cult to invoke. 
Python and Java make enumeration a readily available function, invoked count-
less times by programmers and programs. For instance, the elementary “dic-
tionary” datatype in Python defi nes one- to- one relationships between keys and 
values19 that allow mental operations of ordering to be merged with physical 
operations. Most of the fundamental data structures learned by programmers 
permit entities to be numbered in some way. Tables, lists, queues, arrays, and 
trees all offer ways of enumerating, as well as sorting, ordering, searching, and 
accessing. It is easy to forget that these structural relationships also interpel-
late bodies as subjects, citizens, inhabitants, patients, users, clients, workers, 
events, others, things, parts, animals, organisms, stock, sets, lives, etc. The very 
same construction and manipulation that transform numerals (graphic forms) 
into numbers (things in relations of plurality), constitute bodies in structural 
relationships. Interpellation is one way of theorizing the ritual hailing that 
brings bodies of all kinds into forms of subjecthood in relation to number. 
This singularizing effect is deeply embedded in the graphical writing systems 
on which software so heavily draws. The very existence of a numeral zero has 
intense cultural specifi city that passes from India through Arabic to medieval 
Italian calculation techniques. It need only be invented in numbering systems 
that ill- afford mental calculation such as the base 10 systems Western cultures 
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have long used (“Zero seems to emerge with the pressures of the graphic record-
ing of a clumsy calculating system”20).

Enumeration has specifi cities that relate to rituals of interpellation embed-
ded in language, gesture, and writing. This point has deep implications for 
what software does, and how “others” are designated and predicated in soft-
ware. If these rituals differ between times and places (Verran discusses Yoruba 
tallying and counting practices in detail), then relations of unity and plu-
rality differ. The general logic constantly re- enacted in elementary software 
constructs defi ned at the level of programming languages and at the level 
of software architectures makes particular ways of enumeration (and sorting, 
searching, etc.) continue to work. Although enumeration practices are usually 
“naturalized” (that is, taken for granted), making particular enumerations work 
is political: it concerns how people belong together. “In any practical  going- on 
with numbers,” writes Verran, “what matters is that they can be made to work, 
and making them work is a politics. Yet is a politics that completely evades 
conventional foundationist [that is, based on necessarily uniform ideals] analy-
sis.”21 The universality that might be at stake here could be called “ideal” 
in the sense that it is “always already beyond any simple or ‘absolute’ unity, 
therefore a source of confl icts forever.”22

Problems of Actual Internationalization

In analyzing how software moves from technical to fi ctitious to ideal univer-
sality, internationalization becomes increasingly problematic. The fi guring of 
otherness becomes steadily more deeply embodied. In i18n, the local adapta-
tions of technical universality weave software into the  techno- economic re-
alities of globalization. More recent alterations in software distribution and 
certain aspects of production broaden the spectrum of actors involved and be-
gin to change the way software moves globally. Yet this occurs at a cost: It 
requires individuals to fi t a norm of being human beings. However in ideal 
universality, the construct that animates internationalization is transindi-
vidual by nature. That is, it questions the given and seemingly natural rules 
that constitute software as a convoluted set of practices of tallying, number-
ing, sorting, and searching. This questioning directly concerns embodiment, 
power, and language. It is not easy to point to any practical instance of this 
questioning. The notion of an ideal universality of software might, however, 
frame the problem of software internationalization at a different level.
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Interrupt
Simon Yuill

In the early days of modern computing, the computer would execute a single 
program at a time, from start to fi nish. This is known as “batch processing”; 
programs would be collected in a batch and then run one after another. By the 
late 1950s a new paradigm had emerged, that of interactive computing, in 
which the computer operator could stop and start programs and edit them on 
the computer itself. This required the computer processor to receive external 
signals while it was running. Two methods emerged for handling this: “poll-
ing” and “interrupts.” In polling, the computer periodically checks to see if 
any external signals have arrived but the processor retains control over when 
they are handled. In interrupts, the signals are handled whenever they arrive, 
“interrupting” the processor in whatever it is doing, and giving some control 
over its activities to an external agent. While polling continues to be used on 
some simple processor devices, the interrupt enabled more sophisticated forms 
of interaction between a computer and the external world. It has become the 
basis of most operating system designs and is hardwired into many processor 
chips and computer boards, such as the IRQ (Interrupt ReQuest) lines, which 
provide the link between the central processing unit (CPU) and all kinds of ex-
ternal devices such as keyboards, mice, and network cards. Interrupts can also 
be used for handling interaction between different programs on one operat-
ing system, signalling, for example, when a program has completed. It is also 
used for handling errors that arise in the execution of a program, such as buffer 
overfl ows, errors in allocating memory, or attempting to divide a number by 
zero. The interrupt is the main mechanism through which an operating sys-
tem seeks to maintain a coherent environment for programs to run within, co-
ordinating everything external to the central processor, whether that be events 
in the outside world, such as a user typing on a keyboard or moving a mouse, 
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or things outside the system’s internal coherence, such as a buffer overfl ow or 
an operational error in a piece of software.1

The interrupt fundamentally changed the nature of computer operation, and 
therefore also the nature of the software that runs on it. The interrupt not only 
creates a break in the temporal step- by- step processing of an algorithm, but also 
creates an opening in its “operational space.” It breaks the solipsism of the com-
puter as a Turing Machine, enabling the outside world to “touch” and engage 
with an algorithm.2 The interrupt acknowledges that software is not suffi cient 
unto itself, but must include actions outside of its coded instructions. In a very 
basic sense, it makes software “social,” making its performance dependent upon 
associations with “others”—processes and performances elsewhere. These may 
be human users, other pieces of software, or numerous forms of phenomena 
traced by physical sensors such as weather monitors and security alarms. The 
interrupt connects the dataspace of software to the sensorium of the world.

Within an operating system, the various kinds of interrupt signals are dif-
ferentiated by an identifi er, which is mapped to a short handler program by 
an “interrupt vector.” In this way, typing on a keyboard can be handled dif-
ferently from a packet arriving over the network. The notion of an interrupt 
vector, however, can be rethought, not only in terms of how particular external 
events extend into actions within the operating system, but also in terms of 
how the actions of a particular piece of software are themselves extended into, 
and are extensions of, various sorts of social actions. The interrupt vector, then, 
becomes a carrier through which different elements of a social assemblage are 
associated. The social aspect of software unfolds in the very process of mak-
ing these associations. Latour describes the “social” as being the associations 
that link different “actors” in time and space.3 These actors can be humans, or 
non- human objects. An actor is any entity that plays a signifi cant part in the 
formation of associations from which the social is formed. The interrupt is 
one principle through which such associations can be constructed and broken. 
During a lecture by the philosopher Jacques Derrida, a member of the audi-
ence, the cultural theorist Avital Ronell, interjected with the question: “How 
do you recognize that you are speaking to a living person?” to which Derrida 
responded: “By the fact that they interrupt you.”4 In this sense, we could say 
that software’s “cognition” of the social is comparable to Derrida’s. Indeed, the 
action of interruption, of the break, is fundamental to the notion of the “gram,” 
the mark that differentiates, upon which Derrida’s grammatology, the study 
of the role of inscription in the construction of human social and cultural 
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systems, is based.5 The interrupt, therefore, is the mechanism through which 
the social, as a process of making and breaking associations with others, is in-
scribed into a piece of running software.

If software is understood as an actor in such assemblages, then the opera-
tional space in which it performs is potentially the space of an entire assemblage, 
one which grows and contracts as circumstances change. The combinations in 
which software operates are often more complex than might fi rst be assumed. A 
typical piece of desktop software, such as a text editor program, operates within 
an assemblage that includes not only the software itself and the user but also the 
operating system on which the program runs, and the devices through which 
the user interacts with it: the mouse, keyboard, and screen. If the keyboard is re-
moved, the text editor program becomes inoperative, even though the program 
itself has not been altered. Elements such as the keyboard also provide a form of 
liminal boundary. When we press the keyboard we are literally and consciously 
entering into the operational space of the software. The situation becomes more 
complex, however, as we start to consider the kinds of assemblage that are con-
stituted by other forms of software, such as those in embedded devices, and the 
“actors” with which they operate, such as radio frequency identifi cation tags 
(RFID). Whereas we might describe the operational space of software in the 
context of a user at a desktop system as having a liminal boundary, these other, 
far more distributed, forms of software operate in a much more porous situa-
tion. Liminal boundaries are those that draw a distinct line, that one can have a 
defi nite sense of crossing, of being inside and outside of. Porous boundaries are 
less distinct; it is harder to tell when one is inside or outside, and they may have 
qualities of absorbency and leakage. Some assemblages may consist of multiple 
operational spaces, either nested or overlapping. The interrupt can therefore be 
thought of, on an extended level, as the vector that not only constructs associa-
tions between actors, but also traverses varying operational spaces.

Transport systems has been one of the main fi elds of deployment of such 
porous software systems. A combination of road surface sensor systems and 
networked CCTV cameras, linking in various analysis tools, have brought road-
ways into the operational space of software such as Automated Number Plate 
Recognition Systems (ANPRS) and Intelligent Transportation Systems (ITS). 
These systems monitor traffi c fl ow for irregular incidents such as speed viola-
tion and breakdowns, or track vehicles in Congestion Charging Zones such as 
that in central London.6 The roadway itself becomes a software interface, and 
road- markings and traffi c signs all become actors within the assemblage of the 
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roadway’s operational space. The cars traveling on the roads may contribute 
their own software actors, in employing intelligent braking systems, or GPS 
navigation consoles. Within the process of airline travel, numerous software ac-
tors enter in and out of a variety of assemblages that travelers, pilots, and other 
staff all, similarly, enter and exit. These include the software that manages the 
transport of luggage and tourists through the airport terminal, the software 
that analyzes x- ray scans of luggage, the passport systems that log traveler IDs, 
which, in turn, are often connected to automated photographic devices or bio-
metric scanners. The interoperability of runway markings, air corridors, and 
control tower navigation systems, and the on- board fl ight controllers also play 
a part. On an average day, an individual in a city may connect and disconnect 
from numerous assemblages involving different software actors. Frequently, 
they are unaware of the various operational spaces that they have interrupted: 
using mobile phones, “smart” cards on public transport systems (such as Lon-
don’s Oyster card), bank autoteller machines, RFID tagged goods, or a key-
code to access a building. The CCTV system of a bank, offi ce, or housing estate 
may be linked up to movement analysis tools, seeking to detect a possible 
hold- up scenario, or irregular movement patterns among the building’s oc-
cupants. The introduction of chip- carrying biometric identity cards, as is 
currently planned in the United Kingdom, may bring with it the ability to 
 cross- reference these cards and the readings of CCTV facial analysis systems, 
linking the interruptions of human activity in urban space to singular iden-
tities, just as logging onto a computer links the interrupts of keyboard and 
mouse to a particular username.7 The operational space of software extends 
over large physical areas in which algorithms become the arbiters of norma-
tive behavior and of inclusion and exclusion. The “Cartografi ando el Territorio 
Madiaq” is an ongoing project to map the complex of surveillance systems, 
military bases, and communication infrastructures that are in place across the 
Strait of Gibraltar between Spain and Morocco.8 It demonstrates the complex 
assemblages of actors (technological, military, and legal) that are involved in 
policing the Spanish borders. The play of the liminal and porous in evidence 
here is not only one of boundaries along the operational spaces of various soft-
ware systems, but also the construction of the European Union’s own political 
and economic boundaries which, through such surveillance, become confl ated 
with software processes.

Porous is not the same as open. A porous surface acts as a regulatory mecha-
nism, as the porosity of skin regulates the fl ow of moisture and air between 
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the body and its environment. The systems described above create porosity in 
otherwise open spaces. The regulatory trajectory, however, is not exclusively 
one- way. In a memoir, one of the inventors of the interrupt mechanism, Eds-
ger Dijkstra, wrote:

It was a great invention, but also a Box of Pandora. Because the exact moments of 

the interrupts were unpredictable and outside our control, the interrupt mechanism 

turned the computer into a nondeterministic machine with a non- reproducible behav-

ior, and could we control such a beast?9

The interrupt increases the contingency of the environment in which a piece 
of software runs. In constructing associations with an “outside” it makes the 
operation of software more situated in that outside and, therefore, prone to 
the contingencies of that outside environment.10 The interrupt transfers gov-
ernance back and forth between computer and user, or other outside actors. 
Around every piece of software, a set of shadow practices develop that are not 
inscribed in the code itself, but on which its ability to act depends. Christian 
Heath and Paul Luff’s studies of the use of software in businesses and orga-
nizations demonstrates that the software is often only effective when nested 
within larger structures of governance that guide the gestures of those who 
interact with it.11 This combined governance of software and user environ-
ments is sharply evident in call centers, in which a hybrid software and mana-
gerial infrastructure maintains the overall mechanism.12 What might be called 
“counter- interruptive” practices also develop, such as maps of CCTV and traf-
fi c cameras enabling people to plan routes that avoid them, or call center em-
ployees who trigger fake systems crashes to buy a bit of unlogged free time.13 
The transfer of governance can also be an opportunity to interrupt its initial 
vector and claim other possibilities.

If the interrupt teaches us anything about software, it is that software is in 
many cases only as effective as the people who use it, those nondeterministic 
machines with their complex, non- reproducible behaviors, those “others” on 
whom it relies—can it really control such beasts? To understand software in 
terms of the interrupt is to understand it in terms of its place within larger 
structures of social formation and governance. Software engineering is simulta-
neously social engineering. Software criticism, therefore, must also be simul-
taneously social. In critically engaging with software, we must not only map 
the vectors of the interrupt, but also seek to make our own interruptions, to 
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pose questions and insert alternative vectors and practices within the assem-
blages it connects to.

Notes
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13. The Institute for Applied Autonomy’s iSee is an interactive online map of CCTV 
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Language
Florian Cramer

Software and language are intrinsically related, since software may process lan-
guage, and is constructed in language. Yet language means different things in 
the context of computing: formal languages in which algorithms are expressed 
and software is implemented, and in so- called “natural” spoken languages. 
There are at least two layers of formal language in software: programming lan-
guage in which the software is written, and the language implemented within 
the software as its symbolic controls. In the case of compilers, shells, and macro 
languages, for example, these layers can overlap. “Natural” language is what 
can be processed as data by software; since this processing is formal, however, 
it is restricted to syntactical operations.

While differentiation of computer programming languages as “artifi cial 
languages” from languages like English as “natural languages” is conceptually 
important and undisputed, it remains problematic in its pure terminology: 
There is nothing “natural” about spoken language; it is a cultural construct 
and thus just as “artifi cial” as any formal machine control language. To call pro-
gramming languages “machine languages” doesn’t solve the problem either, 
as it obscures that “machine languages” are human creations.

High- level  machine- independent programming languages such as Fortran, 
C, Java, and Basic are not even direct mappings of machine logic. If pro-
gramming languages are human languages for machine control, they could 
be called cybernetic languages. But these languages can also be used outside 
machines—in programming handbooks, for example, in programmer’s dinner 
table jokes, or as abstract formal languages for expressing logical constructs, 
such as in Hugh Kenner’s use of the Pascal programming language to explain 
aspects of the structure of Samuel Beckett’s writing.1

In this sense, computer control languages could be more broadly defi ned 
as syntactical languages as opposed to semantic languages. But this terminol-
ogy is not without its problems either. Common languages like English are 
both formal and semantic; although their scope extends beyond the formal, 
anything that can be expressed in a computer control language can also be ex-
pressed in common language. It follows that computer control languages are a 
formal (and as such rather primitive) subset of common human languages.
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To complicate things even further, computer science has its own under-
standing of “operational semantics” in programming languages, for example 
in the construction of a programming language interpreter or compiler. Just 
as this interpreter doesn’t perform “interpretations” in a hermeneutic sense of 
semantic text explication, the computer science notion of “semantics” defi es 
linguistic and common sense understanding of the word, since compiler con-
struction is purely syntactical, and programming languages denote nothing 
but syntactical manipulations of symbols.

What might more suitably be called the semantics of computer control lan-
guages resides in the symbols with which those operations are denoted in most 
programming languages: English words like “if,” “then,” “else,” “for,” “while,” 
“goto,” and “print,” in conjunction with arithmetical and punctuation sym-
bols; in alphabetic software controls, words like “list,” “move,” “copy,” and 
“paste”; in graphical software controls, such as symbols like the trash can.

Ferdinand de Saussure states that the signs of common human language are 
arbitrary2 because it’s purely a  cultural- social convention that assigns phonemes 
to concepts. Likewise, it’s purely a cultural convention to assign symbols to ma-
chine operations. But just as the cultural choice of phonemes in spoken language 
is restrained by what the human voice can pronounce, the assignment of sym-
bols to machine operations is limited to what can be effi ciently processed by the 
machine and of good use to humans.3 This compromise between operability and 
usability is obvious in, for example, Unix commands. Originally used on tele-
type terminals, the operation “copy” was abbreviated to the command “cp,” 
“move” to “mv,” “list” to “ls,” etc., in order to cut down machine memory use, 
teletype paper consumption, and human typing effort at the same time. Any 
computer control language is thus a cultural compromise between the con-
straints of machine design—which is far from objective, but based on human 
choices, culture, and thinking style itself 4—and the equally subjective user pref-
erences, involving fuzzy factors like readability, elegance, and usage effi ciency.

The symbols of computer control languages inevitably do have semantic 
connotations simply because there exist no symbols with which humans would 
not associate some meaning. But symbols can’t denote any semantic state-
ments, that is, they do not express meaning in their own terms; humans meta-
phorically read meaning into them through associations they make. Languages 
without semantic denotation are not historically new phenomena; mathemati-
cal formulas are their oldest example.
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In comparison to common human languages, the multitude of program-
ming languages is of lesser signifi cance. The criterion of Turing completeness 
of a programming language, that is, that any computation can be expressed in 
it, means that every programming language is, formally speaking, just a riff 
on every other programming language. Nothing can be expressed in a  Turing-
 complete language such as C that couldn’t also be expressed in another  Turing-
 complete language such as Lisp (or Fortran, Smalltalk, Java . . .) and vice versa. 
This ultimately proves the importance of human and cultural factors in pro-
gramming languages: while they are interchangeable in regard to their control 
of machine functions, their different structures—semantic descriptors, gram-
mar and style in which algorithms can be expressed—lend themselves not 
only to different problem sets, but also to different styles of thinking.

Just as programming languages are a subset of common languages,  Turing-
 incomplete computer control languages are a constrained subset of  Turing-
 complete languages. This prominently includes markup languages (such as 
HTML), fi le formats, network protocols, and most user controls (see the entry 
“Interface”) of computer programs. In most cases, languages of this type are 
restrained from denoting algorithmic operations for computer security rea-
sons—to prevent virus infection and remote takeover. This shows how the 
very design of a formal language is a design for machine control. Access to 
hardware functions is limited not only through the software application, but 
through the syntax the software application may use for storing and transmit-
ting the information it processes. To name one computer control language a 
“programming language,” another a “protocol,” and yet another a “fi le format” 
is merely a convention, a nomenclature indicating different degrees of syntac-
tic restraint built into the very design of a computer control language.

In its most powerful  Turing- complete superset, computer control language 
is language that executes. As with magical and speculative concepts of lan-
guage, the word automatically performs the operation. Yet this is not to be 
confused with what linguistics calls a “performative” or “illocutionary” speech 
act, for example, the words of a judge who pronounces a verdict, a leader giving 
a command, or a legislator passing a law. The execution of computer control 
languages is purely formal; it is the manipulation of a machine, not a social 
performance based on human conventions such as accepting a verdict. Com-
puter languages become performative only through the social impact of the 
processes they trigger, especially when their outputs aren’t critically checked. 
Joseph Weizenbaum’s software psychotherapist Eliza, a simple program that 
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syntactically transforms input phrases, is a classical example,5 as is the 1987 
New York Stock Exchange crash that involved a chain reaction of “sell” recom-
mendations by day trading software.6

Writing in a computer programming language is phrasing instructions for 
an utter idiot. The project of Artifi cial Intelligence is to prove that intelligence 
is just a matter of a suffi ciently massive layering of foolproof recipes—in lin-
guistic terms, that semantics is nothing else but (more elaborate) syntax. As 
long as A.I. fails to deliver this proof, the difference between common lan-
guages and computer control languages continues to exist, and language pro-
cessing through computers remains restrained to formal string manipulations, 
a fact that after initial enthusiasm has made many experimental poets since the 
1950s abandon their experiments with  computer- generated texts.7

The history of computing is rich with confusions of formal with common 
human languages, and false hopes and promises that formal languages would 
become more like common human languages. Among the unrealized hopes are 
artifi cial intelligence, graphical user interface design with its promise of an “in-
tuitive” or, to use Jef Raskin’s term, “humane interface,”8 and major currents 
of digital art. Digital installation art typically misperceives its programmed 
behaviorist black boxes as “interactive,” and some digital artists are caught in 
the misconception that they can overcome what they see as the Western male 
binarism of computer languages by reshaping them after romanticized images 
of indigenous human languages.

The digital computer is a symbolic machine that computes syntactical lan-
guage and processes alphanumerical symbols; it treats all data—including 
images and sounds—as textual, that is, as chunks of coded symbols. Nelson 
Goodman’s criteria of writing as “disjunct” and “discrete,” or consisting of sep-
arate single entities that differ from other separate single entities, also applies 
to digital fi les.9 The very meaning of “digitization” is to structure analog data as 
numbers and store them as numerical texts composed of discrete parts.

All computer software controls are linguistic regardless of their perceiv-
able shape, alphanumerical writing, graphics, sound signals, or whatever else. 
The Unix command “rm fi le” is operationally identical to dragging the fi le 
into the trashcan on a desktop. Both are just different encodings for the same 
operation, just as alphabetic language and morse beeps are different encodings 
for the same characters. As a symbolic handle, this encoding may enable or 
restrain certain uses of the language. In this respect, the differences between 
 ideographic- pictorial and  abstract- symbolic common languages also apply 
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to computer control languages. Pictorial symbols simplify control languages 
through predefi ned objects and operations, but make it more diffi cult to link 
them through a grammar and thus express custom operations. Just as a picto-
gram of a house is easier to understand than the letters h- o- u- s- e, the same is 
true for the trashcan icon in comparison to the “rm” command. But it is diffi cult 
to precisely express the operation “If I am home tomorrow at six, I will clean 
up every second room in the house” through a series of pictograms. Abstract, 
grammatical alphanumeric languages are more suitable for complex compu-
tational instructions.10 The utopia of a universal pictorial computer control 
language (with icons, windows, and pointer operations) is a reenactment of 
the rise and eventual fall of universal pictorial language utopias in the Renais-
sance, from Tommaso Campanella’s “Città del sole” to Comenius’ “Orbis pic-
tus”—although the modern project of expressing only machine operations in 
pictograms was less ambitious.

The converse to utopian language designs occurs when computer control lan-
guages get appropriated and used informally in everyday culture. Jonathan Swift 
tells how scientists on the fl ying island of Lagado “would, for example, praise 
the beauty of a woman, or any other animal . . . by rhombs, circles, parallelograms, 
ellipses, and other “geometrical terms.”11 Likewise, there is programming lan-
guage poetry which, unlike most algorithmic poetry, writes its program source 
as the poetical work, or crossbreeds cybernetic with common human languages. 
These “code poems” or “codeworks” often play with the interference between 
human agency and programmed processes in computer networks.

In computer programming and computer science, “code” is often under-
stood either as a synonym of computer programming language or as a text 
written in such a language. This modern usage of the term “code” differs from 
the traditional mathematical and cryptographic notion of code as a set of for-
mal transformation rules that transcribe one group of symbols to another group 
of symbols, for example, written letters into morse beeps. The translation that 
occurs when a text in a programming language gets compiled into machine 
instructions is not an encoding in this sense because the process is not one-
 to- one reversible. This is why proprietary software companies can keep their 
source “code” secret. It is likely that the computer cultural understanding of 
“code” is historically derived from the name of the fi rst high- level computer 
programming language, “Short Code” from 1950.12 The only programming 
language that is a code in the original sense is assembly language, the  human-
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 readable mnemonic one- to- one representation of processor instructions. Con-
versely, those instructions can be coded back, or “disassembled,” into assembly 
language.

Software as a whole is not only “code” but a symbolic form involving cul-
tural practices of its employment and appropriation. But since writing in 
a computer control language is what materially makes up software, critical 
thinking about computers is not possible without an informed understanding 
of the structural formalism of its control languages. Artists and activists since 
the French Oulipo poets and the MIT hackers in the 1960s have shown how 
their limitations can be embraced as creative challenges. Likewise, it is incum-
bent upon critics to refl ect the sometimes more and sometimes less amusing 
constraints and game rules computer control languages write into culture.
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Lists
Alison Adam

The list is a fundamental way of classifying and ordering information. In com-
puting, the word refers to a data structure that is an ordered group of enti-
ties, although, as explored below, culturally, its roots are much wider. Arrays, 
which are multidimensional, are related to lists in that a list can be considered 
as a one dimensional array. Queues and stacks are special types of lists. In a 
queue, the element that was added to the queue fi rst is processed fi rst, behav-
ing in much the same way as an orderly queue of people waiting in line for a 
bus. This is often described as “fi rst in, fi rst out,” or FIFO, processing. By con-
trast, in a stack, the last element added to the stack is processed fi rst—“last in, 
fi rst out,” or LIFO, processing. In most cultures, a stack approach to waiting 
in line for a bus would not be acceptable.

Lists can be present in spoken and written language. Arguably, it is the 
business of recording lists which marks out literate societies from preliterate 
societies, where knowledge was passed orally from older to younger genera-
tions.1 A list is a form of knowledge representation that can free knowledge 
from the limitation of having to be passed down, through direct contact, from 
one generation to another. Some of the earliest evidence of written language 
is in the form of lists. The cuneiform tablets from around the second millen-
nium bc contain accounting lists and lists of objects and vocabularies, lists 
for performing religious rituals and types of medical treatment.2 Such lists 
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can be lists of things, such as data or objects, they can also be lists of instruc-
tions, or we could even regard them as programs of sorts. Recipe lists detail a 
list of steps needed to complete a task but contain no generality nor the idea 
of proof; rather they contain “hard coded” steps or sequences of instructions. 
Lists supply knowledge or information about what exists and how to behave 
in the world.

The power of such lists is apparent in the fact that the kings of Mesopota-
mia regarded leaving a list inscribed on a tablet, after death, as insurance for an 
everlasting legacy. The Sumerian king list, a chronology of dynasties of Meso-
potamian kings, is just such a document. It indicates a smooth succession of 
rulers, a successive rolling out of seamless historical epochs, but leaves out the 
bumpy bits of history, when rival Mesopotamian cities vied for control. In this 
way, lists can be a way of sanitizing and simplifying knowledge. As Geoffrey 
Bowker and Susan Leigh Star3 attest, there is always a tension between attempts 
at universal standardization via lists and the local circumstances of their use.

List- making is often seen as a fundamental activity of modern society. In-
deed Michel Foucault4 and Patrick Tort5 claim that the production of lists (e.g., 
classifi cations of geological specimens, languages, races, animals, and so on) is a 
defi ning feature of the development of modern science. Latour6 argues that the 
main job of the bureaucrat is to construct lists that can then be shuffl ed around 
and compared. The bureaucratization of science in the nineteenth century is an 
important move away from science as the province of the gentleman amateur to 
science as bureaucratic control in the service of empire. We can then see the con-
nection between the  nineteenth- century scientifi c taxonomists, collecting and 
organizing and measuring and ordering the world, and the ancient cuneiform 
lists. Both tell us what the world is and how we are to behave, therefore they tell 
us how to order the world and how to organize work and labor. Through lists 
we order and control ourselves and the world we inhabit. According to Bowker 
and Star in describing the work of imperial taxonomists:

These diverse authors have all looked at the work involved in making these produc-

tions possible. Instead of analysing the dazzling end products of data collection and 

analysis—in the various forms of Hammurabi’s code, mythologies, the theory of evolu-

tion, the welfare state—they have instead chosen to dust off the archives and discover 

piles and piles of lowly, dull, mechanical lists. The material culture of bureaucracy and 

empire is not found in pomp and circumstance, nor even in the fi rst instance at the 

point of a gun, but rather at the point of a list.7
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If lists are such powerful creatures, not only for representing knowledge about 
the world, but also for ordering and controlling the world and ourselves, it is 
small wonder that they hold such appeal in the design and use of program-
ming languages.

LISP (whose name derives from “List Processor”) is the prime example of a 
programming language that exploits the power of the list.8 The list provides 
an elegant data structure for the processing of symbols, rather than numbers, 
which is vital for the science of artifi cial intelligence. Considering the require-
ments of a programming language that would reason about the world rather 
than purely crunch numbers, McCarthy, the founding father of LISP, argues: 
“This involved representing information about the world by sentences in a suit-
able formal language and a reasoning program that would decide what to do by 
making logical inferences. Representing sentences by list structure seemed ap-
propriate—it still is—and a list processing language also seemed appropriate 
for programming the operations involved in deduction—and still is.”9

Lists are versatile. They may order and constrain but they may also surprise. 
Note Jorge Luis Borges’s incredible taxonomic list from an ancient Chinese en-
cyclopaedia. This is a list of animals that is divided into “(a) belonging to the 
Emperor, (b) embalmed, (c), tame, (d) sucking pigs, (e) sirens, (f ) fabulous, (g), 
stray dogs, (h) included in the present classifi cation [an early example of recur-
sion?], (i) frenzied, (j) innumerable [potential for an infi nite loop with no terminating 
condition?], (k) drawn with a very fi ne camelhair brush, (1) et cetera, (m) having 
just broken the water pitcher, (n) that from a long way off look like fl ies.”10

John Law and Annemarie Mol explain the virtues of such a list: “A list 
doesn’t have to impose a single mode of ordering on what is included in it. 
Items in the list aren’t necessarily responses to the same questions but may 
hang together in other ways . . . a list differs from a classifi cation in that it rec-
ognizes its incompleteness. It doesn’t even need to seek completeness. If some-
one comes along with something to add to the list, something that emerges as 
important, this may indeed be added to it.”11

This applies to LISP lists. Note the example of a list of heterogeneous ele-
ments in a LISP primer:

(3 FRENCH HENS 2 TURTLE DOVES 1 PARTRIDGE 1 PEAR TREE)12

Note also that the list is complete—hence the parentheses—but it can be 
amended. We can use the CAR and CDR functions to obtain the fi rst element 
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of the list or the remainder of the list, respectively. (This, simply, is what these 
functions do.)

Lists may contain other lists.

((PENNSYLVANIA (THE KEYSTONE STATE))

(NEW- JERSEY (THE GARDEN STATE))

(MASSACHUSETTS (THE BAY STATE))

(FLORIDA (THE SUNSHINE STATE))

(NEW- YORK (THE EMPIRE STATE))

(INDIANA (THE HOOSIER STATE)))13

or may even be empty (). Lists are special. AARDVARK is not the same as 
(AARDVARK).14

LISP is the second oldest programming language (after FORTRAN) still in 
use. McCarthy15 attributes its longevity, in part, to its representation of sym-
bolic information, externally by lists, and internally by list structure; LISP’s 
programs, not just its data structures, are lists. Perhaps some of the reason for 
LISP’s survival, through the various phases of our relationship with comput-
ers, is because, through its emphasis on the list, it captures something about 
the human condition and our need to make and manipulate lists to make sense 
of the world. The elasticity of the list, its capacity to surprise, means that LISP 
resists the obvious Taylorization that one might expect with such a powerful 
ordering and processing tool.16 Compare the cuneiform tablets of old, and an 
“ancient” programming language of the modern world. LISP offers a promise 
of the power of both the old lists, the  nineteenth- century scientifi c lists, and 
something beyond. In modern terms, this is a goal of artifi cial intelligence lan-
guages, of which LISP is the lingua franca. Lists, whether inscibed in clay, or in 
silico, represent knowledge and how we reason about knowledge.

LISP resists. Lists persist.
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Loop
Wilfried Hou Je Bek

The symbol of the snake nibbling away at its own tail, that mythological 
archetype of paradoxical repetition, is only partly suitable as a metaphor for 
the LOOP, that gargoyle of cyclical imagination in computation. The LOOP, 
a “reusable pattern where the language executes part of the pattern auto-
matically, and you supply the parts that are different”1 is one of the ways in 
which programming has gusto.2 But it is not a single minded concept; the 
LOOP denotes a vast chain of beings (iterators, GO TO statements with pass-
ing arguments,  count- controlled loops,  condition- controlled loops, collection 
controlled loops, tail- end recursion, enumerators, continuations, generators, 
Lambda forms . . .) that crowd computer science and cloud the circumstances 
of its miracles.

Programming is an art3 but we talk of computer science; this army of en-
gineers has, however, failed to deliver us something like a looposcope, an in-
strument of vision that would augment our understanding of the manmade 
world we are trying to manipulate into constructs of unearthly beauty. This 
hypothetical apparatus would, in another medium, recreate with mnemogenic 
rhythm the striking experience of circularity produced by the  straight- line 
forwardism of a discrete state machine.

The LOOP is an uphill continuum of abstractions. Some key moments 
stand out:

1. The humble origins of the LOOP when it leaks aboveground from the pat-
terns carved on the stone that is the hardware.
2. The LOOP logically engineered for elegance on the slab of the program-
ming language designer.
3. The release of the LOOP in the wild where typos, logical fl aws, undecid-
ability, and sloppy implementation haunt it. The LOOP needs only one op-
portunity in a run- time to become infi nite.

In between these inauspicious moments, in the elephantiasis of abstraction 
and invention, in the syntactic  sugar- coated manifestations of its form, the 
looposcope would be an invaluable aid to call its tail from its head and track 
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the movement of the LOOP through memory, its state permutations and its 
maneuvres in search space.

A read- write head lives along the infi nite tape of a Turing Machine. Its 
behavior (the head moving back and forth, reading, writing, and erasing sym-
bols after having been instructed to do so by symbols written on that tape) is 
the sum of all patterns created by the minimal instruction set that guides it. 
Imagine the following scenario: the head is instructed to JUMP to a certain 
position on the tape only to fi nd when there another JUMP instruction telling 
the head to return to whence it came. There it will be instructed to go where 
it is now and so on and so on and so on, unconditionally and infi nitely switch-
ing between states. Mostly a LOOP is merely a loop inside another. Traversing 
this control fl ow hierarchy the programmer climbs up and down, interrupting 
from above the loop that has become immortal below. The LOOP is a subset of 
all possible behavior made possible by JUMP (or BRANCH), the infi nite loop 
is a special class within this set defi ned by the absence of interruption. The 
central position of the halting problem (the question of whether a computer 
given a certain input will halt, or run infi nitely) in formal computation suffi ces 
to show that the LOOP is the foremost poetic entity in programming.

It is the goal of the programming language designer to provide powerful 
abstractions. For Alan Kay, designer of Smalltalk, these are “special ways of 
thinking about situations that in contrast with other knowledge and other ways 
of thinking critically boost our abilities to understand the world.”4 Such a state-
ment succinctly aligns programming with the agenda of poetic theorists like 
Coleridge and Yeats. If we regard the loop as a species of tool for thinking 
about and dealing with problems of a certain nature, the sheer  light- footedness 
of looping allows you to run away with the problem with more ease. Indeed, 
the debate over what constitutes the most elegant way to organize LOOPs from 
JUMPs is responsible for some of the most classic texts in computer science.

If you look carefully you will fi nd that surprisingly often a GO TO statement which 

looks back really is a concealed FOR statement. And you will be pleased to fi nd how the 

clarity of the algorithm improves when you insert the FOR clause where it belongs

writes Peter Naur of the programming language Algol- 60 in 1963, a com-
ment quoted by Donald Knuth in his partly contemplative, mostly technical 
“Structured Programming with GO TO Statements.”5 Here Knuth traces the 
accumulation of resentment against GO TO statements that created the con-
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ceptual agar on which Edsger Dijkstra’s polemical “Go To Statement Consid-
ered Harmful,”6 that grand diatribe against “spaghetti code,” could proliferate 
with the success it did:

For a number of years I have been familiar with the observation that the quality of 

programmers is a decreasing function of the density of GO TO statements in the pro-

grams they produce. More recently I discovered why the use of the GO TO statement 

has such disastrous effects, and I became convinced that the GO TO statement should 

be abolished from all “higher level” programming languages (i.e., everything except, 

perhaps, plain machine code).7

The hesitant Knuth, declaring his goal to be to help bring about the mytho-
poetic entity “Utopia 84,” the fi rst “really good programming language,” fabu-
lates moments of  problem- solving agony when his mind, directed by the habit 
to use GO TO, was tied behind his back without it. Then he goes on to show 
how in certain cases a WHILE clause causes wasted cycles on the machine: the 
convenience of abstraction versus the responsibility of power. How do you fi nd 
out if Element Y is present in Array X? The computer scientist has various ways 
to fi nd out, throwing a zoo of loops at it and see what sticks best, but the ordi-
nary webscripter just asks the interpreter “Is Y in X?” and the answer will roll 
out. Yet it is the LOOP that drives Miss Algorithm, the LOOP that sustains 
those creatures that live out in the sun. On the other hand, “Language is Fossil 
Poetry”8 and who denies the schoolboy his moment of love made sedimental.

In every programming language higher than the hardware mimetic as-
sembly language, the LOOP haphazardly diverges into two branches: itera-
tion, in which “a collection of instructions [is] repeated in a looping manner”; 
and recursion, which has “each stage of the repetition executed as a subtask of 
the previous stage.” Even though the two are often thought of as being “equiv-
alent in terms of computer power”9 they are radically different in the way they 
“feel” to programmers. In iteration, “shape is superinduced,” while recursion 
is “form as proceeding” as Herbert Read said (about classical vs. romantic po-
etry).10 Perhaps even Coleridge’s famous distinction between fancy and imagi-
nation applies here (after all, Read was only paraphrasing Coleridge). In the 
Coleridgian view iteration would be “the imprisonment of the thing” and 
recursion the “self- affected sphere of agency.”

The glossary in Programming PERL11 offers defi nitions for both recursion 
and iteration. The length of each entry is telling. Iteration is merely, “Doing 
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something repeatedly.” The entry for recursion begins: “The art of defi ning 
something in terms of itself,” and ends: “[Recursion] often works out okay 
in computer programs if you’re careful not to recurse forever, which is like an 
infi nite loop with more spectacular failure modes.” Recursion is surrounded 
in the programmer’s mind with a nimbus of warm light captured in an oft-
 quoted bit of programmers’ wisdom, variously attributed to L. Peter Deutsch 
and Robert Heller: “To iterate is human, to recurse, divine.”12

Iteration branches off into two  niche- driven subspecies canonized in most 
current programming languages as the primitives FOR and WHILE. Al-
though often interchangeable, FOR is like a tourist that knows when it will 
be home (but with the power to RETURN earlier), WHILE is like a traveller 
away for as long as there is no hard reason to come back, potentially forever. It-
eration requires special syntax, whereas recursion is the production of looping 
behavior generated by functions calling themselves. Iterations exist in a special 
time; recursion is behavior made up from the daily routines of life. Style, “that 
purifi cation from insincerity, vanity, malignity, arrogance,”13 is one reason for 
preferring one kind of LOOP, one instance of peripatetic know- how, above 
another. The nature of the memory to be manipulated, the way the magic car-
pet is folded14 is another factor when deciding which LOOP to apply, which 
way to walk. Hash tables call for measures other than a one- dimensional list 
(Fibonacci numbers or a manifesto) or the nocturnal wandering through bi-
 directional structures (the world wide web or a city). Thinking in general and 
poetry in particular has forever been closely linked with iteration,15 and was it 
not Coleridge who said that poetry is always a circuitous experience?

One aspect of the LOOP, and in many ways its defi ning quality, is the min-
imal means that result in automated infi nite production. Is it when writing 
a simple FOR statement for the fi rst time, counting to, say, 10 and printing 
to the screen at each iteration, that the novice programmer “Beheld the living 
traces and the sky- pointing proportions of the mighty Pan”?16 This insight, 
its magic worn off in the mind of the experienced programmer as a mere fact 
of life, is that two simple lines of code can produce an “incantation” in which 
an effort as small as changing the upper limit increases the output to a “fairy-
 fountain” needing more time to be enacted than the computer it runs on will 
survive. Is it indeed not this raw force that allows  permutation- sects to believe 
that the answer to the fi nal riddles of the universe can be unwound by rephras-
ing them in a computational LOOP?
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The LOOP is the powerhouse of worlds imagined in silico: the  sweat- free 
producer of matter and time. It takes a Coleridge to do it justice.
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Memory
Warren Sack

The following examination of computer memory closely scrutinizes the words, 
rhetoric, and discourse of computer science and several associated disciplines. 
Presupposed by this methodology of rhetorical analysis is the idea that the 
words employed in the design and evaluation of new technologies shape the 
form and function of those technologies. Of course, designers’ vocabularies do 
not completely determine what a technology can do or how it works. After all, 
designers are not magicians and the activity of software design is not a form of 
incantation! But, many technologies were written and spoken about long be-
fore they were developed into practical, everyday things: fl ying machines and 
long distance communication are two technologies that were dreamt about 
long before they were implemented. Here we review a short history of the 
metaphors and analogies employed by philosophers, scientists, and technolo-
gists to understand memory. We will see how previous metaphors are some-
times later taken for literal truth. When metaphors become scientifi c models, 
alternative ways of thinking about the object of study become diffi cult. The 
purpose of this entry is to question the metaphors of memory taken as models 
and, thereby, begin to explore new ways to think about computer memory.

The act of perception stamps in, as it were, a sort of impression of the percept, just as 

persons do who make an impression with a seal. This explains why, in those who are 

strongly moved owing to passion, or time of life, no mnemonic impression is formed; 

just as no impression would be formed if the movement of the seal were to impinge on 

running water; while there are others in whom, owing to the receiving surface being 

frayed, as happens to the stucco on old chamber walls, or owing to the hardness of the 

receiving surface, the requisite impression is not implanted at all.1

Aristotle’s image of memory is constructed from a seal that is known to work 
on soft wax or clay. His presupposition is that when our memories are in work-
ing order they are akin to a pliant solid, like wax, that can record the impres-
sion of a seal.

Aristotle’s trope does not begin or end with him. Plato wrote of the anal-
ogy before Aristotle; and, Cicero, Quinitilian, Sigmund Freud, and Jacques 
Derrida explored the trope of  memory- as- wax- tablet after him. Each new gen-
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eration of memory theorists tends to incorporate the latest media technology 
to explore its similarities with human memory. Or, to phrase this point po-
lemically, as media theorist Friedrich Kittler and his followers have done for 
the past couple of decades, “Media, then, are [at] the end of theory because in 
practice they were already there to begin with.”2

Historically, theorists have not always been clear about when their refer-
ences to media technology are metaphorical and when they are literal. Derrida, 
for example, closely scrutinizes Freud’s mixed and unstated metaphors about 
memory.3 But, many of today’s memory theorists quite clearly state that what 
others might take to be a metaphor, they take to be a literal truth. Contem-
porary theorists compare human memory and computer memory. Cognitive 
scientists who explore this analogy believe that humans and machines are two 
species of the same genus; in the words of computer scientist and economist 
Herbert Simon, humans and computers are “symbol systems.”4 Thus, cogni-
tive scientists hypothesize that human memory is not akin to computer mem-
ory, it is virtually the same thing as computer memory. Or, to put it a different 
way, the hypothesis is that computer memory is not just one possible model of 
human memory, it is the best model of memory.

This belief, that the computer is the best model of the object of study, is not 
unique to cognitive science. It is an operating principle in molecular biology, 
operations research,  neuro- psychology, immunology, game theory, economics, 
and many other sciences. Historian of science Philip Mirowski calls this literal 
belief in computation one of the defi ning characteristics of a “cyborg science,” 
a science that does not use the computer as an analogy but which uses it as a 
simulacrum of the object of study.5 For example, Howard Gardner, in his over-
view and introduction to cognitive science, states that one of the paramount 
features of cognitive science is this belief:

There is the faith that central to any understanding of the human mind is the elec-

tronic computer. Not only are computers indispensable for carrying out studies of 

various sorts, but, more crucially, the computer also serves as the most viable model 

of how the human mind functions.6

The fi rst set of models devised by cognitive psychologists to explain the struc-
ture and dynamics of human memory recapitulated many architectural as-
pects of then- contemporary computational hardware. For example, the model 
of Richard Atkinson and Richard Shiffrin7 included a “short- term store,” a 
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“long- term store,” “buffers,” “slots,” and a hypothesis that information process-
ing for storing and retrieving items from memory was a sequential (rather than 
a parallel) operation. These are architectural details that one can also identify 
with the computers of that time (i.e., the 1960s). As work in this area devel-
oped, the memory models began to look less and less like then- contemporary 
computer hardware, but they are still frequently phrased in terms that would 
allow one to implement them in software.

What makes this tight coupling between human memory and computer 
memory seem plausible? Why might computer memory be seen as “the most 
viable” model of human memory? To untangle this belief of cognitive scien-
tists it is necessary to remember that before computers were machines they 
were people, usually women. For over two hundred years, these women—these 
computers—worked together in groups compiling tables of statistics, tables of 
trigonometric functions, tables of logarithms. For example, computers worked 
together in 1757 to calculate the return trajectory of Halley’s comet.8

When the machines we now call computers were fi rst designed, they were 
designed to do the work of a human computer. In 1936, Alan Turing designed 
a machine that could do the work of a human computer. In his paper he writes 
of “computers” but when he does he is referring to those people who held the 
job of computer. Turing himself did not go so far as to say that his machine has 
memory, but he almost does. His mathematical paper is based on an extended 
analogy between a machine and a person, that is, a human computer. Turing 
explains how his machine might remember what it is doing and what it is to 
do next by extending the analogy like this:

It is always possible for the computer to break off from his work, to go away and forget 

all about it, and later to come back and go on with it. If he does this he must leave a 

note of instructions . . . explaining how the work is to be continued. . . . We will sup-

pose that the computer works by such a desultory manner that he never does more than 

one step at a sitting. The note of instructions must enable him to carry out one step 

and write the next note. Thus the state of progress of the computation at any stage is 

completely determined by the note of instructions and the symbols on the tape.9

Part of Turing’s accomplishment was to show that these so- called “notes,” the 
mnemonics for remembering what to do next, could, in general, always consist 
of a series of integers written on a paper tape. So from Aristotle’s seals we have 
moved to a newer technology of bureaucracy, namely numbered paper forms.
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During the World War II Turing’s mathematical, theoretical machines be-
came practical. The fi rst computers had to be “set up” for each new problem 
of calculation. “Set up” entailed plugging and unplugging cables and setting 
hardware switches. By the end of the war, it became clear to J. Presper Eckert, 
John Mauchly, and John von Neumann that the memory of the computer 
could be used to store a program as well as data and that the program could be 
specifi ed to automatically set up the computer to solve a new problem. Once 
the so- called “stored- program” memory was implemented computers could be 
programmed rather than “set up.”10

These fi rst computers were implemented in vacuum tubes and electronics 
and, from then on, the term “computer” meant a machine, not a human being. 
Ten years after Turing’s publication there existed machines that were called 
“computers” and these computers were said to have memories.11 Since many of 
the designers and builders of these fi rst computers were engineers; and, since 
engineers had been writing, at least since the end of the a nineteenth century 
of the “magnetic memory” of iron;12 and, since the physical substrate of early 
computer’s “memories” was ferromagnetic,13 this usage of the term “memory” 
to refer to the storage capacity of the computer is perhaps not so surprising. 
What is surprising is what happened next in the scientifi c world. Remember 
that social science, especially psychology, in the United States was dominated 
by behaviorism for most of the fi rst half of the twentieth century. As Sherry 
Turkle puts it,

As recently as the 1950s behaviorism dominated American academic psychology, its 

spirit captured by saying that it was permissible to study remembering but considered 

a violation of scientifi c rigor to talk about “the memory.” One could study behavior 

but not inner states.

Turkle argues that

The computer’s role in the demise of behaviorism was not technical. It was the very 

existence of the computer that provided legitimation for a radically different way of 

seeing mind. Computer scientists had, of necessity, developed a vocabulary for talk-

ing about what was happening inside their machines, the “internal states” of general 

systems. If the new machine “minds” had inner states, surely people had them too. The 

psychologist George Miller, who was at Harvard during the heyday of behaviorism, 

has described how psychologists began to feel embarrassed about not being allowed to 
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discuss memory now that computers had one . . . The computer presence relegitimated 

the study of memory and inner states within scientifi c psychology.14

What Turkle leaves out of her short history is that in 1956, when George 
Miller and his colleagues were founding the discipline of cognitive psychology, 
it had only been a few years since computers were not machines, but people. 
In other words, contemporary, cognitive science work on memory is based—
ironically enough—on a willful amnesia of recent history and thus on a circu-
larity: computer memory seems to be a good model of human memory because 
computer memory was modeled on human memory!

Here is the best analogy to the current situation that exists in many aca-
demic disciplines, many “cyborg sciences,” that human thinking, memory, 
and decision making can be “modeled” by computer programs. This situation 
would be like discovering a painted portrait of a specifi c man and then spend-
ing the rest of one’s professional life commenting on how uncanny it was that 
the portrait seemed to look like a human being.

The human that serves as the model for these cyborg sciences is culturally 
coded in a very specifi c manner. The human is, as Turing’s analogy makes 
clear, not just any human. He—for, despite the fact than many human com-
puters were women, it is usually a “he” in this technical literature—is a book-
keeper, accountant, or bureaucrat:

We may compare a man in the process of computing a real number to a machine 

which is only capable of a fi nite number of conditions . . . The machine is supplied 

with a “tape” (the analogue of paper) running through it, and divided into sections 

(called “squares”) each capable of bearing a “symbol.” At any moment there is just one 

square . . . which is “in the machine.” We may call this square the “scanned square.” 

The symbol on the scanned square may be called the “scanned symbol.” The “scanned 

symbol” is the only one of which the machine is, so to speak, “directly aware.” How-

ever, by altering its m- confi guration the machine can effectively remember some of the 

symbols which it has “seen” (scanned) previously.15

Here then is the true picture of the “human” that is the model for computer 
memory: he is a bureaucrat squirreling around in the back offi ce, shuffl ing 
through stacks of gridded paper, reading, writing, and erasing numbers in 
little boxes. This  Bartleby- the- Scrivener is the man so many cyborg scien-
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tists would like to portray or recreate as an assemblage of computational 
machinery.

Equipped with a clear picture of whose memory computer memory is de-
signed to resemble, it becomes possible to parse the technical literature on 
computer memory. The technical literature is completely preoccupied with 
the management and allocation of memory. Memory in the technical litera-
ture is not Marcel Proust’s lost aristocratic memories of, for instance, eating 
 scallop- shell- shaped,  lemon- and- butter- fl avored cakes (madeleines) as a child. 
No, this technical literature is fi lled with the memories of bureaucrats: num-
bers, lists, tables, cells, and segments. Even the computer science literature on 
narrative memories boils down to a set of techniques for fi tting stereotypical 
stories into preconceived grids.16

Memory, of this bureaucratic, gridded kind, is a major area of work in hard-
ware and software research and development. It is easy to see the grid when 
examining hardware. For example, contemporary, dynamic random access 
memory (DRAM) consists of a matrix of capacitors—which either hold (1) or 
do not hold (0) a charge—wired together in rows and columns. At the lower 
levels of software (i.e., in the memory management routines of operating sys-
tems, programming languages, etc.) memory is represented as a vector (i.e., a 
fi xed length sequence of integers) or a matrix (i.e., a vector of vectors) that can 
be indexed by row and column.

If one reads the canonical texts of undergraduate, computer science educa-
tion one fi nds passages like this are ubiquitous to the writings about computer 
memory:

Memory is an important resource that must be carefully managed. . . . The part of 

the operating system that manages memory is called [outrageous as it may seem!] the 

memory manager. Its job is to keep track of which parts of memory are in use and 

which parts are not in use, to allocate memory to processes when they need it and de-

allocate it when they are done, and to manage swapping between main memory and 

disk when main memory is not big enough to hold all of the processes.17

The function of a memory manager is akin to an accountant preparing taxes on 
his desk. If we understand his desk to be analogous to main memory and his 
fi le drawers to be like the computer’s disk, then “memory allocation” is akin 
to assembling together the fi les and folders for a given account and fi nding 
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space for them on the desk; “swapping” is like moving fi les and folders onto 
the desk from the fi le cabinets or, vice versa. The “resource” to be “managed” is 
the working space on the desk. Files and folders can be stacked, heaped, moved 
off the desk into fi le cabinets (i.e., onto disk), etc.

Undergraduate computer science students learn in their fi rst or second year 
of studies the exact defi nitions and typical implementations of software analogs 
of “fi les,” “folders,” or “directories”; “stacks,” “heaps,” and “lists”; and the “re-
cycling” or “garbage collection” of memory. Any adequate, introductory text-
book on data structures and algorithms can provide the exact defi nitions of 
these “memory structures” and their associated operations.18

That these operations correlate almost exactly with what the bureaucrat 
does with his fi le cabinets, desk, and trash can is no coincidence. Neither is it 
a coincidence that these same operations are the ones available to today’s com-
puter users, whose graphical user interfaces are based on the so- called “desktop 
metaphor.” The metaphors of the desk, the trash can, and the mind- numbing 
operations of offi ce work and bureaucracy are built right into the foundations 
of the computer and its user interface. Even a quick skim through the semi-
nal, foundational texts of graphical user interface design, especially those of 
 Douglas Engelbart, make it clear that shuffl ing through, stacking, listing, and 
fi ling were the ideals of “memory” and “thought” admired and implemented 
by the founders of computer science and interface design.19

Of course, not all computing can be understood as offi ce work. Rather, all 
computing is deeply rooted in the metaphors and pragmatics of bureaucracy; 
just as it is also intertwined with a genealogy of military thinking and mate-
riel.20 When these genealogies of software are forgotten, one loses sight of the 
highly particular and ultimately idiosyncratic images of memory and reason-
ing that are reifi ed in the design and design principles of software.

Computer science’s notion of “memory,” that is, the “memory” of software 
and hardware, is not necessarily “worse” than that of other fi elds that investi-
gate the issue of memory. But, computer science’s working theories of memory 
are very specifi c and idiosyncractic to the concerns of bureaucracy, business 
and the military. This is largely because funding for computer science has 
come from these sources.

Juxtaposition with very different images of memory help one to imagine al-
ternatives to the “closed world”21 conditions that contemporary computational 
models circumscribe. For example, Marcel Proust’s image of memory does not 
provide a better model of memory than the computer model, but it does pro-
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vide a different model: a contrasting image that can be seen to highlight issues, 
ideas, and materialities uncommon to the  military- (post)industrial technolo-
gies of memory:

And suddenly the memory revealed itself. The taste was that of the little piece of mad-

eleine which on Sunday mornings at Combray . . . when I went to say good morning 

to her in her bedroom, my aunt Léonie used to give me, dipping it fi rst in her own cup 

of tea or tisane. . . . when from a long- distant past nothing subsists, after the people 

are dead, after the things are broken and scattered, taste and smell alone, more fragile 

but more enduring, more unsubstantial, more persistent, more faithful, remain poised 

a long time, like souls, remembering, waiting, hoping, amid the ruins of all the rest; 

and bear unfl inchingly, in the tiny and almost impalpable drop of their essence, the 

vast structure of recollection.22
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Obfuscated Code1

Nick Montfort

Although conventional wisdom holds that computer programs must be ele-
gant and clear in order to be admirable, there are unusual counterexamples 
to this principle. In the practice of obfuscated programming, the most pleas-
ing programs are held to be those that are concise but which are also dense 
and indecipherable, programs that run in some sort of surprising way.2 Ob-
fuscated code demonstrates that there are other aesthetic principles at play 
besides those “classical” ones that have been most prominent in discussions of 
programming aesthetics by programmers3 and critics.4

A popular form of programming related to obfuscation was already in evi-
dence by the beginning of the 1980s. This was the practice of writing one- line 
BASIC programs, undertaken by people who, for the most part, were not pro-
fessional programmers, but who had started programming during the home 
computing boom. These recreational one- liners work in some amusing way, 
sometimes even implementing a simple interactive game. The following pro-
gram, for instance, when run on a Commodore 64, displays random mazes:

10 PRINT CHR$(109+RND(1)*2); : GOTO 10

This is accomplished by simply printing one of two graphic characters at ran-
dom, “ \” or “ / ”, and then, without printing a linebreak, jumping back to the 
start of the line. The idea of the one- liner is not original to the home com-
puter era and BASIC; in a 1974 talk, Donald Knuth pointed out a precedent 
in APL programming and noted he enjoyed writing programs that fi t on a 
single punched card.5 But the one- liner became widespread as BASIC gained 
popularity, and some one- line BASIC programs (on systems that permit lines 
longer than eighty characters) became quite intricate and elaborate. A small 
but reasonably complete implementation of Tetris was done in one line of BBC 

Obfuscated Code



194

Micro BASIC in 1992,6 and a one- line BASIC spreadsheet program has been 
posted on Usenet.7 One- line BASIC programs were often printed in magazines 
and keyed in by users. Code compression, rather than obfuscation for its own 
sake, was emphasized, but presentations of these programs sometimes asked 
the reader to fi gure out what they did, indicating that these programs were 
puzzling and challenging to decipher.

This puzzle aspect highlights the two main “readers” for a computer pro-
gram: on the one hand, the human reader who examines the code to under-
stand how it works, and how to debug, improve, or expand it; on the other, 
the computer, which executes its statements or evaluates its functions by run-
ning the corresponding machine code on its processor. A program may be clear 
enough to a human reader but may have a bug in it that causes it not to run, 
or a program may work perfectly well but be hard to understand. Writers of 
obfuscated code strive to achieve the latter, crafting programs so that the gap 
between human meaning and program semantics gives aesthetic pleasure.

Obfuscated programming is institutionalized today not in microcomputer 
magazines but online, where programs are exchanged and contests are hosted. 
The International Obfuscated C Code Contest has been held eighteen times 
since the fi rst contest ran in 1984, back when one- line BASIC programs were 
still in vogue. Only small, complete C programs can be entered in the IOCCC. 
The contest’s stated goals include demonstrating the importance of program-
ming style “in an ironic way” and illustrating “some of the subtleties of the C 
language.”8 There is also an obfuscated Perl contest, run annually by The Perl 
Journal since 1996, but the most visible tradition of Perl obfuscation is seen in 
short programs that print “Just another Perl hacker,” which are called JAPHs. 
In early 1990, Randal Schwartz began the tradition of writing these programs 
by including them in his signature when posting on comp.lang.perl.

Some sorts of obfuscation techniques are common to IOCCC entries and 
JAPHs and may be used in just about any programming language. Even as-
sembly language allows the free naming of variables and labeling of particular 
instructions, so that these names can be used meaningfully and can help people 
better understand programs. Wherever such names can be freely chosen, they 
can be selected in a meaningless or even a deceptive way, as when num or 
count is used to store something other than a number, or when x and y appear 
together in a program to mislead the reader into thinking they are Cartesian 
coordinates. Since variable names are usually case- sensitive, there are addi-
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tional possibilities for confusion. In C, where no special character is used to in-
dicate a variable, programs take advantage of this and of the case- sensitivity of 
variable names to name some variables o and O, inviting additional confusion 
with the number zero. This play, which can be called naming obfuscation, shows 
one very wide range of choices that programmers have. By calling attention to 
this, naming obfuscation demonstrates that everything about a programmer’s 
task is not automatic,  value- neutral, and disconnected from the meanings of 
words in the world.

Another obfuscation technique takes advantage of curiosities in syntax to 
make it seem that some piece of data—for instance, a string that is being as-
signed to a variable—is actually part of the program’s code. Alternatively, some-
thing that appears to be a comment, and thus to have no effect on the program’s 
workings, may actually be part of the code, or vice- versa. This data / code / comment 
confusion is invited by fl aws or curiosities in a language’s specifi cation, but can 
be accomplished in several different languages, including C and Perl.

There are also obfuscations that appear more prominently in one language 
than in another. In C, a[b] and b[a] have the same meaning, which is not the 
case when accessing array elements in other languages. An obfuscator working 
in C, however, can choose the more confusing of the two. Other languages do 
not defi ne the addition of strings and numbers, or they defi ne it in a way that 
seems more intuitive, at least to beginning programmers. But C, by giving the 
programmer the power to use pointers into memory as numbers and to per-
form arithmetic with them, particularly enables pointer confusion. By showing 
how much room there is to program in perplexing ways—and yet accomplish-
ing astounding results at the same time—obfuscated C programs comment on 
particular aspects of that language, especially its fl exible and dangerous facili-
ties for pointer arithmetic.

Perl does not invite this sort of obfuscation, but does allow for several  others. 
There are a dazzling variety of extremely useful special variables in Perl, which 
are represented with pairs of punctuation marks; this feature of the language 
merits an obfuscation category of its own. Perl’s powerful  pattern- matching 
abilities also allow for cryptic and deft string manipulations. The name Perl is 
sometimes said to stand for “Practical Extraction and Report Language,” but 
“Pathologically Eclectic Rubbish Lister” is sometimes mentioned as another 
possible expansion. The language is ideal for text processing, which means 
that short messages (such as “Just another Perl hacker,”) can be printed out in 
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many interesting ways, sometimes using  little- known sorts of pattern- matching 
obfuscation.

This JAPH, posted by Randal Schwartz on April 18, 1990, provides a short 
example that can be explicated in some depth:

$_=”,rekcah lreP rehtona tsuJ”;s / .$ / eval ‘print $&’,”” / e while 

length

Like most such programs, this one prints “Just another Perl hacker,”—the 
comma at the end is traditional—and does so in a curious way. There are only 
two statements in this one- line program, separated by a semicolon. The fi rst 
statement puts a string with the reverse of this message into $_, the Perl spe-
cial variable for the current line. The second command is the interesting one; 
it is a substitution operation of the form s / FIND / REPLACE / e which is called 
implicitly on $_. The e after the fi nal slash means that the result will be evalu-
ated as a Perl expression. The “while length” at the very end results in this 
substitution being repeatedly called, iteratively, as long as there is something 
left in $_. Since one character is removed from the string on each pass, the fol-
lowing substitution operation is called once for each character in the string:

s / .$ / eval ‘print $&’,”” / e

The effect of this is to take the last character in the current line—“J” will 
therefore be selected fi rst—and prepare a string to contain it. The fi rst such 
string that is built is “eval ‘print_,””’”. This string is evaluated as a Perl ex-
pression, which results in “eval” executing its own Perl program to print the 
character “J”. Since this mini- program returns no value, the letter selected is 
replaced with nothing, and the string is diminished in length.

There would be nothing very interesting about simply reversing a string 
and then printing it out, or about starting at the end of a string and printing 
it back- to- front one character at a time, although it might be interesting to 
see one of these processes coded up in a single, short statement. Here, a single 
statement does all of this and more. The statement creates a string that, when 
evaluated as an expression, executes a very short program to print a character. 
This statement also removes that last character from the current line and then 
continues processing the shorter line.
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A repository of JAPHs is available online9 and explications of several have 
been provided.10 An explication of an introductory obfuscated C program11 is 
also available.

Recent IOCCC programs include a racing game in the style of Pole Position, 
a CGI- enabled web server, and a program to display mazes whose code is itself 
in the shape of a maze. Obfuscated code in Perl as well as C often spells out a 
name in large letters or assumes the form of some other ASCII art picture. This 
is a type of double coding; more generally, multiple coding can be seen in “bilingual” 
programs, which are valid computer programs in two different programming 
languages. Double coding in natural languages is exemplifi ed by the sentence 
“Jean put dire comment on tape,” which is grammatical English and gram-
matical French (“Jean [male name] is able to say how one types”), although each 
word has a different meaning in each language. Harry Mathews contributed to 
further French / English double coding by assembling the Mathews Corpus, a 
list of words which exist in both languages but have different meanings.12 In 
programming, an important fi rst step was the 1968 Algol by Noël Arnaud, a 
book of poems composed from keywords in the Algol programming language.13 
Perl poetry is a prominent  modern- day form of  double- coding, distinguished 
from obfuscated programming as a practice mainly because it is not as impor-
tant in Perl poetry that the program function in an interesting way; the essen-
tial requirement is that the poem be valid Perl.

Interestingly, it is not the case that languages typically despised by hack-
ers—for instance, COBOL and Visual Basic—are the main ones used in ob-
fuscation. Many Perl hackers and C coders who write obfuscated programs 
also use those languages professionally and fi nd it enjoyable to code in those 
languages. They generally do not fi nd it fun to program in COBOL or Visual 
Basic, however, even to comment negatively on these languages. In addition 
to making fun of some “misfeatures” or at least abusable features of languages, 
obfuscated code shows how powerful, fl exible programming languages allow 
for creative coding, not only in terms of the output but in terms of the legibil-
ity and appearance of the source code.

All obfuscations—including naming obfuscations as well as  language-
 specifi c ones, such as choosing the least well- known language construct to ac-
complish something—explore the play in programming, the free space that is 
available to programmers. If something can only be done one way, it cannot be 
obfuscated. It is this play that can be exploited to make the program signify on 
different levels in unusual ways.
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The practice of obfuscated programming, like the kindred practice of de-
veloping weird programming languages, is connected to certain literary and 
artistic traditions. The practice suggests that coding can resist clarity and 
 elegance to strive instead for complexity, can make the familiar unfamiliar, 
and can wrestle with the language in which it is written, just as much con-
temporary literature does. Another heritage is the tradition of overcompli-
cated machinery that has manifested itself in art in several ways. Alfred Jarry’s 
 ’Pataphysics, “the science of imaginary solutions,” which involves the design 
of complicated physical machinery and also the obfuscation of information and 
standards, is one predecessor for obfuscated programming. There are also the 
kinetic installations of Peter Fischli and David Weiss and the elaborate appa-
ratus seen in their fi lm The Way Things Go (1987–1988), as well as the earlier 
visual art of Robert Storm Petersen, Heath Robinson, and Rube Goldberg. 
These depictions and realizations of mechanical ecstasy comment on engineer-
ing practice and physical possibility, much as obfuscated coding and weird 
languages comment on programming and computation. Such “art machines” 
anticipate obfuscated programs by doing something in a very complex way, 
but also by actually doing something and causing a machine to work.

Obfuscated code is intentionally diffi cult to understand, but the practice of 
obfuscated programming does not oppose the human understanding of code. 
It darkens the usually “clear box” of source code into something that is dif-
fi cult to trace through and puzzle out, but by doing this, it makes code more 
enticing, inviting the attention and close reading of programmers. There is 
enjoyment in fi guring out what an obfuscated program does that would not 
be found in longer, perfectly clear code that does the same thing. While ob-
fuscation shows that clarity in programming is not the only possible virtue, it 
also shows, quite strikingly, that programs both cause computers to function 
and are texts interpreted by human readers. In this way it throws light on the 
nature of all source code, which is  human- read and  machine- interpreted, and 
can remind critics to look for different dimensions of meaning and multiple 
codings in all sorts of programs.
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Object Orientation
Cecile Crutzen and Erna Kotkamp

Data and Data Processing

In the twentieth century, data and the processing of data formed the basis 
of the computer science discipline. The syntax and physical form of the pre-
sentation of information was the primary focus of the fi eld. The semantics of 
information was and should be coupled in an unambiguous manner to the 
syntax of the information. Computer science was seen as responsible not for 
the content of information but only for its processing.1 Consequently, great 
efforts went into developing the architectures of  logic- based subsystems in 
information systems. In these subsystems the data structure, processing struc-
ture, and medial presentation of information are inscribed. Information and 
the processing of information are transformed into mathematical expressions 
and procedures constructed in such a manner that they can be translated into 
the physical structures of machinery, which can, in turn, process and save this 
translated information. Interactions between software and hardware are mod-
eled as causal procedures linking senders to receivers where the actions (mes-
sages) of the sender are the impulses for the (re)actions of the receivers, the 
point being that there should be a univocal connection between impulse and 
action. (Inter)action in these subsystems is always structured and planned.

Ready- Made Action

At the end of the last century a shift took place from the processing of infor-
mation to  ready- made (inter)actions offered to humans. These actions were to 
replace or enhance human actions, such as calculating, text and image editing, 
and playing. Within the computer science discipline the conception continues 
that the handling of information by people and the way people interact can 
only concern the discipline in as far as it concerns theories, methods, and tech-
niques that have a generically formalizable character.

However, this exclusion of the ambiguity of human acting did not prevent 
computer scientists from interfering in human activity. On the contrary, the 
modeling and construction of many complex interaction patterns between hu-
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mans is still based on the same transmission model used for the representation 
of data- exchange between artifi cial senders and receivers.

This focus on generalizing information, communication, and interaction 
in computer science pushes the multiform character of individuality and the 
specifi city of human interaction into the background. The exploration of the 
 object- oriented approach is a signifi cant example of this. With this example 
we analyze the approach as a specifi c methodology rather than the program-
ming practice itself.

Object- Oriented Programming

Object- oriented programming (OOP) started out in the 1960s with the pro-
gramming language Simula developed by Ole- Johan Dahl and Kristen Ny-
gaard.2 In OOP, objects are the basic elements of its ontology. Software is 
structured as a collection of objects that work together. These objects relate to 
and act upon each other and the interaction between these objects, the sending 
of messages (message passing), is the core of this programming paradigm.

The difference between OOP and other programming paradigms is that 
within OOP, data and the operations that can manipulate this data are placed 
in one object instead of being separated. This created a break with the para-
digm of procedural programming, which was at that time heavily used. Within 
procedural programming software behavior is defi ned by procedures, functions, 
and subroutines. In OOP these behaviors are contained in the methods of the 
objects. A method is a basic property of an object class. It is hidden in the ob-
ject itself.3 Methods can only invoked by sending an appropriate message to 
the object.4

Object- Oriented Approach

Nowadays,  object- oriented programming is not only used for developing and 
producing software and hardware; object orientation (OO) has also become 
a methodology and theory for interpretation, representation, and analysis of 
worlds of human interaction with which the computer interfaces: the  object-
 oriented approach.5 OO is used for the representation of the dynamics of in-
teraction worlds, leading us beyond the data- oriented approach and making 
room for the  opportunity to discuss the character of human behavior. (OO is 
often used, for instance, in Graphic User Interfaces.) Because human behavior 

Object Orientation



202

is not predictable and is itself situated in the interaction, OO only discloses 
planned action. Within the ontology of OO, the real world can be described as 
an interaction world. In this world, humans or other entities can only act if a 
predefi ned plan exists and its execution conditions are satisfi ed.

Because data and manipulation are contained within the object, changes in 
interaction are only possible if preprogrammed within the object. Interaction 
and the representation of interaction are located within the objects instead of 
on a procedural level. The “change of change” is impossible. Within the ontol-
ogy of OO the behavior of humans can only be represented as frozen in routine 
acting. With abstraction tools in OO such as classifi cation, separation, and 
inheritance, the process of real world analysis is colonized.

Colonization of Analysis

This colonization from ICT- system realization into world analysis is dictated 
by analyzing subjects’ focus on the avoidance of complexity and ambiguity, 
by selecting the documents, texts, tables, and schemes in the analyzed domain 
that are the most formalized and hence closest to the syntactical level of  object-
 oriented programming languages. Natural language in the domain is trans-
formed into a set of elementary propositions. As a result hierarchical structures 
and planned behaviors are highlighted, and ad hoc (inter)actions are obscured.

This use of OO as a methodology in informatics is exemplary for the onto-
logical and epistemological assumptions in the discipline: Not only is it pos-
sible to “handle the facts” but also to handle and therefore control real behavior 
itself. The expert users of the  object- oriented approach strongly suggest that 
with OO the total dynamics of reality can be represented objectively in arti-
fi cial objects.

Feminist theories provide arguments for doubting the assumptions within 
the OO approach. They question how these approaches are always based on 
the same illusions of objectivity and neutrality of representation: the veiling 
of power and domination by its translation into something “natural and obvi-
ous.” Retaining OO as a methodology means to only use it again for the pur-
pose for which it was originally meant: the programming and production of 
software. Software production based on the OO approach (not to be confused 
with OO Programming) results in the predictable and planned interaction of 
artifi cial actors; it cannot be the foundation for the analysis and representation 
of human behavior.
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However, a total rejection of OO cannot be the answer to these doubts. The 
presence of OO- based products enforces the disclosure of some unwanted con-
sequences of OO. In the OO methodology ambiguity and doubt are invisible 
but not absent.

Fear

In software and hardware products constructed through the OO approach, 
the fear of doubt is embedded and transferred into the interaction worlds of 
which they are part. The goal of software engineering is to produce unambigu-
ous software that masters complexity. Based on the principles of controlling 
complexity and reducing ambiguity within software, software engineers try to 
tame the complexity and ambiguity of the real world. Abstraction activities, 
a fundament of most modeling methods such as generalization, classifi cation, 
specialization, division, and separation, are seen as unavoidable for the projec-
tion of dynamic real world processes into  ready- to- hand modeling structures 
and for the production of  ready- made acting. Abstractions are simplifi ed de-
scriptions with a limited number of accepted properties. They rely on the sup-
pression of a lot of other aspects of the world. Hoare suggests: “Abstraction 
arises from recognition of similarities between certain objects, situations or 
processes in the real world and the decision to concentrate upon these similari-
ties and to ignore for the time being the differences.”6 These structures and 
modeling methods necessitated a search for the similarities of human actors, 
situations, processes, and events, ignoring their differences.

According to Coyne, the academic world:

expects that once we get beneath the surface, we can fi nd out what things have in com-

mon and thereby understand them better. Phenomena are abstracted so that they are 

describable in the same way. . . . This interest in similarity is evident in the quest for 

the structures underlying language and social practices (as in structuralism). It is also 

evident in the concern in design fi elds, such as architecture, with identifying typolo-

gies, generic forms and ordering principles.7

Invisibility

OO representations create prefabricated and generic  ready- made actions. 
Ready- made actions are designed on base of searches for similarity. Differences, 
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which are not easy to handle, or may not be relevant in the view of the ob-
server and modeler, will be neglected and suppressed. Within the OO ap-
proach a real world phenomenon can only have a representation within the 
world of artifi cial objects when it fi ts into an object class. The sequence in the 
modeling process—fi rst classifi cation and then instantiation—renders some 
phenomena incomplete or not represented at all. They are made invisible for 
the users of the  ready- made action of the implemented objects. This concept 
of classes has the same effect as the concept of laws, about which Evelyn Fox 
Keller noted: “Such laws imply an a priori hierarchy between structuring prin-
ciple and structured matter that suggests a striking resemblance to laws of au-
thoritarian states.”8 The class structure will suppress “listening to the material 
itself.”9 According to Susan Leigh Star, in the making and modeling process 
of our technological environment, there will be a “tempering of the clutter of 
the visible” by the creation of invisibles: “Abstractions that will stand quietly, 
cleanly and docilely for the noisome, messy actions and materials.”10

Ambiguity

 The models produced by computer scientists using the OO approach as meth-
odology for interpreting and analyzing human behavior leave no room for ne-
gotiation or doubt. Models translated into  ready- made products, interaction, 
and communication are only defi ned on a technical and syntactical level. But 
the same models are also used on a semantic and pragmatic level to construct 
the planned and closed interaction of humans. The semantic and pragmatic 
ambiguities, which occur in “being- in- interaction,” are ignored. Ambiguity is 
seen as troublesome and inconvenient and thus has to be prevented and “dis-
solved” at the technical and syntactical level.11 In the making process, these 
views on (inter- )action are embedded in the artifi cial product. But they are also 
frozen into the routines of computer scientists and into their products, which 
they use themselves and which they apply and feed back into the computer 
science domain. In the main, computing professionals do not design but use 
established methods and theories. They focus on security and non- ambiguity 
and are afraid of the complex and the unpredictable.12 The methodical invis-
ibility of the representation of  ready- made interaction is based on the planned 
cooperation between software and hardware. It could close the design options 
of users resulting in design activities that are locked into the frame of pre-
 established understanding.
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Doubt

In spite of the OO approach the pre- established meanings established by the 
software designers are not the fi nal meanings of a system. On the contrary, these 
methodical invisibilities have the potential to create doubt, and this could be 
a starting point for the process of changing the meaning of  ready- made in-
teraction. Users are experts at escaping from rigidly planned interaction; they 
determine usability in their own interaction world. In this way, methodical in-
visibility can lead to “playful exploration and engagement.”13 Systems, which 
are in this sense actable, can be successful, because they can “be perceived and 
enacted in very different ways by different people in different situations, if the 
users can fi nd the keys for this disclosure.”14 Doubt leading to exploration and 
change is, according to Heidegger, the essence of technology; it is not simply a 
means to an end, it is a way of revealing the world we live in.15

However, is this change of meaning still possible? It requires the blowing up 
of the pre- established conditions for change embedded in OO- products. Users 
slide unnoticed into a state of fearfulness about changing their habits because 
this might disturb the surrounding pre- planned acting. Our society is forcing 
us into using specifi c tools, because a lot of other tools have disappeared; they 
did not fi t into the digital lifestyle of our society.

Are we still allowed to have doubt and is doubt not becoming the unwel-
come intruder, which hinders us in exploiting the unintended opportunities of 
 ready- made action? Is it still true that tools challenge us to interact with our 
environments? Are we still in the position to create an interactive environment 
if we are not skilled computer scientists?

Notes
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they were not designed. 

15. Martin Heidegger, Die Technik und die Kehre.

Perl
Geoff Cox and Adrian Ward

Perl (an acronym for “Practical Extraction and Report Language”) is a pro-
gramming language, fi rst developed for Unix by Larry Wall in 1987 as an open 
source project to build on the capabilities of the “awk” utility.1 Wall required 
a language that combined the quickness of coding available in “shell” (or awk) 
programming, with the power of advanced tools like “grep” (without having 
to resort to a language like C, C++ or assembly). Perl therefore lies somewhere 
between low- level programming languages and high- level programming lan-
guages. It combines the best of both worlds in being relatively fast and uncon-
strained: “Perl is easy, nearly unlimited, mostly fast, and kind of ugly.”2

Perl uses a highly fl exible syntax that gives programmers greater freedom 
of expression than many other languages.3 Its concise regular expressions allow 
complex search and modify operations to be encoded into dense operators. This 
makes Perl particularly diffi cult to read (or ugly) for those unfamiliar with 
its form, however the syntax is really relatively simple, and carries its own par-
ticular aesthetic attractions.

Perl programs are generally stored as text source fi les, which are compiled 
into virtual machine code at run- time. There is a distinction between the pro-
gram that interprets, compiles, and executes Perl code (perl) and the language 
name (Perl). In reference to other Open Source projects that embrace obfusca-
tion, it should never be an acronym (PERL) despite the documentation clearly 
stating it stands for both Pathologically Eclectic Rubbish Lister and Practi-
cal Extraction and Report Language. Perl programs are usually called “Perl 
scripts” and, due to the interpreted nature of the language, are ideal for rapid 
development and reworking of code. Changes can be made and the code retried 
very swiftly, which has led to Perl being favored in diverse scenarios requiring 
complex yet quick solutions. In addition, Perl is particularly useful as “glue 
code” and for  mixed- language script programming. Perhaps this is what the 
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artist Harwood was thinking about in his “porting” of William Blake’s poem 
London (1792) into London.pl (2002). This is more than simply a formal exer-
cise. In both the original Blake version and Harwood’s adaptation, statistics 
and the modulation of populations are used for social comment, but in the Perl 
version material conditions are registered more overtly as both form and con-
tent. The politics of Blake’s poem describing the social conditions of London 
are translated to a contemporary cultural and technical reality in which people are 
reduced to data:4

local %DeadChildIndex;

#  The Data for the DeadChildIndex should be structured as follows:

# %{DeadChildIndex} => {

#      IndexValue => {

#             Name         =>   “ Child name If known else undefined ”;

#             Age          =>   “ Must be under 14 or the code will throw an

#                              exception due to $COMPLICITY”;

#             Height       =>  “Height of the child”

#             SocialClass  =>  “RentBoy YoungGirl- Syphalitic-Innoculator  

#                              CrackKid WarBeatenKid ForcedFoetalAbortion 

#                              Chimney- Sweeps  UncategorisedVictim ”

#      }, As many as found

# }

In terms of the application of Perl for social comment, Harwood is extending 
an established aesthetic practice referred to as “perl poetry” that emphasizes 
the point that code is not merely functional but can have expressive or liter-
ary qualities too.5 Take, for example the winner of The Perl Poetry Contest of 
2000 by Angie Winterbottom:

if ((light eq dark) && (dark eq light)

   && ($blaze_of_night{moon} == black_hole)

   && ($ravens_wing{bright} == $tin{bright})){

 my $love = $you = $sin{darkness} + 1;

};6
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Poetry is analogous to code in that it is both written and spoken or read 
and executed.7 There are accepted techniques for reading code, and Winter-
bottom’s poem relies on her choice of spatial arrangement and the syntactic 
understanding of the language itself. Only a programmer familiar with hash 
tables would understand that “$blaze_of_night{moon} == black_hole” can 
be read as “The moon, a black hole in the blaze of night.”

Interpreted scripting languages such as Perl appear to hold more open-
 ended creative possibilities that emphasize process rather than end- product, 
if only because access to the source code is so readily available, and because 
quite often part of using a Perl script entails reading its source—this is true 
regardless of whether dealing with Perl poetry or in a conventional functional 
deployment.

Programming with Perl emphasizes material conditions, which evokes 
how N. Katherine Hayles, in Writing Machines, stresses materiality in relation 
to writing.8 She describes the mixed (semiotic) reality that literature engen-
ders—between the reality literally at hand, the one evoked through imagina-
tion, and the situation to which it applies—as a play of signifi cation in other 
terms. In addition to the writer and reader, there are other players involved 
in the production of a text or program that include those who participate in 
the development of the programming language, other software developers, the 
engineers who design the machines on which the program runs, the factory 
workers who build these machines, the technicians who maintain them, and 
so on.9 All these players are situated in the material world and the social rela-
tions that arise from this.

Materiality expressed in this way follows a critical modernist tradition that 
brings into view the technical apparatus or writing machine that produces 
it—this is familiar to an analysis focused on cultural production such as liter-
ary criticism. Hayles goes further than this, and to this wider context, adds the 
materiality of the text itself to the analysis in a similar way to those who con-
sider code to be material. In this way, it is the materiality of writing itself that 
is expressed through the relationship between natural language and code—
one, code, tended towards control and precision, the other, language, tending 
toward free form and expression.10 This is particularly evident in “codework” 
(such as Harwood’s above) and other examples that combine so- called natural 
and artifi cial languages that play with signifi cation. In such examples, mean-
ing and authorship remain in question.11
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Working with code goes further than this. The execution of code engages 
materiality and imagination through the possible and often unpredictable ac-
tions that result. The materiality therefore requires attention to the technical 
apparatus, but also to the program—the activity of programming and the ac-
tivity of the program once executed. Perl is a useful tool in this respect. It re-
mains free and transparent; and because it does not require compiling in order 
to run it is impossible to make an opaque binary. If installed and run, it can 
always be turned back into source code. Perl is an open source project, emerg-
ing out of a Unix- inspired culture of sharing.12

In the lecture “Perl, the fi rst postmodern computer language,” Larry Wall 
is keen to point out that modernist culture was based on “or” rather than 
“and,” something he says that postmodern culture reverses.13 But this posi-
tion appears to disregard a critical modernist tradition that would emphasize 
issues of materiality, refl exivity, and transparency of production. For instance, 
Marshall Berman’s argument, in All That Is Solid Melts into Air, posits that 
dialectical thinking asserts “and- both” over “either- or.” Berman is skeptical 
of claims about change if they do not embrace contradiction. His position is 
informed by a dialectical understanding of modernity representing a transi-
tional state between the old and the new—modernity remains an “incomplete 
project.”14 Berman suggests that it is our thinking about modernity that has 
stagnated. He says:

Modernity is either embraced with a blind and uncritical enthusiasm, or else con-

demned . . . in either case, it is conceived as a closed monolith, incapable of being 

shaped or changed . . . Open visions of modern life have been supplanted by closed 

ones, Both / And by Either / Or.15 

In claiming “AND has higher precedence than OR does,” Wall is focusing 
on the eclecticism of Perl and how algorithms can be expressed in multiple 
ways that express the style of the programmer. Both of these operators are fun-
damental to Boolean logic and hence applying precedence to one over another 
appears to be contradictory.16 However, Perl embraces this sort of peculiarity, 
and this is how it extends the possibilities of coding beyond simply functional 
intentions. The extent to which Perl gets (mis)used might point out how con-
temporary software practices focus more on diversity and recapitulation than 
innovation and optimisation. This resonates in Wall’s claim that one of Perl’s 
features is to focus attention not so much on the problem but on the person 
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trying to solve the problem, on the creativity of the programmer: “It doesn’t 
try to tell the programmer how to program.”17

$wall {modernism } = ‘or’;

$wall {postmodernism} = ‘and’;

$berman{modernism} = ‘both / and’;

$berman{postmodernism} = ‘either / or’;

if ($wall {modernism || $berman {postmodernism}) {

 if ($wall {postmodernism} && $berman {modernism}) {

  $wall {modernism) = &condemn($berman {postmodernism}); #closed

  $wall {postmodernism) = &embrace($berman {modernism}); #open

 }

}

print “Wall: ‘$wall{postmodernism}’\n”;

print “Berman: ‘$berman{modernism}’\n”;

sub embrace {

 return $_[0]; #blind and uncritical enthusiasm

}

sub condemn {

 undef $_[0]; #blind and uncritical condemnation

}

In this way, rather than Perl being condemned as the fi rst postmodern com-
puter language, the preference for the connective “and” as opposed to “or” is in 
keeping with critical practices that promote the development of new forms of 
expression that preserve contradiction.18 The suggestion is that Perl is not only 
useful on a practical level but that it also holds the potential to reveal some of 
the contradictions and antagonisms associated with the production of software.

Notes

1. Larry Wall, “Perl, the First Postmodern Computer Language,” available at http: // 

www.wall.org / ~larry / pm.html / (interestingly, Wall’s background is in linguistics).
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2. Randall L. Schwartz and Tom Phoenix, Learning Perl, 4.

3. For instance, Perl Mongers is a loose association of international Perl User Groups, 

http: // www.pm.org, and discussions take place at The Perl Monastery, http: // www

.perlmonks.org; see also The Perl Journal, http: // www.tpj.com /.

4. Florian Cramer has written a feature on Harwood’s London.pl on the Runme software 

art repository, http: // www.runme.org / feature / read / +londonpl / +34 /. 

5. An early example of literature using the Perl programming language is Sharon Hop-

kins’s 1992 paper, “Camels and Needles: Computer Poetry Meets the Perl Program-

ming Language,” in The Perl Review, Vol. 0, Issue 1 (1991), available at http: // www

.theperlreview.com / Issues / The_Perl_Review_0_1.pdf. It was fi rst presented at the 

Usenix Winter Technical Conference in 1992. 

6. Kevin Meltzer, “The Perl Poetry Contest,” in The Perl Journal, Vol. 4, Issue 4 (2000), 

available at http: // www.tpj.com. The original poem by Edgar Allan Poe reads: “If light 

were dark and dark were light / The moon a black hole in the blaze of night / A raven’s 

wing as bright as tin / Then you, my love, would be darker than sin.” This example 

was previously cited in Geoff Cox, Alex McLean, and Adrian Ward, “The Aesthetics 

of Generative Code,” Generative Art 00 conference, Politecnico di Milano, Italy (2001), 

available at http: // www.generative.net / papers / aesthetics / index.html. 

7. This statement refl ects our previous collaborative essay (with Alex McLean), “The 

Aesthetics of Generative Code.”

8. N. Katherine Hayles, Writing Machines.

9. Ibid., 6.

10. See Florian Cramer for more on this relation, in “Ten Theses About Software Art” 

(2003), available at http: // cramer.plaintext.cc:70 / all / 10_thesen_zur_softwarekunst / . 

11. The materiality of text or code is verifi ed by the property rights exerted on it—

intellectual property would even cast ideas as material objects in this respect. 

12. Perl is, by and large, an all- inclusive implementation of Unix and the GNU utili-

ties. See Eric S. Raymond, The Art of UNIX Programming.

13. Wall, “Perl, the First Postmodern Computer Language.”
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14. Incompleteness is the character that Jürgen Habermas assigns to modernity, em-

phasizing its transitory, elusive, ephemeral, dynamic qualities, in “Modernity—An 

Incomplete Project,” 5.

15. Marshall Berman, All That Is Solid Melts Into Air: the Experience of Modernity, 24.

16. Following Boolean logic, data follows both an arithmetical and logical binary 

form, as a set of choices between two conditions. It can also be extended to include 

more complex and conditional formations such as “or,” “and,” “not,” as well as rules 

about consistency, implication, and contradiction.

17. Wall, “Perl, the First Postmodern Computer Language.”

18. For example, Florian Cramer’s “and.pl”

open(THIS, ‘and’);open

(THAT, “>>and”) ;while (<THIS>) {print$_; print THAT”#$_”};

”#to”; close (THIS);

Pixel
Graham Harwood

Nowadays, all well- fed people are expected to take pictures, in the same way 
that everyone is expected to speak. Pixels, bitmaps, digital cameras, phone 
cameras, closed circuit television cameras, and scanners litter our homes, of-
fi ces, and landfi ll sites. At the MediaShed, a center for free media at the mouth 
of the Thames (Southend- on- Sea, UK) we have been given fi fteen scanners, 
four digital cameras and twenty graphics cards in two months as people up-
grade to the next level of seeing machine.

One possible explanation for this glut of constructed seeing and its associ-
ated problems of heavy metal waste, of cheap labor, and environmental dam-
age, might be the continuation of a historical preoccupation with both the 
splitting of light into its constituent parts and the moving of light from one 
place to another. This can be seen in the historic formulation of perspective by 
the  artist- technologists Filippo Brunelleschi and Leone Battista Alberti in the 
fi fteenth century and with Newton’s use of a prism to split white light into its 
constituent colors in the seventeenth century.
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While there are many threads in the story of the quantifi cation of vision 
resulting in the pixel, I have chosen to draw a line from perspective as a tech-
nical progenitor.

Creating an enchanting image of a technique at work, the  fi fteenth- century 
architect Filippo Brunelleschi is said to have demonstrated the principle of 
central perspective by depicting the Baptistry as seen through the door of the 
Florentine cathedral.1 He placed a net over an entrance, thus forming a grid, 
and then drew the intersecting lines he saw. In each cell of this net he con-
structed a sample of the light visible from a central point. Brunelleschi’s net 
has evolved into a system in which the light intensities at each point of a far 
fi ner grid of photosensitive cells are recorded. 

The algorithm to render perspective relies on the fact that light normally 
propagates along straight lines. We can therefore work out, for any object in 
space, which light rays from its surface will reach a given point. This knowl-
edge allows anyone who learns the method to achieve a repeatable result. In 
addition to showing how lines of light radiate from objects, perspective sets up 
rules by which they can be shown to converge at a point. In this way it creates 
the position of a witness outside the frame of the picture, a position by which 
the scene can be interrogated. This position can only be occupied by a mecha-
nism or person endowed with the correct procedures of interpretation. Such 
a systematization of sight sets in play a skepticism of non- verifi able personal 
perception. It sets up a mechanics of vision relying on self- correction and veri-
fi cation: logical procedures employed in today’s seeing machines.

With the dual—and not entirely uncontradictory—ascents of science and 
capitalism as explanatory and organizing principles, picturing, with its in-
heritance from perspective has tended to become synonymous with possession. 
This can account for much of the mechanical seeing and picture processing 
habits that we see around us. While this understanding is useful, in an age of 
binary rationalism we still fi nd ourselves trying to explain the irrational and 
mesmerising hold that pictures have over our imagination.

 Pixels fi rst appeared at Princeton’s Institute for Advanced Study in New 
Jersey in 1954.2 At that time the word “pixel” simply described the glowing 
fi laments of the machine’s vacuum memory registers. The term later gained use 
in image processing to describe the raster elements in a screen or image, as “pic-
ture elements,” descendents of the squares of light caught in Brunelleschi’s net. 
Alongside the growth in use of the term, we have learned to shape our pixels to 
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better refl ect the world, even as we spent the last 50 years re- ordering the world 
to more closely approximate those phosphorescent dots. The pixel has become 
both a mirror and a lens, refl ecting and shaping the realities of its own making.

It is useful in this inquiry to see the picture element or pixel as the basic 
unit of programmable color in our seeing machines. Logical as well as physical, 
organized clusters of pixels enable us to dive through our screens and stand 
in the position occupied by the lens. Each pixel is formed from a set of three 
separate channels of red, green, and blue visual data that overlap on our moni-
tors to form a convincing speck of colored light. The pixel usually consists of 
a structure of one to eight bits for each of its red, green, and blue component 
values of light. According to its scientifi c fi guration, light is an electromag-
netic wave or signal from a source that is made out of one or more frequencies. 
The human eye is sensitive to a very narrow band of frequencies, namely the 
frequencies between 429 terahertz (THz) and 750 THz. This is the same sensi-
tivity range as a charge coupled device (CCD) or a complementary metal oxide 
semiconductor (CMOS) chip found in our digital cameras.

Digital cameras sample light from a particular position, that of the lens. 
This involves converting the signal from the continuous light we see to the dis-
crete quantities of light recorded in bitmaps. The fi neness of the grid by which 
a recording is made is the picture resolution. Quantization, converting the am-
plitude of the signal from a continuous and infi nite range of values to a fi nite 
set of discrete values, can be thought of as setting the bit- depth of the picture, 
establishing subtle or visibly discontinuous gradations of light. Pixels can be 
square, hexagonal, rectangular, or irregularly shaped, but given that each pixel 
has boundaries they require a process by which the world is chopped up into 
chunks that conform to those boundaries and is still visually meaningful. Dis-
cretization is part of the process by which color and light values are allocated 
to a pixel. It consists of sorting values, evaluating a cut- point where a value 
changes or merges, and setting the intervals between samples and value set-
ting. Each of these stages require algorithms that shape the resulting pictures, 
and the speed of their processing. The development of discretization largely 
follow the path of a closer fi t between data and its algorithmic processing.

Light discharged by pixels, themselves organized and stored as bitmaps, 
falls on the retina of the eye. Agitated by small electrical charges, the moni-
tor pours light at an imagined viewer. At a biological level this is experienced 
through electromagnetic waves making contact with the retina, lined with 
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two types of photosensitive cells. These photoreceptors are known as rods and 
cones. The rods only detect whether or not light is present. They are sensitive 
to the whole spectrum at once but only in terms of brightness or “luminence.” 
Cones are sensitive only to certain frequencies: red, green, and blue, values of 
“chrominance.” In this way, the pixel on a screen models the component light 
values held within the cells of the eye.

Bitmaps allow pixels to coagulate into pictures. They can be thought of as 
containers for holding discrete values of red, green, and blue light or as sets of 
visual data, usually rectangular in form, that refl ect the underlying 2- D mathe-
matical arrays that hold the derived variables of light. Bitmaps hold visual 
data in cells based on a Cartesian (x,y) grid that allows individual pixels to be 
fi ltered, manipulated, and sent to the framebuffer for display. When you need 
to make a print for Nan’s birthday your personal printer reinterprets the bit-
map as a series of commands to use certain inks in a set order. For monitors, 
the same set of electrical impulses are interpreted to set specifi ed intensities of 
chrominence and luminence.

A seeing machine’s ultimate goal is the natural and effortless sampling of 
reality as representation. As an information system, it is a neutral carrier of your 
pictures characterized by a very low  signal- to- noise ratio. The construction of a 
neutral carrier allows for the transmission of pictures as equally neutral numeri-
cal values and helps us enjoy all forms of self- surveillance fun with minimal loss 
of quality. The conception of neutrality is transferred from the device and onto 
the programmers and engineers who develop the software and hardware, leav-
ing them too as mere vessels for the message, whatever it may be.

As with their ancestor, perspective, today’s binary seeing machines, have 
managed to convince us that now we really can possesses an infallible method 
of representation: a system for the automatic and mechanical production of 
truths about the material world. That is, if we buy the new 15- megapixel cell-
phone with the Adobe plug- ins that will no doubt be available next year. Or 
was that last year? Aided by the political and economic ascendance of Western 
systems of objectifi cation and  piggy- backing on photography’s history, artifi -
cial seeing has conquered the world of representation.

We now have, not two eyes, but as many as we can afford. We enjoy us-
ing our computers to process the pictures and leave them around on our hard 
drives or pop them up on the web for mum or aunty to have a look at. Digi-
tal imaging products with  feature- lists such as wi- fi  LAN support enabling 
wireless transfer, shooting and printing,  super- bright 2.5- inch LCD monitors, 
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D- Lighting improving images recorded with unsatisfactory exposure, and face-
 priority auto focus that can pinpoint a human face in the shot and provide sharp 
focus accordingly, make it irresistible!

No matter whether it is a monitor, camera, printer, or the screen of a mo-
bile phone, the output device is always an attempt to refl ect or transmit light 
to the retina of a viewer. The viewer in turn, mesmerized by the light, enters 
commands that again shine onto the retina. In this way the pixel and its at-
tendant soft and hardware systems can be seen as an element in a net drawn 
up by the social, economic and cultural re- ordering of the variables of ambient 
light. Such a net is made possible by reducing the spectrum of light to a set 
of repeatable tasks, as analyzed by the linguistic tools of code, made possible 
by contemporary hardware environments. This is now the natural mode of 
representation in most rich countries and through it we enjoy our neutral ap-
propriation of the pixel’s reality.

Nowadays, all well- fed people are expected to take pictures in the same way 
that everyone is expected to speak. Over the past twenty years the pixel has 
gone from being a blocky grid- like thing to achieving the ever- higher resolu-
tions that we expect. Seen from some future  water- table polluting slag- heap 
of heavy metals made from last year’s cast- off monitors, printers, and scanners, 
the pixel will glint and wink at us, the guiding light in the reordering of our 
individual and collective sight, reduced to the soft / hardware systems that are 
used to record, judge, display, and manipulate the ambient variables of light.

Notes

1. W. J. T. Mitchell, The Language of Images, 193–196.

2. See Richard F. Lyon, “A Brief History of ‘Pixel’”; and, Andrew Zolli, “Pixelvision: 

A Meditation.”
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Preferences / settings / options / control panels
Søren Pold

If, as Umberto Eco pointed out in 1994, the contemporary graphical user 
interface (GUI) inherited its icons and user- friendly behavior from  counter-
 reformation Catholicism, then the preferences palette is both its most holy 
place and a critical corner in the contemporary graphical user interface.1 The 
preferences palette presents a peephole into the area behind the scenes, the 
backstage area where the representation that is presented to the human user is 
produced.2 In the “preferences,” “settings,” “options,” or “control panels,” all 
similar places in different software, it is possible to manipulate the very stag-
ing of the interface, its colors, language, interaction menus, fi le handling, auto 
functions, warning messages, security levels, passwords, cooperation with other 
software, networks, peripherals, and so on. It is here that the software and the 
interface are confi gured and increasingly personalized to match with individual 
needs and aesthetic taste through skins, sounds, themes, etc. As such, it is here 
that the aesthetics and the functionality—together with issues around the con-
struction of user behaviours and the use of software as self- representation—are 
negotiated or perhaps clash.

Preferences came out of parameters and confi guration fi les. Parameters are 
ways of specifying characteristics when calling certain functions my in, for ex-
ample, command line interfaces such as DOS or Unix.3 A confi guration fi le is 
a fi le that contains confi guration instructions for the software. MS- DOS had a 
confi guration fi le called “confi g.sys” that describes how the computer is confi g-
ured in respect to devices, drives, memory locations, etc. In the era of MS- DOS, 
advanced users could not resist experimenting with the confi g.sys fi le, which 
often led to crashing the system if they were not suffi ciently skilled. When soft-
ware became further commodifi ed and marketed to ordinary consumers, the 
software interfaces increasingly included preference palettes and menus. Since 
then preferences have grown and now often include several sub- screens. Today 
GUI systems like Microsoft Windows still have settings and confi guration fi les 
kept in a “registry.” It can be edited, but this is often reserved for system ad-
ministrators and advanced users, and it is more or less off limits to the normal 
user. The registry stores the confi gurations that the user has made in the various 
preferences palettes.4
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In general, the preferences regulate three spheres around the software in-
terface: functionality, power relations, and aesthetics. Functionality concerns 
issues such as compatibility, fi le placement, plug- ins and extensions, peripher-
als, and cooperation with other software, whereas management of administra-
tive rights, security and passwords, levels of insight into technical codes, and 
confi gurations are more related to the power relations between the software and 
the user.5 Seen from the point of view of aesthetics, the preferences often con-
trol skins, themes, and sounds, which are related to a superfi cial aesthetic, the 
“look- and- feel” of the software where the user—perhaps aided by themes from 
various websites—is free to change the appearance into, for example, some-
thing that relates to sci- fi  fantasy worlds, popular icons, games, or the appear-
ance of other operating systems.

But there is more to aesthetics than surface. The preferences set up and ne-
gotiate an equivalent to the contract that a theatre audience or a reader adhere 
to when entering a fi ctional representation: a mental, cultural contract negoti-
ating one’s expectations and how one is supposed to act and react in the repre-
sentational space. The relations between the software’s senders6 and receiver(s) 
or user(s) are defi ned, most often within very strict limits. Normally, it is only 
possible to change certain things and change them the way the senders have 
prefi gured, and often one cannot fi nd the setting that controls an annoying fea-
ture one wants to get rid of. As a result one becomes irritatingly aware of the 
fact that the interface is structured around principles set up by the sender(s): I 
see what I may change and to what other options; and sometimes I can even see 
as a dimmed option representing something that I cannot change, something 
that can only be changed by higher powers in the hierarchy controlling the soft-
ware, that is, the technical department. Preferences regulate the contract be-
tween the producers, the machine and its software environment, and what I as 
a user prefer, thus my preferences are not purely mine, but highly negotiated 
in this software hierarchy. Recently one can even see so- called “parental con-
trols” pop up (e.g., in the internally released Windows Longhorn 4015) that 
limit the user. In the early 1990s Apple marketed At Ease, a simplifi ed inter-
face with limited possibilities.7 It becomes clear that the preferences control 
a power hierarchy, and the user’s fi ddling around with them is a way of both 
realizing and compensating for this.

In this sense, the software user as a character with certain rights, abilities, 
and limits is constructed here. This construction of the user has become more 
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and more dynamic and cybernetic; the software automatically models itself on 
(its model of ) the user. Software increasingly constructs dynamic models of its 
user and customizes itself accordingly; for example, it stores traces of user be-
havior such as last opened documents, commonly used functions, and menus, 
cookies, caches, and histories of internet behavior. In this sense, software aims 
at automatically changing some settings according to user behavior, such as the 
personalized menus in Microsoft software, in which only frequently used menu 
items are initially shown, or the way most web browsers remember and sug-
gest URLs and most email clients store and suggest email addresses. Some of 
these traces are to some extent open for reconfi guration for the advanced user; 
at least the user might be able to delete them. Still it highlights how “my” 
preferences on my personal computer become some sort of automated autobi-
ography within the medium of software, on my personal computer becomes a 
cybernetic mirror of me.8

Preferences, and the way they negotiate the representational levels of the 
software interface, present the software as a functional tool directed toward a 
specifi ed task, delimited by the sender of the software and often by traditional 
notions of the task from earlier software and pre- digital tools. Most word pro-
cessors such as Microsoft Word (fi gure 12), for example, are directed toward a 
specifi c kind of formal, technical, and  business- related writing, which is sup-
posed to be printed on pages, and to already look “printed” when you write. 
Of course this does not mean it cannot be used for other more creative or 
literary kinds of writing, but it does not encourage or suggest it, and some-
times it even tries to direct the writing toward more formal writing styles, for 
example, suggesting bullets, numbering, footnotes, and certain spelling and 
grammar corrections, while it never advances more creative elements of writ-
ing. This will often drive the user to the preferences in order to reconfi gure the 
software toward his or her writing style to avoid disturbing interferences from 
the software. Most of these things can be switched off with some fi ddling, but 
traditional software is still built to be a relatively neutral tool for a specifi c 
domain, and lets the user work on the domain or the content while the tool is 
mostly fi xed within the borders delimited by the preferences. Microsoft Word 
is not suitable for producing experimental electronic literature that engages 
with new digital forms of writing—like hypertext, generative and dynamic 
texts—but mainly for producing documents modeled on traditional docu-
ment formats like letters, reports, and (academic) books. Furthermore, Word 
is not directed toward writing code, not even HTML code, although it does 
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allow its user to save his or her document as web page. One could argue that 
Word promotes an offi ce perspective on writing, a typographical writing that 
has not taken the various digital developments of writing fully into account.9

Software is generally presented as a tool for use in a specifi c way, often mod-
eled on previous media,10 and notwithstanding the possibilities to change the 
superfi cial aesthetics and the autobiographical elements; it is not presented as 
a media for expression or for developing new kinds of use. Software thus does 
not have meaning but function. As a consequence, most software studies have, 
until now, been usability studies.

Meanwhile, as already suggested, a closer look reveals that function and 
meaning are closely interwoven. Although there are good functional reasons 
for letting the user change various preferences, most of us engage in this also 
because of aesthetic reasons or taste and issues of self representation: We do not 
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like the sounds, colors,  short- cuts, interruptions, defaults—in general how the 
software represents itself and operates—we want to change this in order to 
personalize the software and become sophisticated users.11 According to popu-
lar knowledge among system administrators, the preferences are the fi rst thing 
to delete when software is corrupted; users’ preferences clog up the functional-
ity of the software—it would be easier if we were all confi ned to the defaults of 
Apple or Microsoft. Still, the trend toward letting the user control the super-
fi cial aesthetics can be seen as a symptom users wanting to become more than 
plain users. Users want to contribute, change, get more insight, etc.; they get 
annoyed by being reduced to default users. In fact we change the defaults in or-
der to see and re- negotiate how the software and its senders have confi ned us.

The preferences palette gives a glimpse of the staging of the software in-
terface. In order to make some defaults changeable, the software has to make 
them explicit. The preferences palette is where the common, everyday user—
with no access to or knowledge of code—can make his mark and play around 
with the representational machinery of the software. And while this playing 
around is often aesthetisized—as in skins, themes, etc., which do not infl u-
ence the workings of the software—or commodifi ed as in third party exten-
sions and plug- ins, it still bears witness to the fact that software is more than a 
standard tool with standard uses, and that users are by instinct fi ghting against 
being standardized according to typical functionalistic values.

Notes

1. Umberto Eco, “La bustina di Minerva.”

2. Brenda Laurel presented the theatrical perspective on the computer and its interface 

in Computers as Theatre.

3. For example, in DOS you can call the copy function with the parameter “ / v” in order 

to add a controlling of the copied fi les, along with the source and destination of the 

copying as parameters. Thus a typical command to copy a text fi le from the disk drive 

to the hard drive and control the copying will be “copy a:\readme.txt c: / v.” This way of 

using parameters stems from programming, where subroutines in a program are often 

called with some parameters and variables.

4. In Unix environments confi gurations are stored in so- called dot fi les (because they 

start with a “.”, which hides the fi le from casual listing), that are editable and exchanged. 
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Examples may be found on the web at websites such as “dotfi les” (http: // dotfi les.com / ) 

(see “Confi guration fi le” from Wikipedia, http: // en.wikipedia.org). Even though Open 

Source software builds on an open access to the source code and thus also its confi gu-

rations, much Open Source software imitates the way preferences are implemented in 

commercial GUI software.

5. See Matthew Fuller, Behind the Blip: Essays on the Culture of Software.

6. The sender of a piece of software is some combination of the company behind the 

software and the local technical department controlling the confi guration of the soft-

ware, for example, in large institutions and companies—that is, all the people and 

institutions that produce and control the software. Only rarely is software presented 

with a naming of its authors or developers; more often the CEO stands in for the large 

group of developers engaged (such as Steve Jobs, Bill Gates. . .).

7. Marcin Wichary, GUIdebook, Graphical User Interface Gallery.

8. The artist group 0100101110101101.org put their personal Linux computer on- line 

(from 2000– 2003) in their “real- time digital self- portrait,” “Life Sharing,” so that users 

could read their fi les, settings, emails, etc. (archived at http: // www.0100101110101101

.org / home / life_sharing / ; ( last accessed March 20, 2006). Their comments on the proj-

ect included: “Whoever works with a computer on a daily basis, at least for a few years, 

will soon realise that his own computer resembles more and more to its owner. You 

share everything with your computer: your time (often even for 13 hours a day), your 

space (desktop), your culture (bookmarks), your personal relationships (e- mails), your 

memories (photos archives), your ideas, your projects, etc. To sum up, a computer, with 

the passing of time, ends up looking like its owner’s brain. It does it more and bet-

ter than other more traditional media, e.g. diaries, notebooks, or, on a more abstract 

level, paintings and novels. If you accept the assumption of a computer being the thing 

that gets closer to your brain, you will also assume that sharing your own computer en-

tails way more than sharing a desktop or a book, something we might call life_sharing” 

(retrieved March 20, 2006 from http: // 209.32.200.23 / gallery9 / lifesharing / ). The obvi-

ous next thing would be to steal somebody’s identity by stealing their preferences (which 

of course already happens with cookies, data mining, phishing, etc.) or buy some impor-

tant person’s preferences in order to explore and experience his personality . . .

9. See Olav W. Bertelsen, and Søren Pold, Criticism as an Approach to Interface Aesthetics; 

and Matthew Fuller, Behind the Blip.
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10. Another good example of this is Adobe Photoshop, which is directed toward the

old medium of photography, now digitized, and not toward more generative images in 

the manner of Adrian Ward’s software art works Auto- Illustrator or Auto- Shop. Available 

at http: // www.auto- illustrator.com / , http: // www.signwave.co.uk / go / products / autoshop.

11. When presenting with a computer to an audience, it is striking how many pre-

senters avoid the default design templates, desktop settings, and some even the most 

common presentation software packages (such as Microsoft PowerPoint), perhaps in 

order to avoid being seen as default standard users. This is evidence of the increasing 

role that software plays for self- presentation and appearance.

Programmability
Wendy Hui Kyong Chun

According to the Oxford English Dictionary, programmability is “the property 
of being programmable”—that is, capable of being programmed.1 Although 
the term “program,” as both noun and verb, predates the modern digital com-
puter, programmability and programmable do not, and the digital computer 
has changed the meanings of the word “program.” The defi nition of program, 
the noun, not only includes “a descriptive notice, issued beforehand of any for-
mal series of proceedings” and a “broadcast presentation treated as a single item 
for scheduling purposes” but also “a series of coded instructions, which when 
fed into a computer will automatically direct its operation in carrying out a 
specifi c task.”2 Program, the verb, includes “to arrange by or according to a 
programme,” and “to broadcast,” as well “to express (a task or operation) in 
terms appropriate to its performance by a computer or other automatic device; 
to cause (an activity or property) to be automatically regulated in a prescribed 
way.”3 Combined with the fact that “stored program” has become synonymous 
with von Neumann architecture, these defi nitions make it appear that pro-
grams are native to computers. Programs, however, were not always programs.

As David Alan Grier, among others, has argued, the term program did not 
stabilize until the mid- 1950s.4 According to Grier, the verb “to program” is 
probably the only surviving legacy of the ENIAC—the fi rst working electronic 
digital computer and the immediate precursor to those using stored programs. 
Importantly, the ENIAC’s “master programmer” was not a person, but a ma-
chine component, responsible for executing loops and linking sequences to-
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gether.5 That is, the master programmer handled the “program control” signal 
that each unit produced after it successfully executed a function. This use of 
“program” stems from electronics engineering, where a program signal is any 
signal corresponding to speech, or other activity, and stresses program as a 
thing that is transmitted, rather than a thing responsible for execution. As 
computers became machines, programmers became human and programming 
became functionally equivalent to the process of “setting up” the ENIAC—
the physical act of wiring the machine for a particular problem.6 Indeed, this 
“setting up” (once considered “operating” the machine) has been retroactively 
classifi ed as “direct programming”; Grier argues that the term “program” was 
favored over the term “planning” (then in use in numerical methods) in order 
to distinguish machine from human computing. Although this process of set-
ting up the machine seems analogous to the same process on contemporaneous 
analog machines, there is an important difference between them, for program-
mability marks the difference between digital and analog machines. This is 
not to say that analog machines are not programmed, but that what is meant 
by programming is signifi cantly different. Programming an analog computer 
is descriptive; programming a digital one is prescriptive.

To program an analog machine, one connects the units and sets the values 
for amplifi cation and attenuation, as well as the initial conditions. That is, one 
assembles the computer into an analog of the problem to be solved or simu-
lated. As Derek Robinson argues: “while a digital computer can simulate feed-
back processes by stepwise iteration . . . analog computers embody dynamic 
feedback fundamentally. The “computation” takes place at all points in the 
circuit at the same time, in a continuous process. Circuits are systems of circu-
lar dependencies where effects are fed back to become the causes of their own 
causes.”7 That is, analog computers perform integration directly and can be 
used “generatively.” Digital computers, on the other hand, employ numerical 
methods. They break down mathematical operations, such as integration, into a 
series of simple arithmetical steps. To do so, they must be programmable; that 
is, they must be able to follow precisely and automatically a series of coded in-
structions. Although one would think that the breakdown of mathematical op-
erations into a series of arithmetical ones would induce more errors than direct 
integration, this is not usually so. The programmability and accuracy of digital 
computers stems from the discretization (or disciplining) of hardware.

Since analog computers produce signals that simulate the desired ones, they 
are measured rather than counted. The accuracy of the result is thus affected by 
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noise and its precision by the sensitivity of the measuring instrument. In con-
trast, digital computers count rather than measure, and they do so by render-
ing analog hardware (vacuum tubes, transistors, etc.) signal magnitudes into 
discrete units. By translating a certain quantity into a value (5V into 1; 0V 
into 0), they can greatly reduce the effects of noise, and thus essentially build a 
system in which one step can predictably lead to another. As Alan Turing and 
von Neumann both acknowledged early on, there are no “discrete” or digital 
machines; there are only continuous machines that in Turing’s words can be 
“profi tably thought of as being discrete state machines,” machines in which, 
“given the initial state of the machine and the input signals it is always pos-
sible to predict all future states.” This, he argues, “is reminiscent of Laplace’s 
view that from the complete state of the universe at one moment of time, as 
described by the positions and velocities of all particles, it should be possible 
to predict all future states.”8 Again, reasonably accurate results depend on the 
design of hardware in specifi c ways: on timing gates carefully so that gate de-
lays do not produce signifi cant false positives or negatives; on signal rectifi ca-
tion; and on designs that cut down on  cross- talk and voltage spikes. Without 
this disciplining of hardware, digital computers—or  digital- analog hybrids—
could not be (however inadequately or approximately) universal mimics, or 
Turing complete.

This “return to Laplace” and the desire for programmability (and programs 
as we now know them) was arguably predated by work in mid- twentieth-
 century genetics. Most famously, Erwin Schrodinger, drawing from the work 
of contemporaneous researchers in biology and chemistry, posited the exis-
tence of a genetic code- script in his 1944 What is Life?9 Schrodinger posits this 
code- script as the answer to the challenge human genetics presents to statis-
tical physics, namely, given that statistical physics shows that Newtonian 
order only exists at large scales, how is it possible that the barely microscopic 
chromosomes guarantee the orderly succession of human characteristics? Also, 
given the second law of thermodynamics, how does life maintain order in this 
sea of disorder? Given how microscopic the chromosomes are, Schrodinger 
argues that they must be an aperiodic crystal code- script, a code- script—not 
unlike Morse code—that determines the entire pattern of an individual’s fu-
ture development and of its functioning in the mature state. Thus the code-
 script is a seemingly impossible return to Laplace. Schrodinger writes, “in 
calling the structure of the chromosome fi bres a code- script we mean that 
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the all- penetrating mind, once conceived by Laplace, to which every causal 
connection lay immediately open, could tell from their structure whether the 
egg would develop, under suitable conditions, into a black cock or into a 
speckled hen, into a fl y or a maize plant, a rhododendron, a beetle, a mouse or 
a woman.”10 Importantly, software—which was not foreseen by computing 
pioneers—and not DNA would come to fulfi ll Schrodinger’s vision of a code-
 script as “architect’s plan and builder’s craft in one.”

Just as Schrodinger links programmability to an all- penetrating mind, pro-
grammability is linked to the feelings of mastery attributed to programming, 
its causal pleasure.11 As Edwards has argued, “programming can produce 
strong sensations of power and control” because the computer produces an 
 internally- consistent if externally incomplete microworld, “a simulated world, 
entirely within the machine itself, that does not depend on instrumental effec-
tiveness. That is, where most tools produce effects on a wider world of which 
they are only a part, the computer contains its own worlds in miniature. . . In 
the microworld, as in children’s make- believe, the power of the programmer 
is absolute.”12 This power of the programmer, however, is not absolute and 
there is an important difference between the power of the programmer / pro-
gramming and the execution of the program. Alan Turing, in response to the 
objection that computers cannot think because they merely follow human in-
structions, wrote, “machines take me by surprise with great frequency.”13 This 
is because the consequences of one’s programs cannot be entirely understood in 
advance. Also, as Matthew Fuller has argued in his reading of Microsoft Word, 
there is an important gap between the program and the experience of using it. 
The mad attempt to prescribe and anticipate every desire of the user produces 
a massive feature mountain whose potential interaction sequences mean that a 
user’s actions cannot be completely determined in advance: the more features a 
program provides, the more possibilities for the user to act unpredictably.14

Importantly, programmability is being attacked on all sides: from quan-
tum computers that are set up rather than programmed (in the sense cur-
rently used in software engineering) to “evolutionary” software programs that 
use programmable discrete hardware to produce software generatively.15 This 
apparent decline in programmability is paralleled in new understandings of 
genomics that underscore the importance of RNA (the same portion of DNA 
can transcribe more than one protein)—biology and computer technology are 
constructed metaphorically as two strands of a constantly unravelling double 
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helix. This seeming decline, however, should not be taken as the death knell of 
programmability or control, but rather the emergence of new forms of control 
that encourage, even thrive on, limited uncertainty.16
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Sonic Algorithm
Steve Goodman

Contemporary sound art has come under the infl uence of digital simulations. 
These simulations are based on artifi cial life models, producing generative 
compositional systems derived from rules abstracted from actual processes oc-
curring in nature. Yet taking these intersections of algorithms and art, di-
vorced from a wider sonic fi eld can be misleading. With their often arbitrary, 
metaphorical transcodings of processes in nature into musical notation, un-
critical transpositions of artifi cial life into the artistic domain often neglect the 
qualitative, affective transformations that drive sonic culture. With care, how-
ever, we can learn much about the evolution of musical cultures from concep-
tions (both digital and memetic) of sonic algorithms—on the condition that 
we remember that software is never simply an internally closed system, but 
a catalytic network of relays connecting one analog domain to another. Here, 
the computing concept of the abstract machine attains a wider meaning, cor-
responding to the immanent forms that also pattern non- computational cul-
ture. For this reason, an analysis of the abstract culture of music requires the 
contextualization of digital forms within the contagious sonic fi eld of memetic 
algorithms as they animate musicians, dancers and listeners.

An algorithm is a sequence of instructions performed in order to attain a 
fi nite solution to a problem or complete a task. Algorithms predate digital cul-
ture and are traceable in their origins to ancient mathematics. Whereas a com-
puter program is the concretization or implementation of an assemblage of 
algorithms, the algorithm itself can be termed an abstract machine, a diagram-
matic method that is programming language independent. Abstract machines 
are “mechanical contraptions [that] reach the level of abstract machines when 
they become  mechanism- independent, that is, as soon as they can be thought 
of independently of their specifi c physical embodiments”1 thereby intensify-
ing the powers of transmission, replication and proliferation. This quality of 
algorithms is crucial to  software- based music, with key processes distilled to 
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formalized equations that are generalizable, transferable, reversable, and ap-
plied. “Coupled with software (or mechanism or score or programme or diagram) 
that effi ciently exploits these ideas, the abstract machine begins to propagate 
across the technological fi eld, affecting the way people think about machines 
and eventually the world.”2 The affective power of the sonic algorithm is not 
limited to the morphology of music form. Leaking out of the sterile domain of 
the digital sound lab and across the  audio- social fi eld, these abstract machines 
traverse the host bodies of listeners, users, and dancers, producing movements 
and sensations, before migrating back to the vibratory substrate.

If, as Gottfried Leibniz proposed, all music is “unconscious counting,”3 
then clearly, despite its recent popularity, algorithmic music composition can-
not be considered the exclusive domain of computing. It should instead be 
placed in an historical context of experiments with, for example, out of phase 
tape recorders, where tape loops already constituted “social software organized 
to maximize the emergence of unanticipated musical matter.”4 As Michael 
Nyman has outlined,  bottom- up approaches to musical composition take into 
account the context of composition and production as a system, and are “con-
cerned with actions dependent on unpredictable conditions and on variables 
which arise from within the musical continuity.”5 Examples from the history 
of experimental music can be found in the oft- cited investigations of rule-
 centered sonic composition processes in the exploration of randomness and 
chance, such as John Cage’s use of the I Ching, Terry Riley’s “In C,” Steve 
Reich’s “It’s Gonna Rain” and “Come Out,” Cornelius Cardew’s “The Great 
Learning,” Christian Wolff’s “Burdocks,” Frederic Rzewski’s “Spacecraft,” and 
Alvin Lucier’s “Vespers.”6 In this sense, as Kodwo Eshun argues, the “ideas of 
additive synthesis, loop structure, iteration and duplication are pre- digital. Far 
from new, the loop as sonic process predates the computer by decades. Synthe-
sis precedes digitality by centuries.”7

Recent developments in software music have extended this earlier research 
into  bottom- up compositional practice. Examples centering around the digital 
domain include software programs such as Supercollider, MaxMsp, Pure Data, 
Reactor and Camus,8 which deploy mathematical algorithms to simulate the 
conditions and dynamics of growth, complexity, emergence, and mutation of 
evolutionary algorithms and transcode them to musical parameters. The analy-
sis of digital algorithms within the cultural domain of music is not limited to 
composition and creation. Recent Darwinian evolutionary musicology has at-

Sonic Algorithm



231

tempted to simulate the conditions for the emergence and evolution of music 
styles as shifting ecologies of rules or conventions for  music- making. These 
ecologies, it is claimed, while sustaining their organization, are also subject 
to change and constant adaption to the dynamic cultural environment. The 
suggestion in such studies is that the simulation of complexity usually found 
within biological systems may illuminate some of the more cryptic dynam-
ics of musical systems.9 Here, music is understood as an adaptive system of 
sounds used by distributed agents (the members of some kind of collective; 
in this type of model, typically, none of the agents would have access to the 
others’ knowledge except what they hear) engaged in a sonic group encounter, 
whether as producers or listeners. Such a system would have no global supervi-
sion. Typical applications within this musicological context attempt to map 
the conditions of emergence for the origin and evolution10 of music cultures 
modeled as “artifi cially created worlds inhabited by virtual communities of 
musicians and listeners. Origins and evolution are studied here in the context 
of the cultural conventions that may emerge under a number of constraints, 
for example psychological, physiological and ecological.”11 Eduardo Miranda, 
despite issuing a cautionary note on the limitations of using biological models 
for the study of cultural phenomena,12 suggests that the results of such simula-
tions may be of interest to composers keen to unearth new creation techniques. 
He asserts that artifi cial life should join acoustics, psychoacoustics, and artifi -
cial intelligence in the armory of the scientifi cally upgraded musician. Accord-
ing to Miranda, software models for evolutionary sound generation tend to be 
based on engines constructed around cellular automata or genetic algorithms.

Cellular automata were invented in the 1960s by von Neumann and Stan-
is law Ulam as simulations of biological self- reproduction.13 Such models at-
tempted to explain how an abstract machine could construct a copy of itself 
automatically. Cellular automata are commonly implemented as an ordered 
array or grid of variables termed cells. Each component cell of this matrix can 
be assigned values from a limited set of integers, and each value usually corre-
sponds with a color. On screen, the functioning cellular automata is a mutat-
ing matrix of cells that edges forward in time at variable speed. The mutation 
of the pattern, while displaying some kind of global organization, is gener-
ated only through the implementation of a very limited system of rules that 
govern locally. Heavily infl uential to generative musicians such as Brian Eno, 
the most famous instantiation of cellular automata is John Conway’s Game 
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of Life (1967). Game of Life has recently been implemented in the software 
system CAMUS, whereby the emergent behaviors of cellular automata are  
developed into a system that transposes the simple algorithmic processes into 
musical notation. The rules of the Game of Life are very simple. In the cellu-
lar grid, a square can be either dead or alive. With each generation, or step of 
the clock, the squares change status. A square with one or zero neighbors will 
die. A square with two neighbors will survive. A square with three neighbors 
 becomes alive if not already, and a square with four or more neighbors will die 
from overcrowding. The focus of such generative music revolves around the 
emergent behavior of sonic lifeforms from their local neighborhood interac-
tions, where no global tendencies are preprogrammed into the system.

As in the case of cellular automata and artifi cial neural networks, models 
based around genetic algorithms transpose a number of abstract models from 
biology, in particular the basic evolutionary biological processes identifi ed in 
particular by Darwin14 and updated by Dawkins.15 These algorithms are often 
used to obtain and test optimal design or engineering results out of a wide 
range of combinatorial possibilities. Simulations so derived allow evolutionary 
systems to be iteratively modeled in the digital domain without the ineffi ciency 
and impracticality of more concrete trial and error methods. But, as Miranda 
points out, by abstracting from Darwinian processes such as natural selec-
tion based on fi tness, crossover of genes, and mutation, “genetic algorithms 
go beyond standard combinatorial processing as they embody powerful mech-
anisms for targeting only potentially fruitful combinations.”16 In practice, ge-
netic algorithms will usually be deployed iteratively (repeated until fi tness 
tests are satisfi ed) on a set of binary codes that constitute the individuals in 
the population. Often this population of code will be randomly generated and 
can stand in for anything, such as musical notes. This presupposes some kind 
of codifi cation schema involved in transposing the evolutionary dynamic into 
some kind of sonic notation, which, as Miranda points, out will usually seek 
to adopt the smallest possible “coding alphabet.” Typically each digit or clus-
ter of digits will be  cross- linked to a sonic quality such as pitch, or specifi c 
preset instruments as is typical in MIDI. This deployment consists of three 
fundamental algorithmic operations, which, in evolutionary terms, are known 
as recombination (trading in information between a pair of codes spawning 
offspring codes through combining the “parental” codes), mutation (adjust-
ing the numerical values of bits in the code, thereby adding diversity to the 
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population) and selection (choosing the optimal code based on predetermined 
pre- coded fi tness criteria or subjective / aesthetic criteria). One example of the 
application of genetic algorithms in music composition is Gary Lee Nelson’s 
1995 project Sonomorphs, which used

genetic algorithms to evolve rhythmic patterns. In this case, the  binary- string method 

is used to represent a series of equally spaced pulses whereby a note is articulated if 

the bit is switched on . . . and rests are made if the bit is switched off. The fi tness test 

is based on a simple summing test; if the number of bits that are on is higher than a 

certain threshold, then the string meets the fi tness test. High threshold values lead to 

rhythms with very high density up to the point where nearly all the pulses are switched 

on. Conversely, lower threshold settings tend to produce thinner textures, leading to 

complete silence.17

In summary, then, the development of artifi cial life techniques within mu-
sic software culture aims to open the precoded possibilities of most applica-
tions to creative contingency.18 The scientifi c paradigm of artifi cial life marks 
a shift from a preoccupation with the composition of matter to a focus on the 
systemic interactions between the components out of which nature is under 
constant construction. Artifi cial life uses computers to simulate the functions 
of these actual interactions as patterns of information, investigating the global 
behaviors that arise from a multitude of local conjunctions and interactions. 
Instead of messy biochemical labs deployed to probe the makeup of chemicals, 
cells, etc., these evolutionary sonic algorithms instantiated in digital software 
take place in the artifi cial worlds of the CPU, hard disk, the computer screen, 
and speakers. However, with an extended defi nition of an abstract machine, 
sonic algorithms beyond artifi cial life must also describe the ways in which 
 software- based music must always exceed the sterile and often aesthetically 
impoverished closed circuit of digital sound design. With non- software mu-
sics, such abstract machines leak out in analog sound waves, sometimes lay-
ing dormant in recorded media awaiting activation, sometimes mobilizing 
eardrums and bodies subject to coded numerical rules in the guise of rhythms 
and melodies. The broader notion of the abstract machine rewrites the connec-
tion between developments in software and a wider sonic culture via the zone 
of transduction between an abstract sonic pattern and its catalytic affects on a 
population. By exploring these noncomputational effects and the propagation 
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of these sonic algorithms outside of digital space, software culture opens to the 
outside that was always within.
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Source Code
Joasia Krysa and Grzesiek Sedek

 / Barszcz C recipe

*

* string based cooking

*

* Copyleft (C) 2006 Denis “Jaromil” Rojo

* for the barszcz project (currently unfinished)

#include <stdio.h>

#define ingredient char

#define tool char

#define few    3

#define some   5

#define pinch  1

#define plenty 8

#define one    1

#define soft_cooked 5

ingredient **take(int quantity, ingredient **ingr) {

      int c;

      int len = strlen(ingr) +10;

      ingredient = malloc( (quantity+1) * sizeof(*ingredient));

      for(c = 0; c < quantity; c++)

            ingredient[c] = malloc(len * sizeof(ingredient));

      ingredient[c+1] = NULL;

      return ingredient;

}

In The Art of Computer Programming Donald Knuth equates programming and 
recipes in a cookbook as a set of instructions to follow. Algorithms, much 
like cooking recipes, provide a method, a set of defi ned formal procedures to 
be performed in order to accomplish a task in a fi nite number of steps.1 Ex-
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amining the source code of a particular program reveals information about 
the software in much the same way as the ingredients and set of instructions 
of a recipe reveals information about the dish to be prepared. The analogy is 
rather straightforward perhaps but reveals something of the interests involved 
in the preparation, execution, and consumption of the work.2 The importance 
of source code for the description of software is that, alongside computer com-
mands, it also usually provides programmers’ comments—that is, a documen-
tation of the program including a detailed description of its functionality and 
user instructions.3 Furthermore, the importance of source code is that any mod-
ifi cations (improvements, optimizations, customizing, or fi xes) are not carried 
out on compiled binary code (object code or machine code) but on the source 
code itself. The signifi cance of this is that the source code is where change and 
infl uence can be exerted by the programmer. In the example of recipes, further 
descriptions are provided in the accompanying narrative. Although recipes are 
clearly not reducible to code—and vice versa—the analogy emphasizes that 
both programming and cooking can express intentionality and style.

Source code (usually referred to as simply “source” or “code”) is the un-
 compiled, non- executable code of a computer program stored in source fi les. 
It is a set of human readable computer commands written in higher level 
programming languages. Defi ned by a higher level of abstraction from ma-
chine language they share some of the characteristics of natural language, for 
instance, rules of syntax. When compiled, the source code is converted into 
machine executable code (binary), a series of simple processor commands that 
operate on bits and bytes. The process of compiling is twofold: the source code 
is converted into an executable fi le either automatically by a compiler for a par-
ticular computer architecture and then stored on the computer, or executed on 
the fl y from the human readable form with the aid of an interpreter. In princi-
ple, any language can be compiled or interpreted and there are many languages 
such as Lisp, C, BASIC, Python, or Perl that incorporate elements of both 
compilation and interpretation.4 In the history of computation, programs were 
fi rst written and circulated on paper before being compiled in the same way 
as recipes were written and shared before being compiled in cookbooks. The 
fi rst case of an algorithm written for a computer is credited to Ada Lovelace. 
It interpreted Charles Babbage’s Analytical Engine (of 1835) not merely as a 
calculator but as a logic machine capable of arranging and combining letters 
and other symbolic systems.5 The source code of a modern digital computer 
derives from the further adaptation (in the 1940s) of Babbage’s ideas.6 What 
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came to be known as the “von Neumann architecture” is important as it pre-
sented a single structure to hold both the set of instructions on how to per-
form the computation and the data required or generated by the computation; 
it demonstrated the  stored- program principle that has led to development of 
programming as separate from hardware design. Remington Rand’s UNIVAC 
(Universal Automatic Computer, 1951) was one of the fi rst machines to com-
bine electronic computation with a stored program and capable of operating 
on its own instructions as data.7 With a  stored- program computer, a sequence 
of instructions that might be needed more than once could be stored. The 
computer could store the sequence in memory and insert the sequence into 
the proper place in the program as required. By building up a library of fre-
quently used sequences, a programmer could write a complex program more 
effi ciently.8 In A History of Modern Computing, Paul E. Ceruzzi explains this 
development, from building up libraries of subroutines, then getting the com-
puter to call them up and link them together to solve a specifi c problem, to 
a more general notion of a high- level computer language with the computer 
generating fresh machine code from the programmer’s specifi cations.9

The principle of re- using or sharing code relies on storing collections of code 
lines, or functions, in “libraries.” The function or subroutine, often collected 
into libraries, is a portion of code within a larger program, which performs a 
specifi c task and is relatively independent of the remaining code. A subroutine 
is often coded so that it can be executed several times or from several places 
during a single execution of the program. It can be adapted for writing more 
complex code sequences, and is thereby a  labor- saving programming tool and 
an important mechanism for sharing and re- using code.10 An early example of 
a  community- based library of subroutines was SHARE (1955), a repository 
for shared use developed by a group of IBM users. More recently, the principle 
of sharing source code is instantiated in online repositories (such as Source-
Forge, Freshmeat, or Code Snippets.) Other tools including source code search en-
gines that index programming code and documentation are also available from 
open- source repositories (for instance, Koders, Krugle, Codefetch, and Codase).11 
Online code repositories are often used by  multi- developer projects to handle 
various versions and to enable developers to submit various patches of code in 
an organized fashion. CVS, a version control system commonly used in open 
source projects, is an important management mechanism that allows several 
developers to work on the same fi les both simultaneously and remotely. It al-
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lows the recording of individual histories of sources fi les and documents while 
storing the code on a single central server.12 

There are other examples that extend the online repository model to the 
cultural realm. For instance, Perlmonks.org is a repository, discussion forum, 
and learning resource for the Perl community that also provides an online 
platform for presenting Perl poetry and obfuscated code. Another example is 
Sweetcode.org, which presents a themed and contextualized (reviewed) system-
atic selection of links to innovative free software.13

In Free Software, Free Society, Richard Stallman suggests that the sharing of 
software is as old as computing, just as the sharing of recipes is as old as cook-
ing.14 However, the reverse of this analogy holds too. As much as recipes can 
be shared (open) they can also be kept secret (closed) in the same way as soft-
ware licensing reinforces two radically opposite models of production, distribu-
tion, and use of software—“open source” and “closed source.” In general terms, 
under open source conditions, source code is included with a particular soft-
ware package to allow its viewing and further modifi cations by the user (i.e., 
source code distributed under the terms of licenses such as BSD, GNU / GPL, 
MIT), whereas a proprietary model of closed source prevents its free distri-
bution and modifi cation, and software is released as already compiled binary 
code (e.g., software distributed under the Microsoft EULA [End User License 
Agreement]).15 However, the politics of open source are much more complex. 
A further distinction is made between Open Source Software and Free Software 
within the free software community to articulate different ideological positions 
in relation to open source—emphasizing respectively either its development 
methodology or the ethical and social aspect of the “freedom” of software.16 
More currently, the term FLOSS has been used as a more generic term to refer 
to Free, Libre, and Open Source Software.

The idea of source code, and indeed the open source model, extends beyond 
programming and software. For instance, Knuth points to creative aspects of 
programming alongside technical, scientifi c, or economic aspects, and says that 
writing a program “can be an aesthetic experience much like composing poetry 
or music.”17 Source code can be considered to have aesthetic properties; it can 
be displayed and viewed.18 It can be seen as not only as a recipe for an artwork 
that is on public display but as the artwork itself—as an expressive artistic 
form that can be curated and exhibited or otherwise circulated.19 For example, 
the activity of obfuscating code (making source code deliberately hard to read 

Source Code



240

and understand), while in more general usage serves the purpose of protecting 
software applications from reverse engineering, might also be seen as creative 
practice in itself. An executable function is combined with an aesthetic qual-
ity of the source code through “simple keyword substitution, use or non- use of 
whitespace to create artistic effects, to clever self- generating or heavily com-
pressed programs.”20 The software art repository Runme.org lists obfuscated 
code under the category of “code art” alongside code poetry, programming lan-
guages, quines, and minimal code.21 In the context of programming, the cre-
ative aspects are also registered in competitions such as the International 
Obfuscated C Code Contest, in which “The aims of the contest are to present 
the most obscure and obfuscated C program, to demonstrate the importance of 
ironic programming style, to give prominence to compilers with unusual code 
and to illustrate the subtleties of the C language.”22

The excerpt of source code at the beginning of this entry is from a longer 
program and part of the Barszcz.net project. An online repository and a plat-
form for presenting and sharing barszcz soup recipes in the form of source code 
written in a number of programming languages, the project brings together 
cooking recipes and source code in a literal sense.23 In a wider cultural context, 
this exemplifi es a general way of thinking about source code as an open model 
for creative practice; it can be used to encourage collaboration and further de-
velopment of existing work on the level of contribution, manipulation, and 
recombination, and can be released under the same or similar licenses in the 
public domain.

 / * reminder about things we can do in the kitchen:

* peel, wash, chop, cook * / 

beetroots = wash( beetroots );

cabbage = chop( cabbage );

cooking = 0;

do {

      cook( beetroots );

      cook( cabbage );

      cook( carrots );

      cook( parsnips );
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} while( cooking < soft_cooked);

exit(1);

}

Notes

1. Donald Knuth, The Art of Computer Programming, Vol. 1, “Fundamental Algorithms,” 8.

2. The metaphor is also used by the Belgian artists group Constant in their proj-
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preter called a virtual machine. Some ‘interpreters’ actually use a just- in- time com-
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5. J. David Bolter, Turing’s Man, 33.
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7. UNIVAC was designed by Eckert and Mauchly (Ceruzzi, A History of Modern Com-
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Joasia Krysa, ed., Curating Immateriality: DATA Browser 03, 76.

Source Code



243

19. The phenomenon of computer viruses demonstrates the aesthetization of code 

quite explicitly. For the purpose of art, harmful properties of viruses are typically 

removed and viruses are exhibited as aesthetic systems. For example, the notorious 

work “biennale.py,” a computer virus programmed in Python by the artist collective 

[epidemiC] and net art group 0100101110101101.org, operated with the sole purpose 

being “to survive” by acting upon its exhibition context of the 49th Venice Biennale. 

It was subsequently included along with other examples in I Love You (2002), a larger 

show dedicated to phenomena of computer viruses in artistic context. See Alessandro 

Ludovico, “Virus Charms and Self- Creating Codes,” in Franziska Nori, ed., I love you: 

computerviren, hacker, kultur, exhibition catalogue 40.

20. See http: // www.wikipedia.org / wiki / Obfuscated_code / .

21. See http: // www.runme.org / categories / +code_art / .

22. See http: // www.digitalcraft.org / iloveyou / c_code.htm / .

23. In culinary terminology “Barszcz” [English: Borscht] refers to a traditional Eastern 

European speciality soup of red beetroot that comes in many regional varieties. See 

http: // www.barszcz.net / .

System Event Sounds
Morten Breinbjerg

“System event sounds” is the term for unique sounds assigned to program events 
such as Windows Logon, Windows Logoff, Close Window, Exit Windows, 
New Mail Notifi cation, etc. Every day we expose ourselves to these sounds; 
they form the soundscape of our computers. It is reasonable to assume that the 
startup tone of Windows XP is the most frequently played musical composition 
we have. In nature sounds occur only when different parts of matter interact.1 
The sounds in our computer however are not a consequence of such interaction. 
No matter interacts, at least not on the level of human perception, since only 
small electrical signals are exchanged in electronic circuits. But these patterns 
of exchange sometimes call out a designed sound to inform us of the state of our 
computer (battery is low), comment on the action performed (print complete), 
and / or signify the connection to a larger network outside of our machine (you’ve 
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got mail). These designed sounds are supposed to help make the computer and 
the actions performed more understandable and thereby contribute to the effi -
ciency of use. I call this way of using sound “semiotic.”

Sounds are also used other ways: to evoke emotions, to signify the quality of 
the software or the values characteristic of the companies producing it; or to cre-
ate an ambience, a more ambiguous and subjective space of interpretation, (as 
in the music of the Windows startup sound, the soundscapes of internet pages, 
and the virtual spaces of computer games). This manner of using sound I call 
“aesthetic.”

In this text I will concentrate solely on the aesthetic use of sounds in the 
Microsoft Windows operating system. My purpose is to outline how system 
event sounds and especially the Windows startup sound are designed to evoke 
emotional response and also how system event sounds enter into a broader cul-
tural context, regulating social behavior.

The Semiotic Use of Sound

Talking about the semiotic use of sound in operating systems or individual 
programs like Microsoft Word I refer to the intention of unambiguous com-
munication. Sound is applied as yet another layer of semiosis in order to make 
the software comprehensible and to reduce the time and energy spent. Its func-
tion is to denote the actions being performed, as direct feedback when pushing 
a button, or as information on background processes being initiated or com-
pleted. The way sound is used corresponds to everyday listening, that is, hear-
ing sounds as indexes to events taking place.

One advantage of sound is that, due to the nature of aural perception, sound 
information can be processed while other types of events are taking place, as 
opposed to the one- at- a- time modus of focused visual perception. Hence the 
sound information of incoming mail can be perceived instantaneously with-
out (necessarily) interrupting the typing of a letter or some other task being 
performed.

How sounds are used and for what reasons vary in different programs but, 
in general, sound occurs when the user acts on the computer, when there is a 
change of state in the computer system, or when automated procedures are be-
ing carried out. Sound functions in this way to provide immediate feedback on 
actions performed or initiated, or to warn of disallowed actions, critical changes 
in the state of the computer, and of actions needed. In short, system event 
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sounds indicate actions needed, performed, initiated, or completed, whether 
these actions are carried out by the user or the computer.

The system event sounds of Windows XP are mostly symbolic, although 
some can be characterized as iconic. The icon is a type of sign that resembles 
the object signifi ed, while the symbol is a sign that represents its object purely 
by convention.

The sound of a piece of paper being crumpled up following the “empty 
recycle bin” command is a well known auditory icon. The sound of a switch 
when you navigate the forward or backward button from within a given brief-
case window is another. Although both sounds are iconic, the fi rst is special 
since it relates to the semantics of the action performed. The crumpling sound 
is a strong analogy to the intention of throwing away paper. The sound of a 
switch however, does not relate to the intention of navigating back and forth. 
Here the iconic analogy is purely the sound of something being activated.

System event sounds are typically short pitched sounds or short melodic 
phrases that are synthetic in nature although many of them have a bell- like, or 
even  piano- like character. As symbols they bear no resemblance to the func-
tion they represent and therefore it takes time to learn which function they 
address. Nevertheless, some of them are  value- laden because they attribute an 
emotional state to the action being performed; this lies beyond simple feed-
back information and beyond the semantics of the action.

The Aesthetic Use of Sound

Consider the two sounds that in many cases alert users to the state of the bat-
tery. The fi rst is a “low battery” warning, the other, if no action has been taken, 
is a “critical battery” warning. The fi rst is a single percussive sound and the 
second, more critical one is a deep- pitched, rhythmic fi gure of a repeated uni-
son note (da dam). The sound provides us with a simple feedback response that 
demands our attention. Perhaps, or hopefully, we will learn that it refers to the 
critical state of the battery (its semantic content). But even before we reach that 
conclusion, the deep and insistent rhythm of the sound evokes a male stereo-
type communicating authority and strength. The sound signifi es not only the 
purely objective information, that the battery is running out of power, but the 
potential catastrophe of this fact. As such it presents itself as a warning.

The logon and logoff sounds of Windows XP are additional examples of 
sounds that express emotional states beyond the  context- specifi c semantics of 
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the action (log on / log off ). The two sounds mirror each other, since it is the 
same melody played forward (logon) and backward (logoff ). The logon melody 
is a rising interval of a fi fth with a small string sound crescendo played an oc-
tave lower than the fi rst note of the interval. The logoff melody is a descending 
interval of a fi fth with a string sound played an octave above the fi rst note of the 
interval. The most characteristic feature of the two melodies is the upward and 
downward movement. From the theory of metaphorical projection2 we know 
that the up / down dichotomy is used as a metaphorical projection across many 
domains.3 Up (rising, ascending, etc.) is good, while down (descending, fall-
ing, etc.) is bad, as when we speak of a person as a rising or falling star. To stand 
up demands energy (force), activity, and intentionality and when you stand, 
your body is ready to act. To sit down you just let go. It demands no energy 
since the body has a natural tendency to collapse. The ascending logon melody 
is perceived as the positive energized action and the descending logoff as the 
negative one. So what does the logon sound signify? It tells us that we have 
pushed the button and are about to log on to the operating system of Windows. 
It also indicates that the computer has been activated, that it is about to stand 
up, forceful and ready.4

The power of music to express emotional states is generally accepted. Writ-
ers of the Attic period such as Plato and Aristotle in, respectively, The Republic 
and Politics talked about the power of music and sound to control the emo-
tions of (young) people, warning against the seductive power of certain keys. 
In the so called “affektenlehre” of the Baroque period, music theorists tried to 
describe and categorize the affective connotations of scales, rhythms, and in-
struments; Italian theorist Geoseffe Zarlino’s asserted that it was well known 
that the harmony of major and minor represent joy and sadness. Although we 
know that we should be cautious about such assertions, we must acknowledge 
that music, especially fi lm and theater music, draws heavily on stereotypes and 
heuristic rules of ascending and descending melodies of slow and fast, straight 
and syncopated rhythms, etc. In fact these media have stereotyped these ways 
of hearing and comprehending. As such, the immediate understanding of the 
“critical battery” sound as a warning and the experience of the logon sound 
as a positive action is due to both innate experiences of music and cultural 
ways of listening. By discussing these natural and cultural aspects of percep-
tion and understanding, we have entered the realm of aesthetics. Here we are 
confronted with a much more ambiguous and subjective interpretation, built 
upon the connotative power of sound and music.
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In continuing the discussion we must move beyond the semiotic interest 
of traditional  human- computer interaction design and start to discuss how 
system event sounds:

1. are employed to express and brand the qualities of the product and / or the 
values of those who produce as well as those who use it, more than just to as-
sist us in navigating the virtual space of our computer. Sound can be a brand, 
sound can be retro, sound can denote style, etc.
2. force our attention by representing the voice of our computer, as it explains 
it needs (“my power is low”) or communicates something that slipped our at-
tention (“someone just mailed you”). As such the sounds of our computer reg-
ulate social behavior.

Let us continue by discussing the aesthetic function of the startup sound of 
the Windows operating system and see what values are refl ected in the sound. The 
startup sound signifi es that the operating system is starting up, in much the 
same way that the toolbar click sound of Microsoft Word indicates that you did 
push a button. But this simple information feedback is neither the sole nor the 
most important reason why the sound is there. The startup sound introduces 
the world opening up in front of us and, as such, is an overture to the Windows 
XP experience. Compare this to the simple stereotypical fanfare (ta- da) fi rst 
used as a startup sound in Windows 3.1.

A fanfare is a short trumpet or horn sound played in the low natural tones of 
the instrument in a major triad. A fanfare is traditionally used for ceremonial 
purposes, to state an occasion and to draw the listener’s attention, such as when 
an important person arrives. The sound of the trumpet is loud and powerful 
and the trumpet often has the function of marking power and status such as 
that associated with kingship. The fall of the Walls of Jericho under the sound 
of trumpets as described in the Old Testament is probably the most famous 
allegory that refers to the trumpet.

It is doubtful that Microsoft designed a fanfare based on its historical use in 
occidental music or with the intention to signify the culturally defi ned values 
inherited with the sound of trumpets. However, we do know that Microsoft 
does consider the cultural value and the importance of the startup sound as a 
brand; they not only used Brian Eno as the composer of the Windows 95 startup 
sound, but also recently engaged Robert Fripp, another famous experimental 
rock musician, to compose and play the sounds for Windows Vista.
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In an interview5 Brian Eno explained that Microsoft presented him with a 
list of the adjectives (inspiring, optimistic, futuristic, sentimental, emotional, 
etc.) that they wanted the sound to refl ect. He composed  eighty- four different 
pieces of music, from which they chose one.

The one chosen (the “Microsoft Sound”) is an ascending melody that can be 
divided into three phrases all played on a bell or harp- like instrument. The fi rst 
is an interval of a fi fth, the second a short arpeggio, and the third a repeating 
lapping interval of a fi fth. Underneath the last phrase a string sound slowly ap-
pears. The direction of the melody is clear although a bit hesitant as it strives 
upward. The harmony never resolves but includes a subtle minor second at the 
end that shrouds the sound in mystery despite the generally warm and easy feel 
of the melody. The Microsoft Sound is a gentle and much more elegant melody 
than the simple fanfare of Windows 3.1. The melody has the positive movement 
upwards, but not in any insistent or aggressive way. It signifi es calmness and 
gentleness as it unfolds. The instrumentation is also signifi cant; the harp (if we 
agree on the idea that it sounds like one) gives the melody a lyrical touch. In ro-
mantic music the harp is, by convention, a symbol of beauty and harmony. As 
a more general symbol the harp is like a ladder. It leads to the world beyond, to 
a new ontological level. But the mystery invoked by the minor second and the 
unresolved harmony indicates that there is more than meets the eye. As such 
the Microsoft Sound invites or perhaps even rouses us to dive into the Microsoft 
world which reveals the full potential of the machine.

The commission of Brian Eno was well conceived. Brian Eno is famous for 
playing keyboards in the experimental rock group Roxy Music in the early 
1970s and for developing the concept of ambient music, as well as for ex-
perimenting with generative and aleatoric principles of composition inspired 
by John Cage and Steve Reich, among others. He is well known as producer 
of Talking Heads, David Bowie, and U2. Furthermore, Brian Eno not only 
makes music but also publishes theoretical work and as such belongs to the in-
telligentsia of rock and electronic music. With his background Microsoft not 
only hired a competent musician, they hired a cultural icon.

By means of the use of sound, the computer is given a voice and thereby 
the ability to contact and communicate with its user and the world around 
it. In short it comes alive. Three interesting aspects can be drawn from this 
 Tamagotchi- like nature of the computer. First, the computer uses sound to 
draw our attention the same way that the sound of a telephone or an alarm 
does. Our responses to these sounds are part of our social behavior: consider how 
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the cell phone distracts us with its ring tone, even in inappropriate situations. 
Second, the computer is able to communicate the nature of its own state, for 
example: “I am running out of power” meaning that we have to interfere if we 
want to avoid loosing our data or continue working. The ability to communi-
cate the possibility of its own ruin, thereby commanding us to act, is remark-
able and unique for a tool; not many tools interfere with our social behavior in 
this way. Third, by the use of sound the computer not only communicates with 
the user, it announces its presence within a larger context and exposes the ac-
tions of its user. We (shamefully) recognize this when sound reveals that we are 
checking our email at a meeting or booting up our computer during a talk.

System event sounds as aesthetic objects have become a part of broader cul-
ture outside the control of Microsoft. Allowing for personalization, system event 
sounds can be modifi ed or even replaced. Not surprisingly all kinds of funny 
sounds from Star Trek, The Simpsons, and the like can be downloaded from the 
internet, and used to brand ourselves. System event sounds are themselves also 
used as material for music compositions like the “Windows Noises” of Clown 
Staples.6 Hence system event sounds, as with all digital material, are edited 
and mixed, downloaded and distributed. As aesthetic objects, system event 
sounds have themselves equally become part of a culture (and of a new billion 
dollar industry) of sharing, buying, managing, recording, and downloading.

Notes

NB: The system event sounds discussed in this article, can all be heard at, Marcin 

Wichary, “GUIdebook, Graphical User Interface Gallery,” available at http: // www

.guidebookgallery.org / sounds / .

1. W. W. Gaver, “What in the World Do We Hear?: An Ecological Approach to 

Auditory Event Perception.”

2. George Lakoff and Mark Johnson, Metaphors We Live By.

3. The theory of metaphorical projection is laid out by Mark Johnson in collaboration 

with George Lakoff. The theory basically states that the metaphor is a fundamental 

cognitive structure rooted in our bodily experience of the world. Our bodily experi-

ence and our spatial and temporal orientation develop into patterns of recognition that 

structure the way we perceive and understand the world around us. Johnson calls these 

patterns “Image Schemata.” There are many different schemata but here I refer to the 
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schemata of movement and force to suggest why different system event sounds are 

designed the way they are and how we interpret them. Ibid.

4. In “What’s in those video games?” Ulf Wilhelmsson used the theory of metaphori-

cal projection to analyze the function of sound in Pac- Man and other videogames.

5. Joel Selvin, “Chronicle Pop Music Critic.”

6. See Clown Staples, available at http: // www.geocities.com / clownstaples / .

Text Virus
Marco Deseriis

Would you offer violence to a well intentioned virus on its slow 
road to symbiosis?
—william s. burroughs1

On April 17, 2001, an alarmed email message was sent from an unknown 
location in Brazil. Within a few days the message was bouncing frantically 
through mailing lists, Usenet groups, and the private mailboxes of thousands 
of users in many countries. One of the English versions of the message read:

Dear All: We received a virus on a message. I followed the instructions below . . . 

located the virus and was able to delete it. The bad news is that you probably have it, 

as you are in My Address book! More bad news is that my anti virus program did not 

detect this virus. The virus lies dormant for 14 days and then “kills” your hard drive.

 Here is what to do. If you follow the instructions and then see that you have the 

virus, you need to send a similar e- mail to everyone in your address book.

 Remove the virus by following these steps:

1. Go to “Start.” Then to “Find” or “Search.”

2. In the “Search for fi les or folders” type sulfnbk.exe—this is the name of the virus.

3. If your search fi nds this fi le, it will be an ugly blackish icon that will have the name 

sulfnbk.exe. DO NOT OPEN IT! If it does not show up on your fi rst “Search,” try a 

“New Search.”

4. Right click on the fi le—go down to “Delete” and left click.2
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Each text had slightly different features. One version warned “The virus HIDES 
in the computer for 2 weeks and then DAMAGES THE DISC IRREPARA-
BLY.” Another added that the latent phase of the virus had a specifi c dead-
line: “It will become active on June 1, 2001. It might be too late by then. It 
wipes out all fi les and folders on the hard drive.”3 Although not all of the ver-
sions considered Sulfnbk.exe a lethal threat, most of them referred to the  help-
lessness of standard antivirus software to detect it.

It took a few days to realize that Sulfnbk.exe was not a virus, but in fact a 
regular Windows utility to restore long fi le names if they become damaged or 
corrupted. As a result, the same gullible users who had erased the fi le on their 
machine had to recover it from a Windows installation disc and to forward an 
apologetic message explaining how to do this.

In the next few weeks various experts tried to analyze the case. Some ar-
chived it as an ordinary email hoax. Others, perhaps more accurately, read the 
Sulfnbk.exe frenzy as an urban legend or a “self- fulfi lling mass hysteria.”4 As 
a matter of fact, the alarm took off a few weeks after the fi rst detection of the 
Magistr virus, a real mass- mailing email spreading as an .exe attachment and in-
fecting any 32- bit Windows portable executable fi le. The experts argued that 
as Sulfnbk was probably one of the infected executables, “Someone who fell 
victim to Magistr mistakenly thought that the host fi le was the culprit and 
decided to warn others about it.”5

In other words, the hoax was not planned by anyone but was one of the by-
products of virus paranoia (the other major one being the prosperity of anti-
virus software companies). The episode could be dismissed as an accident if 
the same cycle had not repeated itself a year later, targeting another Windows 
utility—Jdbgmgr.exe, a fi le with a teddy bear icon used in Java environments. 
Even in this case it was hard to say whether the hoax was planned or was a pos-
sible “spin- off” of the Magistr virus.

In the impossibility of ascertaining their origins, such hoaxes appear as epi-
phenomena of a machinic system characterized by a high level of commixture 
of natural language and computer code. In fact, it is precisely in the moments 
in which users delete what is supposed to be a virus that they become the virus 
of their own operating systems. It is precisely in the moments in which users 
try to help other people that they behave like worms within a distributed sys-
tem. To be sure, the users correctly decode the alert messages in natural lan-
guage, but being unable to grasp the meaning of computer code they behave, 
de facto, as machines that mechanically perform instructions.
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By adopting this inverted perspective, we can thus read the alert message as a 
set of formal instructions (1. Go to Start, etc.), that are unambiguous enough to 
be executed by a human recipient or a machine.6 From this angle, the  Sulfnbk 
type of email hoax is nothing more than a  manually- driven virus in which hu-
mans and machines exchange roles.

Far from being a novelty, this process of inversion has deep roots, as shown 
by the etymology of the word “hoax.” The term derives from hocus pocus, a 
formula used by magicians (such as abracadabra or sim sala bim) that by trans-
muting an “h” into a “p” epitomizes the act of transformation itself. Some trace 
the origin of the expression to the Roman Catholic Eucharist, when in the mo-
ment of lifting the wafer the priest utters “hoc est enim corpus meum” or “hoc 
est corpus” (this is the body) to enact the transubstantiation of the wafer into 
the body of Jesus.

Although not everybody agrees on the etymology of the term,7 what is rele-
vant to us is that hocus pocus is a performative speech act that has the power of 
enacting and producing that which it names, rather than merely representing 
it.8 However, in the context of a church or of a show, the priest and the magi-
cian reenact a discursive practice cemented by long tradition, whereas the text 
virus lacks apparently such tradition. Nevertheless, the text virus is socially 
recognized as such only after an antivirus fi rm categorizes it as such. By ar-
chiving, labeling, and rating viruses and hoaxes, antivirus fi rms set a tradition 
and enact the same preservative function of the clergy. My argument here is 
that this categorization freezes the ever- sliding nature of (machinic) writing, 
and prevents us from discovering the power of this ambivalence.

In order to articulate this thesis, I have to step back to the Phaedrus, the 
famous Platonic dialogue in which Socrates denounces writing as a mnemonic 
device that, far from empowering memory, will make humans even more 
 forgetful. What disturbs Socrates most (according to Plato and “retraced” by 
Derrida) is the fact that writing is a supplement that, circulating randomly 
without its father, cannot be interrogated, and thus diverts us from the search 
for truth:

 And once a thing is put into writing, the composition, whatever it may be, drifts all 

over the place, getting into the hands not only of those who understand it, but equally 

of those who have no business with it; it doesn’t know how to address the right people, 

and not address the wrong. And when it is ill treated and unfairly abused it always needs 

its parent to come to its aid, being unable to defend or attend to its own needs.9
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For this reason writing is a pharmakon—a Greek term that stands both for 
medicine and poison—an errant simulacrum of a living discourse that comes 
from afar and whose effects are unknown to those who take it.10 Adopting a fa-
milial metaphor, Plato portrays writing as the patricidal son who has the ability 
to imitate and thus replace his father, that is, the only authority that can au-
thenticate with his living presence the truthfulness and property of speech.11

Now the analogies with our text virus are apparent. Devoid of a specifi c ori-
gin, the alert message “drifts all over the place,” appearing to the end user as a 
drug that will prevent a disease from taking over his machine. But, in fact, the 
drug is a poison, and only the second message, containing the instructions on 
how to restore the fi le, will be the remedy for the self- infl icted damage. Equally, 
if we consider Magistr as a parent of Sulfnbk.exe and Jdbgmgr.exe (the two are 
labeled as viruses after infection by Magistr) we can see how the user has ex-
changed the offspring for the progenitor, and, in the impossibility of deciding 
who is the real impostor, has killed them both.

Thus, with machinic writing, we arrive at a curious inversion of the genea-
logic relation described by Plato: This time it is the parent who has the power 
to master (or to “magistr”) the offspring in order to spread through the system. 
However, the user cannot read this genealogy insofar as she or he ignores the 
underlying grammar and even the alphabet of the machinic environment.

This metaphor is quite literal, as it points us back to another major historic 
leap—the introduction of the phonetic alphabet in the West. After the Greeks 
inherited the alphabet from the Phoenicians, they elaborated a set of  twenty-
 four characters in which each letter represented a consonant or a vowel.

Although the utter simplicity of this  sound- based technical innovation rep-
resented a major shift from the complex logographic systems based on hun-
dreds of signs, the Semitic and Phoenician  aleph- beth was still based on the 
pictographic glyph. For instance the fi rst letter, aleph, was represented by a 
symbol whose shape stylized an “ox” (aleph is also the ancient Hebrew word 
for ox). The Greeks simply turned the symbol onto its head and so created the 
“A.” The letter mem, that means “water” in Hebrew, was drawn by the Phoe-
nicians as a series of waves. The Greeks rendered it more symmetrical trans-
forming it into our “M.” The letter qoph, “monkey” in Hebrew, was a circle 
intersected by a long tail. The Greek “Q” still retains a sense of that image.

By making the characters suitable for the needs of the hand and the eye, 
that is, by making them more rational, the Greeks removed from the alpha-
bet all the references to sensible phenomena. As David Abram points out, the 
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pictographic glyph still referred to an external and animated world of which it 
was the static image; for the Greeks “a direct association is established between 
the pictorial sign and the vocal gesture, for the fi rst time completely bypassing 
the thing pictured.”12

In this way, a self- referential system is set in motion whose dynamics are 
exclusively determined by the interplay of the grammatical and phonetic rules 
governing a specifi c language.

This self- refl exivity implies, following the linguist Ferdinand de Saussure, 
the arbitrariness of the relation between signifi er and signifi ed and is a corner-
stone for the semiotic reading all the systems of signs, including games, sign-
posts, maps, genomes, etc. Computer code is no exception and its origin is 
based on an invention that is conceptually no different that the shift from pic-
tographic to phonetic literacy.13

In 1937, Claude Shannon showed that a schema of relays and switching cir-
cuits could be easily translated into algebraic equations and binary arithmetic.14 

Abstracted from their iconic counterparts, the operators of Boolean calculus 
could now be used for controlling the fl ow of electricity inside computers.15

Initially computers had to be rewired constantly by human agents. In 1948, 
the manual task of plugging and unplugging cables was deviated by em-
bedding a set of sixty stored instructions in the memory of the ENIAC. In a 
certain sense, software was born and the introduction in 1949 of assembly 
language simplifi ed the work of the programmer by translating the machine 
language into a set of  human- readable notations.16

The subsequent movement toward  higher- level programming made the 
code even closer to natural language, but at the same time obfuscated the ma-
chine behind layers and layers of code. Revising Derrida we can say that it is 
the double translation of a relay scheme into a string of 0s and 1s and of that 
string into a word that constitutes “the prior medium in which opposites are 
opposed, the movement and the play that links them among themselves, re-
verses them or makes one side cross over into the other.”17 A “love letter” can 
kill your hard drive. A patch is a virus. A remedy is a poison.

Thus, in a machinic environment the hoax constantly redoubles the acts of 
magic through which programmers translated one language into another after 
they lost their respective parents (the external world for the alphabet, the ma-
chine for code). Both orphans, the two systems can now exchange their func-
tions and look for a different destiny. But to express its virtuality, machinic 
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writing constantly struggles with the gatekeepers that try to disambiguate it 
and reinscribe it in a proper and productive system of signifi cation.
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Timeline (sonic)
Steve Goodman

A common feature of all time- based media, the timeline typically stratifi es the 
on- screen workspace into a metric grid, adjustable in terms of temporal scale 
(hours /minutes / seconds/musical bars or frames/scenes). With sonic timelines, 
zooming in and out, from the microsonic fi eld of the sample to the macrosonic 
domain of a whole project, provides a frame for possible sonic shapes to be 
sculpted in time.

As an antidote to the digital philosophies of computer age, hype, many me-
dia philosophers have been reassessing the analog ground upon which digital 
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technology is built. They are, questioning temporal ontologies, which empha-
size the discreetness of matter via a spatialization of time (in the composition 
of the digital) in favor of a refocus on the continuity of duration. Typical objec-
tions to the ontology of the digital temporality share much with the philoso-
phy of Henri Bergson. In Bergson’s philosophy of duration, he argues that the 
spatialization of time belies the “fundamental illusion” underpinning Western 
scientifi c thought. Bergson criticized the cinematographic error of Western sci-
entifi c thought,1 which he describes as cutting continuous time into a series of 
discreet frames, separated from the temporal elaboration of movement, which 
is added afterward (via the action, in fi lm, of the projector) through the percep-
tual effect of the persistence of vision. Yet sonic time plays an understated role 
in Bergson’s (imagistic) philosophy of time, being often taken as emblematic 
of his concept of duration as opposed to the cinematographic illusion of con-
sciousness. In Time & Free Will he uses the liquidity of the sonic, “the notes of 
a tune, melting, so to speak, into one another” as exemplifying that aspect of 
duration that he terms “interpenetration.”2

The sequencer timeline is one manifestation of the digital coding of sound, 
which, while breeching Bergson’s spatialization of time taboo—an intensive 
sonic duration is visualized and therefore spatialized—has opened a range of pos-
sibilities in audiovisual production. The timeline traces, in Bergsonian terms, 
an illusory arrow of time, overcoding the terrain of the sequencing window 
from left to right. As with European musical notation’s inheritance from writ-
ten text, digital audio software sequencers have inherited the habit of left- to-
 right visual scanning. The timeline constitutes the spatialization of the clock 
into a horizontal time- coded strip that stretches from left to right across the 
screen, constituting the matrix of the sequencing window across which blocks 
of information are arranged. The sonic becomes a visualization in terms of a 
horizontally distributed waveform spectrograph, or sonic bricks. The temporal 
parts and the whole of a project are stretched out to cover an extensive space.

A temporal sequence of sounds suddenly occupies an area of the computer 
screen. What is opened up by this spatialization is the ease of temporal recom-
bination. That marker of the transitory present, the cursor, and its ability to 
travel into the future and past (the right or left of the cursor) melts what ap-
pears, at least within the Bergsonian schema, to be the freezing of audio time 
into spatialized time stretches, instead of intensive durations. This arrange-
ment facilitates nonlinear editing by establishing the possibility of moving to 
any point, constituting the key difference between nonlinear digital editing 
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and analog fast forwarding and rewinding. The timeline pivoting around the 
cursor, marker of the transitory present, distributes the possible past (left of 
the cursor) and future (to the right of the cursor) of the project.

Aside from its improvement of the practicalities of editing and the ma-
nipulation of possibility, the digital encoding of sonic time has opened an 
additional sonic potential in terms of textural invention, a surplus value over 
analog processing. While the temporal frame of the timeline in digital appli-
cations makes much possible, a more fundamental temporal potential of sonic 
virtuality is locatable in the apparently un- Bergsonian realm of digital sam-
pling, known as discrete time sampling.3 At a fundamental level, in its slicing 
of sonic matter into a multiplicity of freeze frames, digital samples treat ana-
log continuity as bytes of numerically coded sonic time and intensity, grains 
which may or may not assume the consistency of tone continuity, the sonic 
equivalent of the persistence of vision.

Warning against the conceptual confusion of virtual potential with actual 
digital possibility, Brian Massumi notes that, despite the hype of the digital 
revolution, “sound is as analog as ever, at least on the playback end . . . It is 
only the coding of the sound that is digital. The digital is sandwiched between 
an analog disappearance into code at the recording and an analog appearance 
out of code at the listening end.”4 Yet, perhaps in the timestretching function 
a machinic surplus value or potential is opened in sonic time. 

In contrast to the Bergsonian emphasis on continuity in duration, in the 
1940s, the elementary granularity of sonic matter was noted by physicist Den-
nis Gabor, dividing time and frequency according to a grid known as the Gabor 
matrix. Prising open this quantum dimension of sonic time opened the fi eld of 
potential, which much more recently became the timestretching tool within 
digital sound editing applications.5 The technique “elongates sounds without 
altering their pitch, demonstrates how the speed at which levels of acoustic 
intensity are digitally recorded (around 44,000 samples / second) means that 
a certain level of destratifi cation is automatically accomplished. Since magni-
tudes (of acoustic intensity) are all that each sample bit contains, they can be 
manipulated so as to operate underneath the stratifi cation of pitch / duration 
which depends on the differentiation of the relatively slow comprehensive 
temporality of cycles per second.”6

The technique referred to as time- stretching cuts the continuity between 
the duration of a sonic event and its frequency. In granular synthesis, discreet 
digital particles of time are modulated and sonic matter synthesized at the 
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molecular level. In analog processing, to lower the pitch of a sound event adds 
to the length of the event. Slow down a record on a turntable for example, and 
a given word not only descends in pitch but takes a longer time to unfold. Or 
allocate a discreet sampled sound object to a zone of a midi keyboard; the dif-
ference between triggering the sample using one key, and moving to a key one 
octave down doubles the time of the sound, and halves its pitch. Timestretch-
ing, however, facilitates the manipulation of the length of a sonic event while 
maintaining its pitch, and vice versa. Timestretching, a digital manipulation 
process common to electronic music production is used particularly in the 
transposing of project elements between one tempo (or timeline) and another, 
fi ne tuning instruments, but also as a textural effect producing temporal per-
turbations in anomalous durations and cerated consistencies.
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Variable
Derek Robinson

To be is to be the value of a bound variable.
—willard van orman quine1

You can be anything this time around.
—timothy leary2

There is a distinction to be made between the variables employed by pro-
grammers and those employed by scientists, engineers, and mathematicians. 
Not that one can’t straightforwardly write a program that uses  computer- type 
variables to implement statistical algorithms. Nor is it hard to fi nd a general 
logical defi nition good for both types. But it would not reveal the pragmatic, 
historical, and subcultural reasons why the word “variable” means different 
things to the programmer and the statistician (even if the latter’s data analysis 
is likely performed with software written by the former). The root of the differ-
ence is that a programmer’s variables are implemented on a computer, which 
means they must concretely exist in a computer’s memory, in accordance with 
whose concreteness they must be named, ordered, addressed, listed, linked, 
counted, serialized, unserialized, encoded, decoded, raveled, and unraveled; 
how this happens bears little resemblance to algebraic symbols scratched on a 
chalkboard.

The programmer’s variable is a kind of box; its name is the label written on 
the lid. To open the box, accomplished by the magical act of reciting its name 
in a prepared context, is to be granted access to what has been put “inside” it: 
the variable’s value—one datum. Or say, what it denotes, what it “means,” 
under a hugely impoverished notion of meaning that analytical philosophers 
spent much of the past century trying to shoehorn thought and language into. 
Cavils aside, it’s in good part due to their efforts that there appeared in that 
century’s middle third, the new science of computation.

A variable is a box stripped of sides, top, and bottom, abstracted away from 
geometry and physics, of no especial size or shape or color nor situated—so 
far as the programmer who conjures it needs to know or worry about—in any 
particular place. It’s like there’s always a spare pocket available any time there’s 
something to be kept track of, and all it costs is to think up a name for it. (And 
then to remember what the name was; sadly not always so easy.) The passed 
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buck of reference, the regressus of signs, begins and ends in the blank affect-
less fact of the unfi lled vessel, an empty signifi er that awaits only assignment to 
contain a content. (In the  upside- down tree- universe of Lisp, all termini point 
to “NIL.”)

High- level computer languages relieve programmers of worrying about 
where values are kept in the computer’s address space or how to liberate the lo-
cations they’ve occupied when they’re no longer needed (this is done with a bit 
of legerdemain called garbage collection). In reality the variable is situated in a 
reserved area of physical memory called the Symbol Table. What is recorded in 
the Symbol Table is just the variable’s name, paired with a pointer (a number 
understood as an address), which points to the location of some other cell that’s 
allocated on demand from a heap of memory locations not currently claimed. 
Since all this takes place in a computer, naturally there are further layers of in-
direction and obliqueness between how a program accesses the variable’s value 
and its  extra- symbolic physical existence as an elaborate roundelay of trapped 
charges in doped silicon or mottles of switchable ferromagnetic domains on a 
spinning metal  oxide- coated plastic disk.

The variable’s role is as an index that points to something, somewhere. C. S. 
Peirce, grandfather of semiotics, once defi ned a sign as “a lesser that contains 
a greater.”3 Like a magical Arabian Nights tent, it appears bigger on the in-
side than its outside. One hears an echo of Turing’s poser: “How can 2.5 kilo-
grams of grey- pink porridge contain a whole universe?” (A hint: The fi nger 
points out of the dictionary.) A variable is a marker, a token, or placeholder 
staking out a position within a formal conceptual scheme. As Alan Kay4 re-
marked, “The fundamental meaning of a mark is that it’s there.” An empty 
slot awaiting instantiation by being “bound” to a specifi c value, to be provided 
by someone’s fi ngers at keyboard and mouse, or by some sensed, measured, 
electronically amplifi ed, transduced, encoded alteration in the fabric of things 
happening elsewhere.

Some variables don’t vary. A “constant” is a mnemonic  stand- in conscripted 
simply because names are easier for people to remember and recognize than 
numbers. At bottom this is what any variable is: a name standing for a number 
that is interpreted as an address that indexes a memory location where a pro-
gram is directed to read or write a sequence of bits. Electronic sensors attached 
to a computer are de facto variables registering external events in a set- aside 
range of addresses that act as portholes to view sampled digital representations 
of the changing voltages provided by the sensor.
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In the Forth programming language, variables don’t even need names. They 
can be values placed on top of a data stack as arguments to functions that apply 
operations to them and leave the results on top of the stack as arguments for 
subsequent functions. The necessity to name is here obviated by the specifi city 
of place. (Forth has named variables too, but to actually use them is regarded as 
unsporting.) The Unix operating system has its own unnamed variables, called 
“pipes,” for chaining together sequences of code, turning outputs into inputs, 
to engineer ad hoc  assembly- lines of textual fi lters and transformers. It is this 
brilliant concept to which Unix owes much of its enduring success.5

An especially important use of variables is as arguments passed to a function 
subroutine. Instances of argument names found in the function body will be au-
tomatically replaced by the values of the variables that were provided when the 
function was invoked. Instances of argument names occurring within a func-
tion’s scope act like pronouns referring to the place and time in the executing 
program where the arguments were last assigned values. They are pseudonyms, 
aliases, trails of breadcrumbs that point back up the “scope chain” of nested ex-
ecution contexts. (A function “A” called from another function “B” will acquire 
any variable bindings found in the scope of B; likewise if B was itself called 
from a function “C,” the latter’s bindings become a tertiary part of the con-
text of A.) In  object- oriented languages there is a special argument or keyword 
named “this” or “self,” which is used within class defi nitions to enable object 
instances at runtime to reference themselves and their internal states.6

The single most critical constraint on a variable’s use is that it, and its every 
instance, must be uniquely determined in the context or “namespace” of its ap-
plication, if it is to serve naming’s ambition of unambiguous indication. This 
isn’t as uncomplicated as it might seem. Namespaces are easily entangled, and 
before too long even 64 bits of internet addressing (allowing for 264 or some 
18 sextillion different designations) won’t suffi ce to insure uniqueness. (Bruce 
Sterling is good on the implications of this stuff, and Mark Tansey has made 
a nice picture.7) However all that turns out, beyond the onomastic imperative 
of having to be uniquely determined within a context, a variable can denote, 
refer to or stand in place of anything that people are capable of apprehending, 
conceiving, and representing as a “thing.”

Pronouncing upon the thingness of things has historically been considered 
the special preserve of philosophers, but programmers, being the practical en-
gineering types that they are, simply had to get on with the job. The things 
represented in software in one way or another all ultimately reduce to patterns 

Variable



263

of series of on- and- off switches, zeros and ones. No bit- pattern can represent 
anything without a program to interpret it. The meanings plied through natu-
ral language may, they say, be subject to the drift and swerve of an indefi nitely 
deferred semiosis, but software’s hermeneutic regress must fi nally bottom out. 
It’s interpreters all the way down—then it’s just bits.8

Under the hood, variables are arranged so that a specifi c pattern of 0s and 
1s can be interpreted as a character string (and then as a word, or as several) 
in one context, a series of numbers, part of a picture, or maybe some music in 
another context. All of these pieces of information can be connected with some 
person, some object, or some more abstract category, and stored in a database 
somewhere. Ultimately they’re all bits, and what software does is make sure 
that what one expects to fi nd when one asks for something, and what one does 
fi nd are one and the same. (Deliberately or accidentally incurred or induced 
violations are collected and swapped by connoiseurs of “glitch art” and “data 
bending.”)9

Some things are fairly easily resolved. Numbers, still software’s main stock 
in trade, are in the computer usually as integers (counting numbers, without 
decimal points) from a range between a fi xed minimum and maximum (e.g., 
the 256 counting numbers from – 128 to +127) or they are “fl oating point” 
numbers—a type of scientifi c notation (with exponents and mantissas) for rep-
resenting non- integer values (with decimal points), which can be much larger 
or much smaller than integers. Alphanumeric characters have several different 
UTF- standardized 8- , 16- , or 32- bit- long character codes for specifying any 
graphic symbol used in any human language.

In the grand architectural design of Sir Tim  Berners- Lee’s Semantic Web, 
the bottomless puddle of the thingness of things is neatly sidestepped by dic-
tating that things referenced must have URIs (“Uniform Resource Indicators,” 
like web addresses). As long as URIs can be resolved into properly formatted 
truthful representations of information that people care to assert and are will-
ing to stand by then automated proof procedures can be applied to them. 
Presumably, at the terminal node of the implied indefi nitely extended and 
ramifying series of assertions asseverating the trustworthiness of other assev-
erations, we shall arrive at a  planet- sized AI and either all our troubles are over, 
or they’ve just begun.10

The recent rise of markup languages11 like HTML, CSS, XML, XSL, or SVG 
is recognition that in many applications, once the data have been properly set 
up, the ordinary kind of programming that relies on IF- THEN conditions to 
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alter execution fl ow isn’t much needed. The data organization can look after 
the heavy lifting. Markup languages conform to the abstract data type known 
as “trees,” branching geneologies whose member “nodes” (which can also be 
trees) are accessed via parent and sibling relations. Trees resemble the table of 
contents in a book. They are usually implemented using “list” data structures, 
although how these lists are implemented under the hood isn’t important, as 
long as the lists behave like lists so that trees (and other things) created out of 
lists will behave like trees (or the other things).12

Data structures are compound, multicellular  super- variables. Their purpose 
is to make it easy to arrange logical aggregations of data in ways that make it 
easy to carry out complex operations on their members. Apart from lists, whose 
cells can be grown and pruned and grafted in near- organic profusion, core data 
structures provided in most programming languages include character strings, 
linear arrays indexed by the counting numbers (used to make 2- D or higher 
dimensional data tables), and associative arrays: look- up tables whose cells are 
indexed with arbitrary symbols as the keys (internally turned into addresses by 
a hashing function,13 or stuffed into lexicographic trees perhaps). The devil’s in 
the details. Get the data structures right—picture and populate them, imag-
ine traversals and topologies, strike a truce between redundancy and compres-
sion, cut a deal with the coder’s old familiar foes of Time and Space, “solve et 
coagula,” and mind the gap—and everything else will follow.

If computers can be made to agree on how data shall be represented and 
interpreted, encoded and decoded, then data can be shared between them the 
way audio, video, and text fi les are shared, and many different programs writ-
ten in different languages running on different computer platforms can co-
operatively behave as one very large distributed computer running one very 
large distributed program. The web is such a thing, and has gradually (if one 
can call the delerious growth of the past ten years gradual) been awaking to 
the fact. Mundane attention to marshaling and unmarshaling complex data 
structures in accordance with commonly agreed dialects and schemas (provi-
sion of which is the purpose of the Extensible Markup Language, XML, whose 
authors had the foresight to see that a data format for specifying data formats 
would be a good idea) is already rewriting the conduct of commercial life. A 
spirit of openness and peer collaboration is blowing even through hidebound 
proprietary holdouts like academic publishing; we await Silent Tristero’s Em-
pire and the Brittanica’s demise.14
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Notes

1. W. V. O. Quine (1939), “Designation and Existence.” This phrase (“To be is to be 

the value of a bound variable”) became a motto of Quine’s, and through him, of mid-

 century Anglo- American analytical philosophy generally. (Reprinted in H. Feigl, and 

W. Sellars, Readings in Philosophical Analysis.

2. Dr. Timothy Leary, You Can be Anyone This Time Around.

3. For a summary of C. S. Peirce’s philosophy of the sign, see Umberto Eco’s Semiotics 

and the Philosophy of Language.

4. Alan Kay coined the term “object- oriented,” headed the Learning Systems Group at 

Xerox PARC in the 1970s (which developed the now ubiquitous bit- mapped graph-

ical desktop metaphor), invented the “Dynabook,” and was the model for (obscure 

computer geek trivia alert) the Jeff Bridges video game programmer hero in the 1982 

Disney fi lm “Tron” (Kay’s wife wrote the screenplay).

5. For Forth, see Leo Brodie’s Thinking Forth, widely regarded as one of the best books 

about programming for anyone who programs in any language; a free PDF of the 2004 

revision is available at the author’s website. The Unix philosophy is summarized by 

Doug McIlroy (inventor of pipes) as follows: 1. Write programs that do one thing well; 

2. Write programs that work together; 3. Use text streams as a universal interface.

6. For more information on scope, binding, and reference, see Harold Abelson, Gerald 

Jay Sussman, The Structure and Interpretation of Computer Programs. (A free online version 

can be found at the book’s MIT Press website.)

7. Brian Cantwell Smith’s On the Origin of Objects plumbs software’s ontology very 

deeply and very densely (however it’s only recommended for people not put off by 

infi nite towers of procedural self- refl ection).

8. Bruce Sterling would be the well- known science fi ction writer, astute cognizer of 

past and present trends, peripatetic blogger, affi cionado and sometime teacher of con-

temporary design. Recently he authored a book, Shaping Things, about “spimes,” his 

neologism for a new category of post- industrially fabricated semi- software objects. 

Mark Tansey paints large monochromatic post- modern puzzle pictures in the high 

style of mid- twentieth- century illustration art. The painting referred to shows the 

crouching fi gure of (we assume) an archaeologist, bent over a small object, likely a 
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rock, in a desert landscape that contains many widely scattered small rocks. It has the 

enigmatic title, “Alain Robbe- Grillet Cleansing Everything in Sight.”

9. See “Glitch,” this volume.

10. Dieter Fensel, et al., Spinning the Semantic Web. An authoritative and up- to- date 

source is the World Wide Web Consortium: http: // www.w3.org / .

11. Markup languages like XML acronymically descend from a typesetting language 

for IBM computer manuals called SGML, dating from a time (circa 1966) when IBM 

stood second only to the Jehovah’s Witnesses as the world’s biggest publisher of print 

materials. See Yuri Rubinsky, SGML on the Web.

12. John McCarthy, LISP 1.5 Programmer’s Manual. For non- tree data structures imple-

mented using lists, see Ivan Sutherland’s Sketchpad: A Man- Machine Graphical Com-

munication System—this was the fi rst  object- oriented program, the fi rst computer aided 

design program, and the fi rst “constraints- based” programming system. Utterly revo-

lutionary at the time, it still rewards a look. In 2003 an electronic edition was released 

on the web.

13. Hash functions are numerical functions for mapping arbitrary character data re-

garded as numbers to  pseudo- random addresses within a predefi ned range. Their great 

virtue is  constant- time access, unlike tree- based structures. The data stored in hash-

 tables are (obviously) unordered, however.

14. Jon Willinsky, The Access Principle: The Case for Open Access to Research and Scholar-

ship. Silent Tristero is implicated in the secret  sixteenth- century postal service around 

whose continued existence or lack thereof the plot of Thomas Pynchon’s novel The 

Crying of Lot 49 revolves; elements of Pynchon’s baroque conspiracy are borrowed from 

the Rosicrucian Brotherhood, an actual  sixteenth- century conspiracy whose Invisible 

College perhaps only existed as carefully planted and cultivated rumors. (A mailing 

list of the name is frequented by  white- hatted hacker types; with luck and unbending 

diligence in the pursuit of the art an invitation one day may arrive in your mailbox.)
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Weird Languages1

Michael Mateas

Programming languages are often seen as a given an immutable logic within 
which everyday coding practice takes place. Viewed in this light, a program-
ming language becomes a tool to be mastered, a means to an end. The practice 
of writing obfuscated code (see Montfort in this volume) exploits the syntactic 
and semantic play of a language to create code that, often humorously, com-
ments on the constructs provided by a specifi c language. But the constructs 
and logics of languages are themselves contingent abstractions pulled into be-
ing out of the space of computational possibility, and enforced and maintained 
by nothing more than programs, specifi cally the interpreters and compilers 
that implement the languages.

In the fi eld of “weird” or “esoteric” languages,2 programmers explore and 
exploit the play that is possible in programming language design. Weird pro-
gramming languages are not designed for any real- world application or normal 
educational use; rather, they are intended to test the boundaries of program-
ming language design itself. A quality they share with obfuscated code is that 
they often ironically comment on features of existing, traditional languages.

There are literally dozens, if not hundreds of weird languages, which com-
ment on many different aspects of language design, programming history, and 
programming culture. A representative selection is considered here, with an 
eye toward understanding what these languages have to tell us about program-
ming aesthetics.

Languages are considered in terms of four dimensions of analysis: (1) parody, 
spoof, or explicit commentary on language features, (2) a tendency to reduce 
the number of operations and strive toward computational minimalism, (3) 
the use of structured play to explicitly encourage and support  double- coding, 
and (4) the goal of creating a puzzle, and of making programming diffi cult. 
These dimensions are not mutually exclusive categories, nor are they meant to 
be exhaustive. Any one weird language may be interesting in several of these 
ways, though one particular dimension will often be of special interest.

INTERCAL is the canonical example of a language that parodies other 
programming languages. It is also the fi rst weird language, and is highly re-
spected in the weird language community. It was designed in 1972 at Prince-
ton University by two students, Don Woods and James Lyon. (Later, while at 
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 Stanford, Woods was the co- author of the fi rst interactive fi ction, Adventure.) 
The explicit design goal of INTERCAL is

to have a compiler language which has nothing at all in common with any other major 

language. By “major” we meant anything with which the author’s were at all familiar, 

e.g., FORTRAN, BASIC, COBOL, ALGOL, SNOBOL, SPITBOL, FOCAL, SOLVE, 

TEACH, APL, LISP and PL / I.3

INTERCAL borrows only variables, arrays, text input / output, and assign-
ment from other languages. All other statements, operators, and expressions 
are unique (and uniquely weird). INTERCAL has no simple “if ” construction 
for doing conditional branching, no loop constructions, and no basic math op-
erators—not even addition. Effects such as these must be achieved through 
composition of non- standard and counterintuitive constructs. In this sense 
 INTERCAL also has puzzle aspects.

However, despite the claim that this language has “nothing at all in com-
mon with any other major language,” INTERCAL clearly spoofs the features 
of contemporaneous languages, combining multiple language styles together 
to create an ungainly, unaesthetic style. From COBOL, INTERCAL borrows 
verbose,  English- like constructs, including optional syntax that increases the 
verbosity; all statements can be prepended with PLEASE. Sample INTERCAL 
statements in this COBOL style include FORGET, REMEMBER, ABSTAIN 
and REINSTATE. From FORTRAN, INTERCAL borrows the use of optional 
line numbers, which can appear in any order, and the DO construct, which in 
FORTRAN is used to initiate loops. In INTERCAL, however, every statement 
must begin with DO. Like APL, INTERCAL makes heavy use of single char-
acters with special meaning, requiring even simple programs to be liberally 
sprinkled with non- alphanumeric characters. INTERCAL exaggerates the worst 
features of many languages and combines them together into a single language.

Thirty- three years after its conception, INTERCAL still has a devoted fol-
lowing. Eric Raymond, the current maintainer of INTERCAL, revived the 
language in 1990 with his implementation C- INTERCAL, which added the 
COME FROM construct to the language—the inverse of the much- reviled 
GO TO.

While parody languages comment on other programming languages, lan-
guages in the minimalist vein comment on the space of computation. Specifi -
cally, they call attention to the very small amount of structure needed to create 
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a universal computational system. A “system” in this sense can be as varied 
as a programming language, a formal mathematical system, or physical pro-
cesses, such as one embodied in a machine. Universal computation was discov-
ered by Alan Turing and described in his 1937 investigation of the limits of 
computability, “On Computable Numbers.”4 A universal system can perform 
any computation that it is theoretically possible to perform; such a system 
can do anything that any other formal system is capable of doing, including 
emulating any other system. This property is what allows one to implement 
one language, such as Perl, in another language, such as C, or to implement 
an interpreter or compiler for a language directly in hardware (using logic 
gates), or to write a program that provides a virtual hardware platform for 
other programs (as the Java Virtual Machine does). Universality in a program-
ming language is obviously a desired trait, as it means that the language places 
no limits on the processes that can be specifi ed in the language.

Minimalist languages strive to achieve universality while providing the 
smallest number of language constructs possible. Such languages often strive 
for syntactic minimalism, making the textual representation of programs min-
imal as well. Minimal languages are sometimes called Turing Tarpits, after 
epigram 54 in Alan Perlis’ Epigrams of Programming: “54. Beware the Tur-
ing tar- pit in which everything is possible but nothing of interest is easy.”5

Brainfuck is an archetypically minimalist language, providing merely eight 
commands, each represented by a single character. These commands operate 
on an array of 30,000 byte cells initialized to 0. The commands are:

> Increment the pointer (point to the memory cell to the right)

< Decrement the pointer (point to the memory cell to the left)

+ Increment the byte pointed to

–  Decrement the byte pointed to

. Output the byte pointed to

, Accept a byte of input and write it into the byte pointed to

[ Jump forward to the corresponding ] if pointing to 0

]  Jump back to the command after the corresponding [ if pointing to a nonzero 

value.

A Brainfuck program which prints out the string “Hello World,” follows.

+++++++++[>++++++>++++++++++>+++>+<<<<]>++.>+.+++++++..+++.>++.«+

++++++++++++++.>.+++.------.--------.>+.>.
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Some weird languages encourage  double- coding by structuring the play 
within the language such that valid programs can also be read as a literary ar-
tifact.  Double- coding is certainly possible in languages such as C and Perl, and 
in fact is an important skill in the practice of obfuscated programming. But 
where C and Perl leave the space of play relatively unstructured, forcing the 
programmer to shoulder the burden of establishing a  double- coding, struc-
tured play languages, through their choice of keywords and their treatment 
of  programmer- defi ned names (i.e., variable names), support double coding 
within a specifi c genre of  human- readable textual production. The language 
Shakespeare exemplifi es this structured play aspect.

Here is a fragment of a Shakespeare program that reads input and prints it 
out in reverse order:

[Enter Othello and Lady Macbeth]

Othello:

You are nothing!

Scene II: Pushing to the very end.

Lady Macbeth:

Open your mind! Remember yourself.

Othello:

You are as hard as the sum of yourself and a stone wall. Am I as 

horrid as a  flirt- gill?

Lady Macbeth:

If not, let us return to scene II. Recall your imminent death!

Othello:

You are as small as the difference between yourself and a hair!

Shakespeare structures the play of the language so as to  double- code all pro-
grams as stage plays, specifi cally, as spoofs on Shakespearean plays. This is 
done primarily by structuring the play (that is, the free space) that standard 
languages provide in the naming of variables and constants. In standard lan-
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guages, variable names are a free choice left to the programmer, while nu-
meric constants (e.g., 1) are either specifi ed by the textual representation of the 
number, or through a name the programmer has given to specifi c constants. 
In contrast, Shakespeare Dramatis Personae (variables) must be the name of a 
character from a Shakespeare play, while constants are represented by nouns. 
The two fundamental constants in Shakespeare are –1 and 1. The nouns recog-
nized by the Shakespeare compiler have been divided into positive, negative, 
and neutral nouns. All positive (e.g., “lord,” “angel,” “joy”) and neutral (e.g., 
“brother,” “cow,” “hair”) nouns have the value 1. All negative nouns (e.g., 
“bastard,” “beggar,” “codpiece”) have the value –1. Constants other than –1 
and 1 are created by prefi xing them with adjectives; each adjective multiplies 
the value by 2. So “so sorry little codpiece” denotes the number –4.

The overall structure of Shakespeare follows that of a stageplay. Variables 
are declared in the Dramatis Personae section. Named acts and scenes become 
labeled locations for jumps; “let us return to scene II” is an example of a jump 
to a labeled location. Enter and exit (and exeunt) are used to declare which 
characters (variables) are active in a given scene; only two characters may be 
on stage at a time. Statements are accomplished through dialog. By talking to 
each other, characters set the values of their dialog partner and themselves, 
compare values, execute jumps, and so forth.

In a programming language, keywords are words that have special meaning 
for the language, indicating commands or constructs, and thus can’t be used 
as names by the programmer. An example from C is the keyword “for,” used 
to perform iteration; “for” cannot be used by the programmer as the name of a 
variable or function. In standard languages, keywords typically limit or bound 
play, as the keywords are generally not selected by language designers to facili-
tate  double- coding. This is, in fact, what makes code poetry challenging; the 
code poet must hijack the language keywords in the service of  double- coding. 
In contrast, weird languages that structure play provide keywords to facilitate 
the  double- coding that is generally encouraged by the language.

Another language, Chef, illustrates different design decisions for structur-
ing play. Chef facilitates  double- coding programs as recipes. Variables are de-
clared in an ingredients list, with amounts indicating the initial value (e.g., 
6 oz. of red salmon). The type of measurement determines whether an ingredient 
is wet or dry; wet ingredients are output as characters, dry ingredients are out-
put as numbers. Two types of memory are provided—mixing bowls and bak-
ing dishes. Mixing bowls hold ingredients that are still being manipulated, 
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while baking dishes hold collections of ingredients to output. What makes 
Chef particularly interesting is that all operations have a sensible interpretation 
as a step in a food recipe. Where Shakespeare programs parody Shakespearean 
plays, and often contain dialog that doesn’t work as dialog in a play (“you are 
as hard as the sum of yourself and a stone wall”), it is possible to write programs 
in Chef that might reasonably be carried out as a recipe. Thus, in some sense, 
Chef structures play to establish a  triple- coding: the executable machine mean-
ing of the code, the human meaning of the code as a literary artifact, and the 
executable human meaning of the code as steps that can be carried out to pro-
duce food.

A number of languages structuring play have been based on other weird lan-
guages. Brainfuck is particularly popular in this regard, spawning languages 
such as FuckFuck (operators are replaced with curse words) and Cow (all in-
structions are the word “moo” with various capitalizations).

Languages that have a puzzle aspect explicitly seek to make programming 
diffi cult by providing unusual, counterintuitive control constructs and opera-
tors. While INTERCAL certainly has puzzle aspects, its dominant feature is its 
parody of 1960s language design. Malbolge, named after the eighth circle of hell 
in Dante’s Inferno, is a much more striking example of a puzzle language. Where 
INTERCAL sought to merely have no features in common with any other lan-
guage. Malbolge had a different motivation, as author Ben Olmstead writes:

It was noticed that, in the fi eld of esoteric programming languages, there was a par-

ticular and surprising void: no programming language known to the author was spe-

cifi cally designed to be diffi cult to program in . . .

 Hence the author created Malbolge. . . . It was designed to be diffi cult to use, and 

so it is. It is designed to be incomprehensible, and so it is. So far, no Malbolge pro-

grams have been written. Thus, we cannot give an example.6

Malbolge was designed in 1998. It was not until 2000 that Andrew Cooke, us-
ing AI search techniques, succeeded in generating the fi rst Malbolge program, 
the “hello, world!” program—actually, it prints “HEllO WORld”—that 
follows:

(=<`$9]7<5YXz7wT.3,+O / o’K%$H”’~D|#z@b=`{^Lx8%$Xmr  kpohm-

 kNi;gsedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA

@?>=<;:9876543s+O<oLm
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The writing of more complex Malbolge programs was enabled by Lou Schef-
fer’s cryptanalysis of Malbolge in which he discovered “weaknesses” that the 
programmer can systematically exploit:

The correct way to think about Malbolge, I’m convinced, is as a cryptographer and not 

a programmer. Think of it as a complex code and / or algorithm that transforms input 

to output. Then study it to see if you can take advantage of its weaknesses to forge a 

message that produced the output you want.7

His analysis proved that the language allowed for universal computation. The 
“practical” result was the production of a Brainfuck to Malbolge compiler.

What makes Malbolge so diffi cult? Like many minimalist languages, Mal-
bolge is a machine language written for a fi ctitious and  feature- poor machine, 
and thus gains some diffi culty of writing and signifi cant diffi culty of reading 
from the small amount of play provided to the programmer for expressing hu-
man, textual meanings. However, as Olmstead points out, the mere diffi culty 
of machine language is not enough to produce a truly devilish language. The 
machine model upon which Malbolge runs has the following features that con-
tribute to the diffi culty of the language: a trinary, rather than binary, machine 
model, minimalism, counterintuitive operations, indirect instruction coding 
(the meaning of a program symbol depends on where it sits in memory), and 
mandatory self- modifying code (code mutates as it executes, so it never does 
the same thing twice). These factors account for the two years that passed be-
fore the fi rst Malbolge “hello, world” program appeared.

By commenting on the nature of programming itself, weird languages 
point the way toward a refi ned understanding of the nature of everyday coding 
practice. In their parody aspect, weird languages comment on how different 
language constructions infl uence programming style, as well as on the history 
of programming language design. In their minimalist aspect, weird languages 
comment on the nature of computation and the vast variety of structures ca-
pable of universal computation. In their puzzle aspect, weird languages com-
ment on the inherent cognitive diffi culty of constructing effective programs. 
And in their structured play aspect, weird languages comment on the nature 
of  double- coding, how it is that programs can simultaneously mean something 
for both the machine and for human readers.

All of these aspects are seen in everyday programming practice. Program-
mers are extremely conscious of language style, of coding idioms that not only 
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“get the job done” but do it in a way that is particularly appropriate for that 
language. Programmers actively structure the space of computation for solv-
ing specifi c problems, ranging from implementing sub- universal abstractions 
such as  fi nite- state machines for solving problems such as string searching, up 
to writing interpreters and compilers for custom languages tailored to specifi c 
problem domains, such as Perl for string manipulation. All coding inevitably 
involves  double- coding. “Good” code simultaneously specifi es a mechanical 
process and talks about this mechanical process to a human reader. Finally, the 
 puzzle- like nature of coding manifests not only because of the problem solving 
necessary to specify processes, but because code must additionally, and simul-
taneously, make appropriate use of language styles and idioms, and structure 
the space of computation. Weird languages thus tease apart phenomena pres-
ent in all coding activity, phenomena that must be accounted for by any theory 
of code.

Notes

1. Parts of this article are based on a paper (“A Box Darkly: Obfuscation, Weird Lan-

guages and Code Aesthetics”) that Nick Montfort and I presented at Digital Arts and 

Culture 2005.

2. “Esoteric” is a more common term for these languages, but it is a term that could 

apply to programming languages overall (most people do not know how to program 

in any language) or to languages such as ML and Prolog, which are common in aca-

demia but infrequently used in industry. A better designation might be art languages. 

However, while such languages are undoubtedly a category of software art, developers 

of these languages do not use this term themselves, and it seems unfair to apply the 

term “art,” with all of its connotations, to their work. The term “weird” better captures 

the intention behind these languages, and is used at times by the language designers 

themselves.

3. Donald Woods and James Lyon, The INTERCAL Programming Language Revised Ref-

erence Manual. 1st ed. (1973). C- INTERCAL revisions, L. Howell and E. Raymond, 

(1996).

4. Alan M. Turing, “On Computable Numbers, with an Application to the Ent-

scheidungsproblem. A Correction,” from Proceedings of the London Mathematical Society, 

Ser. 2, Vol. 43, 1937.
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5. Alan Perlis, “Epigrams on Programming.”

6. Ben Olmstead, Malbolge, available at http: // www.antwon.com / other / malbolge / 

malbolge.txt 1998 / .

7. Lou Scheffer, Introduction to Malbolge, available at http: // www.lscheffer.com / 

malbolge.html / .
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