
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

edited by matthew fuller

software studies\ a lexicon

S

O

F

T

W

A

R

E

S

T

U

D

I

E

S

This collection of short expository, critical,
and speculative texts offers a field guide
to the cultural, political, social, and aes-
thetic impact of software. Computing and
digital media are essential to the way we
work and live, and much has been said
about their influence. But the very materi-
al of software has often been left invisible.
In Software Studies, computer scientists,
artists, designers, cultural theorists, pro-
grammers, and others from a range of dis-
ciplines each take on a key topic in the
understanding of software and the work
that surrounds it. These include algo-
rithms; logical structures; ways of thinking
and doing that leak out of the domain of
logic and into everyday life; the value and
aesthetic judgments built into computing;
programming’s own subcultures; and the
tightly formulated building blocks that
work to make, name, multiply, control, and
interweave reality.

The growing importance of software
requires a new kind of cultural theory that
can understand the politics of pixels or the
poetry of a loop and engage in the micro-
analysis of everyday digital objects. The
contributors to Software Studies are both
literate in computing (and involved in
some way in the production of software)
and active in making and theorizing cul-
ture. Software Studies offers not only
studies of software but proposes an agen-
da for a discipline that sees software as an
object of study from new perspectives.

Matthew Fuller is David Gee Reader in
Digital Media at the Centre for Cultural
Studies, Goldsmiths College, University of
London. He is the author of Media
Ecologies: Materialist Energies in Art and
Technoculture (MIT Press, 2005) and
Behind the Blip: Essays on the Culture of
Software.

A Leonardo Book

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

new media/cultural studies

The MIT Press Massachusetts Institute of Technology • Cambridge, Massachusetts 02142 • http://mitpress.mit.edu

978-0-262-06274-9

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

softw
a

re stud
ies

fu
lle

r, e
d

ito
r

Contributors

Alison Adam, Morten Breinbjerg, Ted Byfield, Wendy Hui Kyong Chun, Geoff Cox, Florian Cramer, Cecile

Crutzen, Marco Deseriis, Ron Eglash, Matthew Fuller, Andrew Goffey, Steve Goodman, Olga Goriunova,

Graham Harwood, Wilfried Hou Je Bek, Friedrich Kittler, Erna Kotkamp, Joasia Krysa, Adrian Mackenzie,

Lev Manovich, Michael Mateas, Nick Montfort, Michael Murtaugh, Jussi Parikka, Søren Pold, Derek Robinson,

Warren Sack, Grzesiek Sedek, Alexei Shulgin, Matti Tedre, Adrian Ward, Richard Wright, Simon Yuill

software studies\ a lexicon

edited by matthew fuller

fuller_jkt.qxd 4/11/08 7:13 AM Page 1

Software Studies

LEONARDO

Roger F. Malina, Executive Editor

Sean Cubitt, Editor- in- Chief

A complete list of books published in the Leonardo series appears at the back
of this book.

Software Studies

A Lexicon

edited by Matthew Fuller

The MIT Press
Cambridge, Massachusetts

London, England

© 2008 Matthew Fuller

Individual texts © copyright of the authors, 2006

All rights reserved. No part of this book may be reproduced in any form by any elec-

tronic or mechanical means (including photocopying, recording, or information stor-

age and retrieval) without permission in writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress

.mit.edu

This book was set in Garamond 3 and Bell Gothic by Graphic Composition, Inc.

Printed and bound in the United States of America.

Library of Congress Cataloging- in- Publication Data

Software studies : a lexicon / edited by Matthew Fuller.

 p. cm.—(Leonardo books)

 Includes bibliographical references and index.

 ISBN 978- 0- 262- 06274- 9 (hbk. : alk. paper) 1. Computer software. 2. Comput-

ers and civilization—Encyclopedias. 3. Programming languages (Electronic comput-

ers)—Lexicography. 4. Technology and the arts. I. Fuller, Matthew.

QA76.754.S64723 2008

005.1—dc22

2007039724

10 9 8 7 6 5 4 3 2 1

series foreword ix
acknowledgments xi

introduction
Matthew Fuller 1

algorithm
Andrew Goffey 15

analog
Derek Robinson 21

button
Søren Pold 31

class library
Graham Harwood 37

code
Friedrich Kittler 40

codecs
Adrian Mackenzie 48

computing power
Ron Eglash 55

concurrent versions system
Simon Yuill 64

Contents

vi

copy
Jussi Parikka 70

data visualization
Richard Wright 78

elegance
Matthew Fuller 87

ethnocomputing
Matti Tedre and Ron Eglash 92

function
Derek Robinson 101

glitch
Olga Goriunova and Alexei Shulgin 110

import / export
Lev Manovich 119

information
Ted Byfi eld 125

intelligence
Andrew Goffey 132

interaction
Michael Murtaugh 143

interface
Florian Cramer and Matthew Fuller 149

internationalization
Adrian Mackenzie 153

interrupt
Simon Yuill 161

language
Florian Cramer 168

lists
Alison Adam 174

loop
Wilfried Hou Je Bek 179

memory
Warren Sack 184

Contents

vii

obfuscated code
Nick Montfort 193

object orientation
Cecile Crutzen and Erna Kotkamp 200

perl
Geoff Cox and Adrian Ward 207

pixel
Graham Harwood 213

preferences
Søren Pold 218

programmability
Wendy Hui Kyong Chun 224

sonic algorithm
Steve Goodman 229

source code
Joasia Krysa and Grzesiek Sedek 236

system event sounds
Morten Breinbjerg 243

text virus
Marco Deseriis 250

timeline (sonic)
Steve Goodman 256

variable
Derek Robinson 260

weird languages
Michael Mateas 267

bibliography 277

about the contributors 313

index 321

Contents

The arts, science, and technology are experiencing a period of profound
change. Explosive challenges to the institutions and practices of engineering,
art making, and scientifi c research raise urgent questions of ethics, craft, and
care for the planet and its inhabitants. Unforeseen forms of beauty and under-
standing are possible, but so too are unexpected risks and threats. A newly
global connectivity creates new arenas for interaction between science, art, and
technology but also creates the preconditions for global crises. The Leonardo
Book series, published by the MIT Press, aims to consider these opportunities,
changes, and challenges in books that are both timely and of enduring value.

Leonardo books provide a public forum for research and debate; they con-
tribute to the archive of art- science- technology interactions; they contribute to
understandings of emergent historical processes; and they point toward future
practices in creativity, research, scholarship, and enterprise.

To fi nd more information about Leonardo / ISAST and to order our publica-
tions, go to Leonardo Online at http: // lbs.mit.edu / or e- mail leonardobooks@
mitpress.mit.edu.

Sean Cubitt
Editor- in- Chief, Leonardo Book series

Leonardo Book Series Advisory Committee: Sean Cubitt, Chair; Michael Punt;
Eugene Thacker; Anna Munster; Laura Marks; Sundar Sarrukai; Annick Bureaud

Series Foreword

x

Doug Sery, Acquiring Editor
Joel Slayton, Editorial Consultant

Leonardo / International Society for the Arts, Sciences,
and Technology (ISAST)

Leonardo, the International Society for the Arts, Sciences, and Technology,
and the affi liated French organization Association Leonardo have two very
simple goals:

1. to document and make known the work of artists, researchers, and schol-
ars interested in the ways that the contemporary arts interact with science and
technology, and
2. to create a forum and meeting places where artists, scientists, and engineers
can meet, exchange ideas, and, where appropriate, collaborate.

When the journal Leonardo was started some forty years ago, these creative
disciplines existed in segregated institutional and social networks, a situa-
tion dramatized at that time by the “Two Cultures” debates initiated by C. P.
Snow. Today we live in a different time of cross- disciplinary ferment, collabo-
ration, and intellectual confrontation enabled by new hybrid organizations,
new funding sponsors, and the shared tools of computers and the Internet.
Above all, new generations of artist- researchers and researcher- artists are now
at work individually and in collaborative teams bridging the art, science, and
technology disciplines. Perhaps in our lifetime we will see the emergence of
“new Leonardos,” creative individuals or teams that will not only develop a
meaningful art for our times but also drive new agendas in science and stimu-
late technological innovation that addresses today’s human needs.

For more information on the activities of the Leonardo organizations and
networks, please visit our Web sites at <http: // www.leonardo.info / > and
<http: // www.olats.org>.

Roger F. Malina
Chair, Leonardo / ISAST

ISAST Governing Board of Directors: Martin Anderson, Michael Joaquin
Grey, Larry Larson, Roger Malina, Sonya Rapoport, Beverly Reiser, Christian
Simm, Joel Slayton, Tami Spector, Darlene Tong, Stephen Wilson

Series Foreword

This volume is the result of a collaborative working process that leaves the
editor largely a timepiece, squawking about deadlines here and there. All of
the authors have contributed not just their own text or texts, but their gen-
erous engagement in and attention to a project that has emerged out of their
interactions.

This project was initiated through the Media Design Research programme
at the Piet Zwart Institute of the Willem de Kooning Academie Hogeschool
Rotterdam. Richard Ouwerkerk, the Director of the Institute, gave immediate
and generous support for the work. Leslie Robbins co- organized the workshop
out of which most of this work was produced. Michael Murtaugh made the
content management system which provided the working environment for the
texts to develop and provided instant reviews of drafts on the train between
Amsterdam and Rotterdam. Femke Snelting and Calum Selkirk provided in-
sightful feedback on the project as it developed. The students of the Master of
Arts in Media Design at Piet Zwart Institute spurred us on to get the thing
done. Beatrice DaCosta, Phoebe Sengers, Volker Grassmuck, and Peter Geble
helped with suggesting and contacting contributors to the book. Thom Morri-
son provided sharp and speedy translation. Florian Cramer, Rolf Pixley, Søren
Pold, Dragana Antić (the book’s indexer), and Graham Harwood provided
useful feedback at key points. Thanks to Mandie, Leon, Milo, Rosa, and Felix
for making time for me to get the manuscript fi nished up. Doug Sery, Valerie
Geary, Alyssa Larose, and other staff at MIT Press provided excellent advice
and collaboration throughout.

Acknowledgments

xii

Friedrich Kittler’s text “Code,” which appears here in English for the fi rst
time, originally appeared in German as Code, oder wie sich etwas anders schreiben lässt
in the catalogue to Ars Electronica 2003, “Code—the language of our time”
(Gerfried Stocker and Christian Schöpf, eds., Hatje Cantz Verlag Oster fi ldern-
 Ruit, 2003).

Ron Eglash and Matti Tedre’s entry on Ethnocomputing is based upon work
supported by (1) the National Science Foundation under Grant No. 0119880,
and (2) the Korean Government, Ministry of Education and Human Resources
(National Institute for International Education Development).

Acknowledgments

Software Studies

Introduction, the Stuff of Software

Matthew Fuller

This project is entitled software studies1 for two reasons. First, it takes the
form of a series of short studies: speculative, expository, and critical texts on
particular digital objects, languages, and logical structures. Additional terms
touch on some of the qualities software is supposed to possess and ideas by
which to approach it. Together, at certain scales of interpretation, these con-
stitute the “stuff” of software. Software structures and makes possible much of
the contemporary world. This collection proposes an exercise in the rapid pro-
totyping of transversal and critical approaches to such stuff.

What is covered here includes: algorithms; logical functions so fundamental
that they may be imperceptible to most users; ways of thinking and doing that
leak out of the domain of logic and into everyday life; the judgments of value
and aesthetics that are built into computing; programming’s own subcultures
and its implicit or explicit politics; or the tightly formulated building blocks
working to make, name, multiply, control, and interrelate reality. Does Soft-
ware Studies offer a pair of super X- ray specs for the standardized user, allowing
them to see behind the screen, through the many layers of software, logic,
visualization, and ordering, right down to the electrons bugging out in the
microcircuitry and on, into the political, cultural and conceptual formations
of their software, and out again, down the wires into the world, where software
migrates into and modifi es everything it touches? Does it offer even a diagram
of such a vision? Not quite. That would take a second volume. What we can
achieve though, is to show the stuff of software in some of the many ways that
it exists, in which it is experienced and thought through, and to show, by the

2

Introduction

interplay of concrete examples and multiple kinds of accounts, the conditions
of possibility that software establishes.

Secondly, Software Studies proposes that software can be seen as an object of
study and an area of practice for kinds of thinking and areas of work that have
not historically “owned” software, or indeed often had much of use to say about
it. Such areas include those that are currently concerned with culture and me-
dia from the perspectives of politics, society, and systems of thought and aes-
thetics or those that renew themselves via criticism, speculation, and precise
attention to events and to matter among others. In a famous anecdote, com-
puting pioneer Alan Kay is said to have said of the fi rst Macintosh that despite
its limitations it was the fi rst computer really worthy of criticism.2 By this,
one imagines he means a computer that deserves a reciprocation of the richness
of thought that went into it, with the care to pay attention to what it says
and what it makes palpable or possible, and the commitment to extend such
attention into its continuing development. The texts written for this volume
suggest their use as a handbook of supplements to some of the key standard
objects of computer science, programming, and software culture. As such, our
question here is: Where is the rest of that criticism? Indeed, criticism with
its undertones of morality or imperious knowledge might be better phrased
as a questioning or setting in play. Yes, there is plenty of studiousness being
dished up about what people do with software; there are big, fat, and rapidly
remaindered books about how to write or use software. But we can’t fi nd much
of it that takes things at more than face value, or not nearly enough of it to
understand the world as it is. There’s only one thing to do in such a situation:
get on and write what you need to read.

Software’s Roots and Reverberations

Recent etymological research3 credits John W. Tukey with the fi rst published
use of the term “software.” In a 1958 article for American Mathematical Monthly
he described how the mathematical and logical instructions for electronic cal-
culators had become increasingly important, “Today the ‘software’ comprising
the carefully planned interpretive routines, compilers, and other aspects of au-
tomative programming are at least as important to the modern electronic cal-
culator as its ‘hardware’ of tubes, transistors, wires, tapes and the like.”4

Another crucial moment was the decision by IBM in 1968, prompted in no
small part by antitrust court actions, to split its software section off from its

3

Introduction

hardware section. Software was no longer to be bundled as a service or gratuity.
As a result, according to Martin Campbell- Kelly, “IBM liberated the industry
by unbundling.”5 At the point of software’s legal reordering as a separate kind
of entity, it became a commodity, an entity the prime or sole motive for the
production of which is to generate a monetary profi t for those who own the
entities, such as companies, by which it is made.6 This description allows it to
circulate in different ways, such as markets, while occluding others. For vari-
ous reasons, software has always had a parallel geneology including the ama-
teur, academic, gratuitous, experimental, and free. This lexicon, it is hoped,
provides useful access to all of these trajectories.

Beyond these beginnings, as software becomes a putatively mature part of
societal formations (or at least enters a phase where, in the global north, genera-
tions are now born into it as an infrastructural element of daily life), we need to
gather and make palpable a range of associations and interpretations of software
to be understood and experimented with. While applied computer science and
related disciplines such as those working on computer- human interface have
now accreted around half a century of work on this domain, software is often
a blind spot in the wider, broadly cultural theorization and study of computa-
tional and networked digital media. This is not simply because the disciplinary
 cookie- cutter for the arts and humanities is incompetent with the daily fabric of
contemporary working lives, which includes word processors, websites, search
engines, email, databases, image editors, sound software and so on; software
as a fi eld is largely seen as a question of realized instrumentality. As viewed
through the optic of applied logic, software exists as something that has gone
through a “threshold of formalization”7 and now exists only in terms devoid of
any reference other than itself. Software is seen as a tool, something that you do
something with. It is neutral, grey, or optimistically blue. On the one hand,
this ostensive neutrality can be taken as its ideological layer, as deserving of
critique as any such myth. But this interpretation itself one that emphasizes
only critique can block a more inventive engagement with software’s particular
qualities and propensities. Working with the specifi cities of software at the
multiple scales at which it occurs is a way to get past this dichotomy.

Recognition of the synthetic power of computing should not block the
understanding that much software comprises simply and grimly of a social
relation made systematic and unalterable.8 (Consider, for instance, the ulti-
mately abitrary informational regimes governing who is inside or outside of a
national population.) It may not work or offer a rich fi eld of bugs and loopholes

4

Introduction

of course, but this structuration is often imperceptible,9 actuated with little
public debate or even platforms capable of achieving such debate with mean-
ingful effect. or in a way that is culturally rich enough to bother taking part
in. Technologisation of the senses and structuring of relations by technology is
often carried out by naturalized means, lessening our ability to understand and
engage with such changes. Many accounts have been made of how such natu-
ralization occurs through the technologization of a problem. The optimal solu-
tion becomes the one that is most amenable to technical description, usually a
description that is only in terms of certain already normalized precursors. By
contrast, when technology is used in a way that is interrogable or hackable,10 it
allows and encourages those networked or enmeshed within it to gain traction
on its multiple scales of operation. Hackability is not in itself a magic bullet; it
relies on skills, knowledge, and access, of making such things public and chang-
ing them in the process. Gathering together forms of knowledge that couple
software with other kinds of thinking is hopefully a way of enlarging the ca-
pacity of hackability itself to be hacked from all directions.

Another theoretical blockage that this collection seeks to overcome is the
supposed “immateriality” of software. While this formulation has been de-
ployed by many writers to explain software’s distinction from things that have
a straightforward physicality at the scale of human visual perception, or the way
in which its production differs from industrial or craft forms of fabrication the
idea of software’s “immateriality” is ultimately trivializing and debilitating.11

The new lexicon relies upon an understanding of the materiality of software
being operative at many scales: the particular characteristics of a language or
other form of interface—how it describes or enables certain kinds of program-
mability or use; how its compositional terms infl ect and produce certain kinds
of effects such as glitches, cross- platform compatibility, or ease of sharing and
distribution; how, through both artifact and intent, events can occur at the level
of models of user subjectivity or forms of computational power, that exceed
those of pre- existing social formatting or demand new fi gures of knowledge.

Whereas much work published in the area of new media largely adopts an
Information and Communications Technology model (the shunting of ‘con-
tent’ from point A to point B) for its understanding of phenomena such as the
internet or even games, and aims its critical faculties at what happens around
or through software, this project differs by, among other things, emphasizing
the neglected aspect of computation, which involves the possibilities of virtual-
ity, simulation, abstraction, feedback, and autonomous processes.

5

Introduction

The purpose of this lexicon then is not to stage some revelation of a sup-
posed hidden technical truth of software, to unmask its esoteric reality, but to
see what it is, what it does and what it can be coupled with. In doing so we
hope also to construct multiple entry points into the fi eld. Rather than simply
watch and make notes on the humans lit by the glow of their monitors it aims
to map a rich seam of conjunctions in which the speed and rationality, or slow-
ness and irrationality, of computation meets with its ostensible outside (users,
culture, aesthetics) but is not epistemically subordinated by it.

At the same time, the contents of this lexicon acknowledge that software
exists at many scales. It is increasingly distributed as an embedded part of socio-
technical infrastructures; manifest as the “semantic sugar” and operational con-
straints of user- friendly interface elements or higher level languages; integrated
into patterns of work and communication so thoroughly that it is desirable to
describe all of these in order to account for any; and operative at a low level in
interaction with the physical properties of conductive and nonconductive ma-
terials. Finding a way of accounting for, understanding, and crucially, working
with this multiscalar reality is an important challenge requiring new tools for
thought, and ways of holding different kinds of account together.

Software marks another of its beginnings in Alan Turing’s desire to chart
the computable, arising as a response to David Hilbert’s assertion that all
mathematical problems are decidable (solvable by means of a defi nite universal
method) within the terms of mathematics.12 Computation establishes a toy
world in conformity with its axioms, but at the same time, when it becomes
software, it must, by and large (except for autonomous processes, such as Cron,
the demon to execute commands to a schedule in a Unix system, or as exempli-
fi ed in work such as Artifi cial Paradises13) come into combination with what lies
outside of code. Just as science, under the admirably empirical plan drawn up
by Karl Popper,14 is a ’Pataphysical machine driven by the accumulation of
fi ner and fi ner grained errors, which are in turn surpassed by better and better
miscomprehensions, software is computation, which, whether it is as useful and
mundane as a word- processor, or as brilliant and simple as a cellular automaton,
gains its power as a social or cultural artifact and process by means of a better
and better accommodation to behaviors and bodies which happen on its out-
side. Whether these are writing or evolutionary models, the terms by which
they are understood have to be grafted, and hence modifi ed and fi ltered, back
into the limited but paradoxical domain of computation. And it is this para-
dox, the ability to mix the formalized with the more messy—non- mathematical

6

Introduction

formalisms, linguistic, and visual objects and codes, events occurring at every
scale from the ecological to the erotic and political—which gives computa-
tion its powerful effects, and which folds back into software in its existence as
culture. This folding in does not only happen to software, but with which it
couples. Hardware, with its rich panoply of sensors and triggering devices, its
mixture of the analog and digital, is perhaps still the fi nest purveyor of messi-
ness, but as several texts here attest, it fi nds its complement in software. Once
things have become modeled, replicated, and reifi ed, they can be intensifi ed,
copied, multiplied, and stretched or subject to a host of other functions that
have become familiar from the basic grammars of applications.15

The development of software is in many cases simply not subject to the
rigor of the requirement for the “better and better” typical of technologies
aimed at consumers. Its self- suffi ciency, which has allowed computer science
to maintain its status as a closed world,16 allows the plainly dysfunctional and
imaginary to roam free. This freedom applies as much to the bizarre fruits of
business plans gorged on the tragedy of imagined or “intellectual” property
as to the whimsical, inventive, or deranging entities stored in software art re-
positories. (A whole separate volume of the vocabulary of the anxious, deluded,
and mendacious could be drawn up for large- scale private or governmental
software projects.) The rise of software and of computational and networked
digital media in general has in many ways depended upon massive amounts
of investment in institutions, training, and the support of certain kinds of ac-
tors. One other strand of the development of software over its history has often
depended upon individuals or small groups of people fi nding a breathable
pocket of time and resources in the intestines of larger hierarchically ordered
organizations, or acting on their own cobbled- together means. Since the de-
velopment of computer networks, such pockets of differentiated pressure have
been able to be assembled across space, in smaller chunks, and asynchronously.
Since the massifi cation of computing they have in some small ways also been
able to construct themselves in relation to other forms of life. (In the sense
that Ludwig Wittgenstein means when he says, “To imagine a language is to
imagine a form of life.”17) This “self- suffi ciency” of software, in such a context,
allows (in much the same way as it allows a programmer to think he or she is
working on the formulation of a particularly interesting and chewy algorithm
when working at another scale, perhaps more determining, on an insurance
program to more fi nely exclude the poor from public services) a certain dis-
tance from social or cultural norms. Things can be done in software that don’t

7

Introduction

require much dependence on other factors. The range of articulation software
allows due to the nature of the joints it forms with other layers of reality means
that this freedom (that of a closed world), while somewhat paralyzing, has also
guaranteed it a space for profound and unfi nishable imagination.

Parallels and Precursors

While this book proposes a set of approaches to thinking about software, it is
not alone in this work. It comes out of a wider set of interlocking areas of activity
in digital cultures, but two other key areas, historical research into the genesis
of computing and the discourse associated with free and open source soft-
ware, have provided a context for the work here.

Computing is beginning to be recognized as something having a history,
rather than just being permanently in a state of improvement. Computing
history thus becomes discursive, and opens computing in the present day up
to the consideration of palpable alternatives. Several of the key texts in the
history of computing are called upon here and it is an area from which one
anticipates further revealing developments.

Of special interest for this lexicon is the way in which free software, and
associated currents such as open source have set off ripples in the way people
talk and think about software. This discussion has often taken place on blogs,
mailing lists, and in the opinion pieces of industry pundits.18 While it is often
short on historical memory or connection to thought outside of its own do-
main, this discussion can be lively and insightful. Neal Stephenson suggests
that, “Linux per se is not a specifi c set of ones and zeroes, but a self- organizing
net subculture.”19 Because free and open source software opens up the process
of writing software in certain ways its also opens up the process of talking and
thinking about it.

Two other currents have also fed into this project. While art and design have
for a reasonably long period had something of an inkling that objects, devices,
and other material entities have a politic—that they engage in the arrange-
ment and composition of energies, allow, encourage or block certain kinds of
actions—these concerns have also more recently been scrutinized by the inter-
disciplinary area of science and technology studies. Shifting from an emphasis
on epistemologies to also encompass the way in which things are embedded
with and produce certain kinds of knowledge and possibility of interaction
with the world (and indeed make worlds) has been extremely fruitful. Such

8

Introduction

work has also contributed to this book because, among other things, it pro-
vides a means of talking about the materiality of abstraction, the interplay
between formalization and the heterogenous stuff it mobilizes.

The area that has become known as software art20 is perhaps the most di-
rect feed into this lexicon. This current of work, along with hacker culture,
provides a means for bringing the generative, refl exive, and anarchist intel-
ligence of art into compositional entanglement with the ostensibly ordered
and self- suffi ciently technical language, working patterns, and material of
software. Art understands that the style of thought is crucial—style not sim-
ply as a metric for the deposition of fl ourishes and tricks, but as a way of ac-
cessing multiple universes of reference. Software Studies also proposes another
set of potential interactions between art and other inventive cultural prac-
tices and domains such as mathematics and logic. Signifi cant work has been
done in the overlap between the two fi elds utilizing conceptual fi gures such
as “beauty” or “symmetry.” Other, non- idealist interactions are also possible,
and indeed, necessary. The project provides a space for interactions between
art and mathematics outside of clean- room purity in dirtier interactions with
cultures, economies, hardware, and life. Mathematics becomes applied, not to
the cleanly delineated sets of problems set it by productivity and effi ciency
goals in software projects, but to the task of inventing and laughing with its
own goofi ly serene self and in doing so regaining its “pure” task of establishing
systems and paroxysms of understanding.

What Is a Lexicon?

Finding a mode of writing capable of inducing experiment is tricky. In what
way does a lexicon provide a useful structure for this form of software study?
A lexicon is a vocabulary of terms used in a particular subject. Rather than an
encyclopedia, which is too universal, or a dictionary or glossary, which offer
too short descriptions or readings of terms, a lexicon can be provisional and is
scalable enough a form to adapt to any number of terms and lengths of text.
In producing a lexicon for an area that is as wide, deep, and fast moving as
software, one can easily make a virtue out of the necessary incompleteness of
the work. Indeed, Software Studies cannot claim to be a summa of terms, ob-
jects, structures, and ideas. Although we refer often to monumental works
such as Donald Knuth’s Art of Computer Programming,21 a systematic and good
humored survey and exposition of algorithms and data structures, other forms

9

Introduction

of encyclopedia and glossary also infl uenced the adoption of this structure. The
Jargon File 22 is a lengthy and wry catalogue of early North American hackers’
argot displaying readily the way in which something can be at once both tech-
nically informative, enjoying word- play or double, if not infi nitely recursive,
meaning, and also refl exive upon its own working culture. Another strand of
work that informs Software Studies is the trajectory of dictionaries and folios
of terms and keywords, which recognize the ridiculousness of attempting to
catalogue, name, and explain reality. These supplementary explanations inves-
tigate our culture as if it requires an interpretative account. They try to cap-
ture the language of a possible future, actual language at the cusp of where it
intersects the possible and the unspeakable. These works, among them such
dark jewels as the “Dictionary” supplements to the magazine Documents ed-
ited by Georges Bataille, capture through their many facets a pattern out of
which an approach to life can be sensed and articulated.23 Rather more hopeful
of the possibility of lucid communication is Raymond Williams’s Keywords, a
book established as a personal “enquiry into a vocabulary.”24 Both of these use
the way in which a lexicon can establish alliances between words, texts, and
ideas without necessarily agglutinating them as a whole, thus effacing a more
complex reality. A normal dictionary comes to a point of momentary stability
when it defi nes all the words which it uses to defi ne all the words that it con-
tains. Each defi nition, then, reaches out to all the terms used to establish its
meaning in a beautiful, recursively interwoven networking of language. Soft-
ware Studies is not quite so mature, but an astute reader will fi nd many path-
ways between the different texts.

Words bind thinking and acting together, providing a means for the con-
junction and differentiation of work and other dynamics between persons, across
groups of ideas, and ways of doing things. Collections of words build up a consis-
tency, becoming a population teeming with the qualities that Ronald Sukenick
ascribes to narrative: “agonistic, sophistic, sophisticated, fl uid, unpredictable,
rhizomatic, affective, inconsistent and even contradictory, improvisational and
provisional.”25 At the same time, in the case of software studies, words work in
relation to another set of dynamics, a technical language that is determined by
its relation to constants that are themselves underpinned by a commitment to
an adequately working or improved description. That is, at a certain, software
demands an engagement with its technicity and the tools of realist description.
As software becomes an increasingly signifi cant factor in life, it is important to
recognize this tension and to fi nd the means for doing so.

10

Introduction

Stuff behind Stuff

One rule of thumb for the production of this book is that the contributors had
to be involved in some way in the production of software as well as being en-
gaged in thinking about it in wider terms. It is perhaps a sign of an underly-
ing shift that this project is possible now, that this many people who can work
within this format and topic could be brought together.

Part of this underlying shift is that software is now, unevenly, a part of mass
and popular cultures. It forms a component, if not the largest part, of more and
more kinds of work. Knowledge about how to make it, to engage with pro-
gramming and how to use software more generally, circulates by an increasing
number of formal and informal means. The experience and understanding of
software is undergoing a change in both quantity and quality. This book aims
to make available some of the mixed intelligences thinking through these con-
ditions. The authors are artists, computer scientists, designers, philosophers,
cultural theorists, programmers, historians, media archaeologists, mathema-
ticians, curators, feminists, musicians, educators, radio hams, and other fi ne
things, and most straddle more than one discipline. The voices collected here
bring more than one kind of intelligence to software because software makes
more sense understood transversally.

There’s another rule of thumb: In order to program, you have to understand
something so well that you can explain it to something as stonily stupid as a
computer. While there is some painful truth in this, programming is also the
result of a live process of engagement between thinking with and working on
materials and the problem space that emerges. Intelligence arises out of inter-
action and the interaction of computational and networked digital media with
other forms of life conjugate new forms of intelligence and new requirements
for intelligence to unfold. As a result, a number of authors collected in this
book have called for a renewed understanding of what literacy should mean
contemporarily. Amongst others, Michael Mateas has made an important call
for what he describes as Procedural Literacy.26 Those whose working practice
involves education, and the need to address the tension between education and
knowledge,27 know that the question of what such a literacy might be returns
always as a question, and not as a program. In order to ask that question well,
however, it is useful to have access to vocabularies which allow one to do so.

Returning to the question of the lexicon, the investigation of such a prob-
lem space requires an adequate form of description for computational processes

11

Introduction

and digital objects. For this, we look at what is most familiar.28 There is a dual
danger here: What is more pretentious than an attempt to interpret the banal,
to see in the stuff of everyday life something more than what is seen by those
who made it, use it, or live it? Do we just offer up a banality from another fi eld
of work (say, those that have currently and partially settled out as economics,
philosophy or art) plonking it down as a reference to software, stating that
the subject is now “complex” and somehow therefore familiarly sublime in its
diffi culty?29 On the other hand, should we limit ourselves to repeating, using,
and abjectly loving that which is given, or limit ourselves only to the language
of specialists where “questions and differences about words”30 are erased and
terminologies are owned?

What is important is not to settle for either of these traps. Friedrich
 Nietzsche suggests that the need for knowledge is often founded on the fear of
the unfamiliar, and the refusal to face the familiar, that which we are the most
habituated to, as the most potentially unknown or disturbing. He suggests that
when we look at what seems strange, and then fi nd behind it something “that
is unfortunately quite familiar to us, such as our multiplication tables or our
logic, or our willing and desiring,”31 we are doing so as a way of avoiding more
diffi cult processes of questioning and revaluation. Software has become our
familiar. The stuff of software is what excites the writers gathered here. I hope
that in setting out a few terms for discussion that we have not left either the
unfamiliar or the familiar in the same state and that we enhance for the users
of these texts the capacity, by any means, to become strange.

Notes

1. “Software studies” is a conjunction of words describing a possible fi eld of activ-

ity in Lev Manovich’s The Language of New Media and is further commented upon in

N. Katherine Hayles’s My Mother was a Computer. A useful follow- up text to Manovich

is Matthew G. Kirschenbaum, “Virtuality and VRML: Software Studies After Mano-

vich,” Electronic Book Review, 8 / 29 / 2003, available at http: // www.electronicbookreview

.com / thread / technocapitalism / morememory. Software Studies itself, and the various

components it draws from, is a wide fi eld with a history, and perhaps a counter- history,

running back to the various beginnings of computing.

2. Alan Kay, “Would you buy a Honda with a one- gallon gas tank?” memo, 1984,

cited in Steven Levy, Insanely Great, 192.

12

Introduction

3. Fred R. Shapiro, “Origin of the Term Software: Evidence from the JSTOR Elec-

tronic Journal Archive.”

4. John W. Tukey, “The Teaching of Concrete Mathematics.”

5. Martin Campbell- Kelly, From Airline Reservations to Sonic the Hedgehog, 13. See pp.

109–114 of that volume for a detailed account.

6. See Ellen Meiskins Wood, The Origins of Capitalism: A Longer View.

7. Michel Foucault, The Archaeology of Knowledge. For commentary on this formulation,

see Gilles Deleuze, Foucault, 90.

8. For instance, see the accounts of Call Centre “masks,” software that prescribes the

use of the computer to a certain set of delimited task sequences, in Kolinko, Hotlines:

Call Centre Inquiry Communism.

9. A simple example: When booking your next fl ight, try selecting “Palestine” as your

country of citizenship in the scrollable, alphabetical menu provided by the website.

10. See the panel description for “Design for Hackability” at ACM SIG- CHI conference,

2004, including Jonah Brucker- Cohen, Anne Galloway, Layla Gaye, Elizabeth Good-

man, and Dan Hill, available at http: // www.sigchi.org / DIS2004 / Documents / Panels /

DIS2004_Design_for_Hackability.pdf / .

11. For one account of why this is so, see Ursula Huws, “Material World: The Myth of

the Weightless Economy,” in The Making of a Cybertariat: Virtual Work in a Real World.

12. For an accessible account, see Andrew Hodges and Alan Turing, The Enigma of

Intelligence.

13. Artifi cial Paradises, available at http: // www.1010.co.uk / ap0202.html / .

14. As succinctly stated in the lecture, “Science as Falsifi cation,” in Karl Popper, Conjec-

tures and Refutations, pp. 33–39. See also Karl Popper, The Logic of Scientifi c Discovery.

15. See Matthew Fuller, Softness, Interrogability, General Intellect: Art Methodologies in

Software.

13

Introduction

16. Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War

America.

17. Ludwig Wittgenstein, Philosophical Investigations, §19.

18. See, for instance, Joel Spolsky, ed., The Best Software Writing 1: Selected and Intro-

duced by Joel Spolsky.

19. Neal Stephenson, In the Beginning was the Command Line, 93. See also, http: // www

.spack.org / wiki / InTheBeginningWasTheCommandLine.

20. For numerous texts, scripts, applications, and sites, see the RunMe.org repository

of software art, available at http: // www.runme.org / , and the catalogs for the Read_Me

festivals, edited by Olga Goriunova and Alexei Shulgin.

21. Donald Knuth, The Art of Computer Programming.

22. The Jargon File, available at http: // www.dourish.com / goodies / jargon.html / .

23. These texts and others are collected as Georges Bataille, Isabelle Waldberg, and

Iain White, Encyclopaedia Acephalica.

24. Raymond Williams, Keywords: A Vocabulary of Culture and Society, 15.

25. Ronald Sukenick, Narralogues: Truth in Fiction, 1.

26. Michael Mateas, “Procedural Literacy: Educating the New Media Practitioner,” also

available at http: // www.lcc.gatech.edu / ~mateas / publications / MateasOTH2005.pdf / .

27. McKenzie Wark, A Hacker Manifesto.

28. Friedrich Nietzsche, The Gay Science, §355.

29. For a call to go beyond such a lazy acceptance of “complexity,” see the introduction

to John Law and Annemarie Mol, eds., Complexities: Social Studies of Knowledge Practices.

30. Francis Bacon, The Advancement of Learning, Second Book.

31. Nietzsche, The Gay Science, §355.

15

Algorithm
Andrew Goffey

Algorithm = Logic + Control1

The importance of the algorithm for software studies is indicated with admi-
rable succinctness by Les Goldschlager and Andrew Lister in their textbook,
Computer Science: A Modern Introduction. The algorithm “is the unifying concept
for all the activities which computer scientists engage in.” Provisionally a “de-
scription of the method by which a task is to be accomplished,” the algorithm
is thus the fundamental entity with which computer scientists operate.2 It is
independent of programming languages and independent of the machines that
execute the programs composed from these algorithms. An algorithm is an ab-
straction, having an autonomous existence independent of what computer sci-
entists like to refer to as “implementation details,” that is, its embodiment in a
particular programming language for a particular machine architecture (which
particularities are thus considered irrelevant).

But the algorithm is not simply the theoretical entity studied by computer
scientists. Algorithms have a real existence embodied in the class libraries of
programming languages, in the software used to render web pages in a browser
(indeed, in the code used to render a browser itself on a screen), in the sorting
of entries in a spreadsheet and so on. Specialized fi elds of research, such as artifi -
cial life or connectionism in cognitive science, utilize genetic algorithms, back-
propagation algorithms, least mean square algorithms for the construction of
models to simulate evolutionary processes or the learning capacities of neural
networks. Algorithms have material effects on end users—and not just when
a commercial website uses data- mining techniques to predict your shopping
preferences.

In short, both theoretically and practically, ideally and materially, algo-
rithms have a crucial role in software. But none of this tells us much about
the social, cultural, and political role algorithms play, if anything. Nor does
it tell us much about the strata of material reality algorithmic abstractions
might be correlated with: glowing confi gurations of pixels on a screen? mouse
movements? the fl ow of electrons around an integrated circuit? Locating itself
squarely on the side of the reductionist strategies of the exact sciences, society,
culture, and politics are very much marginal to the concerns of computing

Algorithm

16

science. Software engineering, on the other hand, concerned as it is with the
pragmatic effi cacy of building software for particular purposes, might appear
to offer a better starting point for factoring culture back into software. How-
ever, it is unlikely that software engineering will allow us to view culture as
anything other than something that software plugs into, as long as we fail to
arrive at a better understanding of some of its basic building blocks. The key
question then is what, if anything, a study of algorithms as such can tell us
about the place of culture in software.

Historically, the algorithm occupies the central position in computing sci-
ence because of the way that it encapsulates the basic logic behind the Turing
machine. Alan Turing’s concept of a machine that could be used to determine
whether any particular problem is susceptible to being solved mechanically was
a highly original interpretation of the aim of David Hilbert’s famous project of
formally deciding whether or not any mathematical proposition can be proved
true. The algorithm, which Turing understood as an effective process for solv-
ing a problem, is merely the set of instructions fed into the machine to solve
that problem.3 Without the algorithm then, there would be no computing.

Although computer scientists work with them as if they were purely formal
beings of reason (with a little bit of basic mathematical notation, it is possible
to reason about algorithms, their properties and so on, the way one can reason
about other mathematical entities), algorithms bear a crucial, if problematic, re-
lationship to material reality. This was tacit in the way that the Turing machine
was envisaged in terms of effective processes: A computer is a machine, after all,
and while the Turing machine is an imaginative abstraction, its connotations
of materiality are entirely real. Robert Rosen has suggested that the tempta-
tion to extrapolate from formal procedures to material processes was practically
inherent in the enterprise of the early computing scientists.4 Such a temptation
implies a confusion between the mathematics of algorithms and the physics of
real processes, of which Stephen Wolfram’s bold speculation that the universe is
itself a giant computer is one possible outcome.5 The rest of this article explores
another possibility, equally speculative but perhaps more mundane.

One of the implications of characterizing the algorithm as a sum of logic
and control is that it is suggestive of a link between algorithms and action.
Despite the formal- logical framework of the theory of algorithms and the fact
that programming languages are syntactic artifacts, the construction of al-
gorithms as a precisely controlled series of steps in the accomplishment of a
task is a clear indication of what might be called the pragmatic dimension of

Algorithm

17

programming. Algorithms do things, and their syntax embodies a command
structure to enable this to happen. After all, the Turing machine as an imagi-
native abstraction had as a material correlate a series of real computers. And
dumb though they may be, missile guidance systems, intelligence databases,
and biometric testing are all perfectly real. Without this effective existence
in concrete machinery, algorithms would only ever have a paper reality as the
artifacts of a formal language.

In the fi eld of linguistics, the existence of a pragmatic dimension to lan-
guage—the fact that words do things—has created enormous problems for
attempts to formalize the structure of natural language. Because pragmatics
connects language to extrinsic factors, it becomes impossible to conceptualize
a language as a self- suffi cient system closed in on itself. Perhaps attempting to
conceptualize the pragmatic dimension of the algorithm might yield a simi-
lar result? However, while formalization comes afterwards with natural lan-
guages, with algorithms, formalization comes fi rst, the express aim being to
divorce (formal) expression from (material) content completely. Understand-
ably then, the study of computation has tended to concentrate on issues of
syntax and semantics, the assumption being that what algorithms do can be
appropriately grasped within such a framework. This has tended to result in
making the leap from the theoretical world to the practical world a diffi cult
one to accomplish. Always the trivia of implementation details.

A conception of the algorithm as a statement as Michel Foucault used the
term might allow us to understand this approach a little better. For Foucault,
the statement is not analytically reducible to the syntactic or semantic features
of a language; it refers instead to its historical existence and the way that this
historical existence accomplishes particular actions. The statement is a sort
of diagonal line tracing out a function of the existence of language, which is
in excess of its syntactic and semantic properties. In this way, the concept of
the statement acts as a reminder that the categorical distinction between form
and content is, paradoxically, insuffi ciently abstract to grasp the intelligence
of concretely singular constellations of language in their effective existence.
As Foucault puts it in The Archaeology of Knowledge, “to speak is to do some-
thing—something other than to express what one thinks, to translate what
one knows, and something other than to play with the structure of language.”6
For Foucault, these actions are restricted to the human sphere, as is only to be
expected from an analysis which focuses on the historical existence of natural
languages. Appropriately translated into the fi eld of software studies, however,

Algorithm

18

focusing on the development and deployment of algorithms and an analysis of
the actions they accomplish both within software and externally might lead us
to view the latter as a sort of machinic discourse, which addresses the ways in
which algorithms operate transversally, on themselves, on machines, and on
humans. (Alternatively, we might want to start to think about cultural analy-
sis as a process of software engineering.)

Viewing algorithms in this way as statements within a machinic discourse
would problematize their existence in a way which undercuts the “pure / applied”
or “theory / practice” dichotomies which crop up when the distinction between
computing science and software engineering is too hastily made. The formalist
aim at complete abstraction from content not only relays the theory / practice
divide, it also tends to preclude an analysis of the link between the crucial enti-
ties of computing science and historical context. Just because the development
of an algorithm requires a level of de facto formal abstraction, which then al-
lows that algorithm to be applied to other kinds of content, does not mean that
we have exhausted everything that we need to know to understand the processes
of which it is a part. To borrow an expression from Gilles Deleuze and Félix
Guattari, whose analysis of the place of pragmatics in language is part of the
inspiration for this discussion, the problem with the purely formal conception
of the algorithm as an abstract machine is not that it is abstract. It is that it is
not abstract enough. That is to say, it is not capable of understanding the place
of the algorithm in a process which traverses machine and human.7

Algorithms obviously do not execute their actions in a void. It is diffi cult
to understand the way they work without the simultaneous existence of data
structures, which is also to say data. Even the simplest algorithm for sorting a
list of numbers supposes an unsorted list as input and a sorted list as output (as-
suming the algorithm is correct). Although computer scientists reason about
algorithms independendently of data structures, the one is pretty near useless
without the other. In other words, the distinction between the two is formal.
However, from a practical point of view, the prerequisite that structured data
actually exist in order for algorithms to be operable is quite fundamental, be-
cause it is indicative of a critical operation of translation that is required for a
problem to be tractable within software. That operation of translation might be
better understood as an incorporeal transformation, a transformation that, by
recoding things, actions, or processes as information, fundamentally changes
their status. This operation can be accomplished in myriad ways, but generally
requires a structuring of data, whether by something as innocuous as the use of

Algorithm

19

a form on a web page or by social processes of a more complex form: the knowl-
edge extraction practiced by the developers of expert systems, the restructur-
ing of an organization by management consultants, and so on.

It would be easy to leave the analysis of algorithms at this point: We are
back on familiar territory for cultural analysis, that of the critique of abstrac-
tion. Within cultural studies and many other fi elds of research in the human
sciences, abstraction is often thought of as the enemy. Many movements of
philosophical thought, literary and artistic endeavor, and human- scientifi c re-
search set themselves up against the perceived dehumanizing and destructive
consequences of the reductionism of mathematics, physics, and allied disci-
plines, as the perennial debates about the differences between the human and
the exact sciences suggests. We could even understand major elements of the
concept of culture as a response to the abstract machinery of industrial capital-
ism and the bifurcated nature modern rationality is built upon. Understand-
ing things, activities, tasks, and events in algorithmic terms appears only to
exacerbate this situation. What is an algorithm if not the conceptual embodi-
ment of instrumental rationality within real machines?

However, to simply negate abstraction by an appeal to some other value
supposedly able to mitigate the dehumanizing consequences of reductionism
misses a crucial point. It fails to adequately question the terms by which the
algorithm, as a putatively self- suffi cient theoretical construct, maintains its
hierarchizing power. In questioning the self- suffi ciency of the algorithm as a
formal notion by drawing attention to its pragmatic functioning, however, it
becomes possible to consider the way that algorithms work as part of a broader
set of processes. Algorithms act, but they do so as part of an ill- defi ned network
of actions upon actions, part of a complex of power- knowledge relations, in
which unintended consequences, like the side effects of a program’s behavior,
can become critically important.8 Certainly the formal quality of the algorithm
as a logically consistent construction bears with it an enormous power—par-
ticularly in a techno- scientifi c universe—but there is suffi cient equivocation
about the purely formal nature of this construct to allow us to understand that
there is more to the algorithm than logically consistent form.

Lessig has suggested that “code is law,” but if code is law it is law as a
“management of infractions.”9 Formal logics are inherently incomplete and
indiscernibles exist. Machines break down, programs are buggy, projects are
abandoned and systems hacked. And, as the philosopher Alfred North White-
head has shown, humans are literally infected by abstractions.10 This no bad

Algorithm

20

thing, because like the virus which produced variegated tulips of a rare beauty,
infection can be creative too.

Notes

1. Robert Kowalski, “Algorithm = logic + control.”

2. Les Goldschlager and Andrew Lister, Computer Science: A Modern Introduction, 2nd

ed., 12.

3. See Rolf Herken, ed., The Universal Turing Machine: A Half- Century Survey for an

excellent collection of appraisals of the Turing machine.

4. Robert Rosen, “Effective Processes and Natural Law” in Herken, ibid.

5. Stephen Wolfram, A New Kind of Science.

6. Replace the word “speak” with the word “program” and one might begin to get a sense

of what is being suggested here. See Michel Foucault, The Archaeology of Knowledge.

7. Gilles Deleuze and Félix Guattari, “November 20, 1923: Postulates of Linguistics,”

in A Thousand Plateaus.

8. See Philip Agre, Computation and Human Experience on the crucial role of side effects

in software. Max Weber’s essay The Protestant Ethic and the Spirit of Capitalism is the

classic text on the fundamental role of unintended consequences in human action.

9. Gilles Deleuze, Foucault, p. 39.

10. See for example, Alfred North Whitehead, Science and the Modern World, and the

extended commentary by Isabelle Stengers, Penser avec Whitehead.

Algorithm

21

Analog
Derek Robinson

Now the analogy between reasons, causes, forces, principles, and
moral rules is glaring, but dazzling.
—james clerk maxwell1

The term “analog” has come to mean smoothly varying, of a piece with the
apparent seamless and inviolable veracity of space and time; like space and
time admitting infi nite subdivision, and by association with them connoting
something authentic and natural, against the artifi cial, arbitrarily truncated
precision of the digital (e.g., vinyl records vs. CDs). This twist in the tradi-
tional meaning of “analog” is a linguistic relic of a short- lived and now little-
 remembered blip in the history of technology.

Electronic analog computers, based on technologies developed in the
1930s–1940s and sold commercially from the mid- 1950s onward, were used
by scientists and engineers to create and explore simulation models, hence
their name: A model is something standing in analogical relationship to the
thing being modeled. The medium of the analogy was voltage, the electro-
motive force fl owing and varying continuously through a circuit. Electronic
amplifi ers would allow any varying quantity sensed by instruments to be input
to and transformed through an analog computer’s “program” (i.e., its circuit),
fi tting it for use in ballistics computations and real time process control.

General purpose analog computers were anticipated in certain exotic me-
chanical devices dating from the 1870s, but these were costly specialized ma-
chines, never widely deployed. Only twenty or so Bush Differential Analyzers
were ever built, and a similar number of Kelvin’s Tidal Predictor and Har-
monic Analysers installed worldwide. The fi nal iteration of the Bush Differen-
tial Analyzer was operational by 1942; it had 2000 vacuum tubes, 200 miles of
wire, 150 electric motors, thousands of relays, and weighed 100 tons.2 Of the
mechanical analog computers (barring the slide rule) the Norden bombsight
probably saw widest service, being used in U.S. bombers from World War II
until the end of the Vietnam War. Given airspeed and altitude, the bombsight
calculated a bomb’s trajectory through a complex assembly of electric motors,
gyros, levels, gears, and optical parts.

Much of the early work on electronic computing, both analog and digital,
was carried out under the shroud of wartime secrecy, and it would be decades

Analog

22

before detailed accounts of projects like the Colossus computers used by British
codebreakers began to emerge. It turns out that the fi rst general purpose ana-
log electronic computer was built in 1941 at Peenemunde, the German mil-
itary’s top- secret rocket facility. Helmut Hoelzer’s “Mischgerat” was used as
an onboard fl ight controller in V- 2 ballistic missiles and as a programmable
launch dynamics simulator on the ground. At the war’s close, Hoelzer was
one of the German scientists spirited away by Operation Paperclip to develop
guided missiles for the U.S. military. He became head of the Marshall Space
Flight Center Computation Lab and contributed to the Saturn V rocket used
in the Apollo and Skylab missions.3

In the decade following World War II, a number of American, English,
Dutch, and German electronics fi rms got into the business of manufacturing
analog computers. These were large handsome objects in enameled sheetmetal
cases, sporting delicate vernier dials, glowing nixie tubes, rows of black bakelite
knobs and colorful patch- cords hanging in braids—an epitome of the modern
 instrument- maker’s art. Rapidly adopted by research labs due to their versatility
and relatively modest cost, by the end of the 1960s they had been replaced in
most areas by digital software. One noteworthy exception was computers made
for music synthesis. Analog synthesizers, a special breed of analog computer,
didn’t yield to digital synths like the Yamaha DX- 7 until the 1980s.4 And simi-
larly to realtime video synthesizers used by avant garde cineastes, their palette
wouldn’t be reproducible in software until the 2000s (whence came the laptop
VJ).5 Certain kinds of embedded analog controllers might also be seen as spe-
cial purpose analog computers, however analog control system design is its own
branch of engineering, which both contributed to and outlasted the brief apogee
of analog computing.

It might have been initially unclear which type of giant electronic brain
would prevail, but with the advent of mainframes (the Remington- Rand type-
writer company began commercial development of the UNIVAC in 1951)
the balance tipped in favor of digital machines for general purpose number
crunching. Analog computers by their nature were unsuited to the preparation
of the National Census; almost before getting underway the analog era entered
a lengthy decline into its present obscurity.

Analogies and Amplifi cations

The term “analog,” as indicated above, was an allusion to a body of physical
and geometric “analogies” and their corresponding systems of equations, es-

Analog

23

tablished by mathematicians from Newton’s time forward. The differential
equations of physics represent, in a bristlingly arcane syntax, common spatio-
temporal patterns occurring across the panoply of chemical, hydraulic, ther-
mal, mechanical, acoustic, electrical, and biological phenomena. Electronic
analog computers, arriving as and when they did, imbued the standard physi-
cal analogs with a new concreteness and gravitas, and made tangible the ab-
stract dynamics hidden behind the mathematics. Researchers could quickly
construct a working system (indeed a system of equations, but now “in the
metal”) whose transient and long- term behaviors they could observe and re-
cord oscillographically and freely tweak with sliders and knobs. An analog
computer was functionally an oversize, precision manufactured, rocket- age
version of the home circuit hobbyist’s electronic breadboard.

The basic unit of analog computing was the operational amplifi er, so named
because it could be confi gured to mimic, by changing the values of resistors
and capacitors attached to its inputs, all the basic operations of mathematics
(negation, addition, subtraction, multiplication, division, differentiation, in-
tegration) and so emulate in circuitry virtually anything that could be mod-
eled in a system of equations. Unlike a digital CPU, whose speed is limited by
a fi xed clock cycle and the effi ciency or otherwise of the code being executed,
and which operates on binary 1s and 0s rather than continuous voltages and
can execute only one instruction at a time, analog computation takes place ef-
fectively instantaneously, at every point in a circuit at once.

The op amp was a refi nement and elaboration of the negative feedback am-
plifi er developed by Harold Black, and patented in his name by Bell Labs in
1937. It is in large part owed to Black’s invention, placed in the hands of war-
time electronics engineers, that the term “feedback” entered into common use.
Black’s negative feedback amplifi er revolutionized scientifi c instrumentation
in the 1940s, and a generation of scientists (at the time scientists were neces-
sarily also analog hackers, just as today’s scientists are trained to be fl uent in
Unix, C programming, and LaTEX) were exposed to the sometimes startling
consequences attendant on feeding a system’s outputs back as its inputs.6

Mapped into electronic engineering schematics and circuit symbols, the
scientist’s analogies formed a highly compressed picture language of systems
in general, applicable to very nearly any focus of scientifi c inquiry. What made
electronic analog computation possible is that circuits and circuit elements in-
trinsically embody a common mathematics and physicogeometrical metaphor
of force, fl ow, and circular feedback. The root metaphor and lasting legacy
of the analog era is therefore this concept of “system” itself, as an assembly of

Analog

24

elements in relations of interdependence, altogether constituting a complex
organized whole.7

Owing to the connective tissue of intervening dependencies, in a system
every part ultimately depends upon every other part, and the temporal linear
chain of causes and effects is made circular. It becomes a “circuit.” The snake
swallows its tail, the world is round. Effects fed back become the causes of
their own causes, and the mutual constraint of part upon part ensures that any
imbalance or error (which physicists term the “energy”) is immediately relayed
to adjacent parts, and by these to the parts adjoining and being acted upon
by them, driving the entire system to equilibrium, an energy minimum. It
might not be the lowest such minimum, and the system might never stabilize.
Instead it may endlessly oscillate (oscillators are handy things to engineers) or
jitter and careen about madly in so- called mathematical chaos. Without cor-
rective negative feedback, amplifi er circuits immediately saturate, solutions
take off for infi nity, speaker- cones and eardrums are easily blown.

Feedback

This picture of circularly dependent systems, bound together in dynamic feed-
back loops, in many ways marked a return to ideas current two centuries be-
fore. The image of electricity as a strangely sexed fl uid circulating endlessly in
closed loops had been advanced by Volta, Franklin, Ampere, and other late-
 eighteenth- century natural philosophers.8 A hydraulic or pneumatic analogy
was already present in Descartes’s diagrams of fi ery ethers conveying sensation
and volition by nerves going to and from the brain, and in Harvey’s famous
demonstration of the circulation of blood by the action of the heart. Simon
Stevin, a Flemish contemporary of Galileo, had revived Archimedean hydrostat-
ics, framed the parallelogram law of forces, and advised the use of double- entry
bookkeeping for national accounts. By 1760 the Physiocrats were proposing a
circulatory model of the French economy: Quesnay’s Tableau Economique was
the prototype “spreadsheet model,” with money and goods charted as recip-
rocal fl ows through the demographic sectors of pre- revolutionary France. The
scientifi c enlightenment of the Early Modern period thus saw the union of a
philosophical apperception of universal cyclical fl ow, with precise new labo-
ratory procedures and instruments, and a rigorous, newly minted accounting
system where input and output quantities must necessarily balance.

Philosopher- scientists in the time of Leibniz and Newton were readier to
see in the laws of dynamics evidence for a divine or even panpsychical9 pur-

Analog

25

pose that with seeming prescience is able to discern paths of least resistance to
achieve its ends using the least action, the least effort, the greatest economy of
means. With the discovery of the “conservation laws” or “action principles,”
as they later came to be known, it seemed to savants like Fermat, Mauper-
tuis, Leibniz, and Euler as though all physical phenomena could be explained
as the unfolding consequences of one universal necessity. We should have to
return to pre- Socratic philosophy, or to Lao- Tzu’s mysterious “valley spirit”10
to fi nd as like an image of the entire cosmos as a living, questing, even a cog-
nizant being: fl uid, active, elastic, responsive, self- regulating, self- repairing,
optimizing.

“All equations equal zero” is the cardinal rule of mathematics. It is equally
and profoundly true of physics, and one needn’t look further to fi nd reasons for
what Eugene Wigner called the “unreasonable effectiveness of mathematics”
in modeling nature.11 A corollary is this: whenever in nature we see an object
or a substance moving or fl owing from one place to another, the motion can be
interpreted as an attempt to return to a state of balance, or “zero difference.”
Any displacement from equilibrium elicits an equivalent compensating mo-
tion and force. Bodies at rest will spontaneously adopt a confi guration that
minimizes the total potential energy. The trajectory of a body subject to ex-
ternal forces is that for which its kinetic energy over the duration of the mo-
tion is minimal. The energy expended pumping water up a hill is paid back
when the water is released to fl ow down a channel to turn a wheel and grind
the corn. Even the small but perplexing differences between the energies paid
and reclaimed, observed once there were instruments to measure things fi nely
enough, were at the close of the nineteenth century fi nally resolved into a com-
mon accountancy of heat, work, and statistical entropy.

Feedback Everywhere

By the 1950s researchers in a growing number of fi elds had tripped over the
now suddenly ubiquitous feedback loop, and were seeking opportunities to
share their discoveries with other scholars. Thus were enjoined the new, syncre-
tistic sciences of cybernetics and systems theory, which were to enjoy a couple
of decades’ vogue before losing their lustre. (They wouldn’t remain lost for
long however. In the 1980s and 1990s, remarkably similar investigations were
being presented under the banners of mathematical chaos, artifi cial neural
nets, nonlinear dynamics, and complexity theory, even if some of their authors
seemed unaware of precedent studies scarcely a generation removed.)

Analog

26

Feedback is one of the grand unifying concepts of intellectual history. Once
it had been named and witnessed and felt in fi ngers and elbows it became pos-
sible to apprehend earlier appearances of the same idea: Elmer Sperry’s auto-
pilot of 1912, Claude Bernard and Walter B. Cannon’s notions of biological
“homeostasis,” James Watt’s 1788 development of the centrifugal steam gov-
ernor, the unknown inventor of the fl oat valves found in ancient Greek water
clocks, Rene Descartes’s canny elucidation of the refl ex arc, even the bimetallic
“brain” inside the humble household thermostat. James Clerk Maxwell had,
in 1868, written a mathematical analysis of Watt’s governor, which failed to
fi nd readers able to appreciate the scope and subtlety of the idea. But once the
notion had gelled and circulated widely enough, anyone could readily see in
Darwin’s theory of evolution, for example, a cybernetic feedback loop linking
organisms and their environments. Cybernetics made what takes place at the
laboratory bench philosophically interesting again, and reaffi rmed science’s
relevance to the life- world.12

The diffi culty of designing electronic circuits and devices that will exhibit
specifi ed behaviors attests to the vastly greater complexity observed in the in-
terdependent cycles and fl ows in natural systems. The classic ecosystem model
is the tidal pool; marine biologists are still searching for its bottom. We living
creatures apparently weren’t made with a purpose in mind (evolutionary the-
ory offers an elegant account of how we could have arisen spontaneously) but
living matter is distinguished from the nonliving by a future- directed “telos”
or purposiveness. The cyclic- AMP motor inside every cell is an electrochemi-
cal “ratchet- and- pawl” for storing energy against future need, in a way similar
to though far more complex than how the windmill exploits fi ckle winds to
pump water into a reservoir from which its motive force may later, at human
discretion, be tapped.

The icons and circuit diagrams of the analog engineers were in fairly short
order picked up by ecologists and planners to aid in visualizing the complex
loops of energy, matter, and information fl owing through ecological, economic,
and industrial systems. Bill Phillips’s famous hydraulic analog computer, the
“MONIAC,” was an extraordinary example of analog model building built in
1949 while he was a student at the London School of Economics. Circular fl ows
of money through the UK economy (household and government expenditures,
business investments, export revenues, losses due to imports, all tweaked via
policy measures aimed at controlling unemployment and stimulating growth,
e.g., through setting tax rates or issuing new currency) were physically em-

Analog

27

bodied in tanks and streams of water of various colors, their levels charted by
felt- tipped pens as the system attempted to restore equilibrium following eco-
nomic shocks and corrections. With each change, the impacts could be traced
kinetically through the coupled lags and loops of its nine differential equa-
tions. Even hardened mathematical economists were surprised and at times
dismayed to see the system demonstrating consequences unanticipated in their
favorite theories.13

In the 1960s, an emergent systems ecology14 used the graphic language
of analog computing to synoptically map the interlinking systems of feed-
backs upon which industrial civilization depends. Simulation programming
languages like MIT’s Dynamo (used to program the World Dynamics models
of the infl uential “Limits to Growth” report,15 helping fuel the environmen-
tal battles of the 1970s) were expressly created to emulate analog computers
in the more fl exible medium of software. The simulation languages would
in turn give way, except in specialized areas like circuit design, to electronic
spreadsheets running on desktop computers, so completing and democritizing
a cycle begun with the Tableau Economique.

Analog Again

Systems modeling has for the most part retired from the public’s gaze, back
to the university and industrial laboratories from whence it came. And while
op amps are the trusty mainstay of analog IC design, nowadays it would be
unusual to use or describe them as “computing elements.” One area in which
the old- style systems models continue to play a role behind the scenes is in
computer games like “Age of Empires,”16 which are basically system dynam-
ics simulations recast in historical fantasy worlds, where functional relations
between variables of state (the “stocks and fl ows” of ecological and economics
modeling) are hardwired by the game’s designers. (An earlier incarnation of
the genre, which readers of a certain age may recall fondly, is the game “Lem-
onade Stand.”17)

Recently, there have been intriguing reports of new excitement stirring up the
cold grey ashes of the analog. Carver Mead, the distinguished CalTech physicist
who in 1980 established the rules for silicon compiling of VLSI (Very Large Scale
Integrated) digital circuits, has been turning his hand to bending and breaking
those very rules to engineer a new generation of analog circuits from the same
VLSI technology used to manufacture ultra high density CPUs and memory

Analog

28

chips. Mead and his students have in effect been building analog computers on a
silicon substrate with digital technology.18 They have built and tested an artifi -
cial cochlea, analog neural networks, and several varieties of synthetic retina (one
of which has been incorporated into a high- end electronic camera).

Following Mead’s lead, a number of small initiatives were undertaken in
the 1990s to create fl exible hybrid arrays of fi eld- programmable analog blocks
within a digital interconnection matrix on a single chip. While uptake by sys-
tem designers and manufacturers hasn’t yet lived up to expectations, it seems
that fi fty years after its brief golden age, analog computing has at least to this
extent returned. And while it is probably too early to say, its revival might be
an occasion to reevaluate our concepts of what “computation” is, or might in
time become.

Notes

1. J. C. Maxwell, “Are There Real Analogies in Nature?” (Essay read to the Apostles

Club in Cambridge, 1856; the entire text is given in: L. Campell and W. Garnet, Life

of James Clerk Maxwell.)

2. The Tidal Predictor and Harmonic Analyzer machines were based on the wheel- and-

 disc integrator invented by Lord Kelvin’s brother, James Thomson, in 1876, which

could mechanically solve a fi rst order linear differential equation. Kelvin saw that a

second integrator linked to the fi rst might solve equations of second order by an itera-

tive process, where results obtained from passing through the dual mechanism could

be manually copied as inputs for another iteration, thus generating a series of functions,

each closer to an exact solution than its predecessor. Some time later he realized that

if the second integrator’s output were mechanically fed back to drive the fi rst integra-

tor, convergence would take place “rigorously, continuously, and in a single process.”

As it happened, the disc integrator’s torque was too weak; his plan would be realized

only fi fty years later with Vannevar Bush’s Differential Analyzer, completed 1930. (All

credit was owed to its electric Torque Amplifi er, which would fi nd its way into big

American cars as “power steering.”) Where digital computers can simulate feedback

processes through stepwise iteration (comparable to Kelvin’s fi rst scheme) electronic

analog computers embody dynamic feedback intrinsically (as in Kelvin’s second).

3. The story is told by Thomas Lange, “Helmut Hoelzer, Inventor of the Electronic

Analog Computer.” As for the interesting question of which side actually won World

War II, see Thomas Pynchon, Gravity’s Rainbow and Philip K. Dick, The Man in the

High Castle, and Hawthorne Abendsen, The Grasshopper Lies Heavy, (n.d.).

Analog

29

4. Digital music synthesis was realized in 1957 by Max Matthews at Bell Labs on an

IBM 704 mainframe. Despite its theoretical virtues, the technique would for decades

be limited to lugubrious and painstakingly assembled tape- based studio compositions.

Realtime digital music premiered with a 1977 concert by David Behrman and the

League of Automated Music Composers, using networked $200 KIM- 1 single board

microcomputers.

5. Gene Youngblood, Expanded Cinema. As of this writing, a PDF fi le is available online

from ubuweb http: // www.ubu.com / and elsewhere (highly recommended). Also see

the “Radical Software” archives hosted at http: // www.radicalsoftware.org / —published

by the New York–based Raindance Collective, this was the print organ of American

experimental video art in the 1970s.

6. Henry Paynter, ed., A Palimpsest on the Electronic Analog Art. (In 1937 George Phil-

brick had built an electronic Automatic Control Analyzer for process- control sim-

ulation, but it was hardwired. After the war Philbrick went into business making

electronic fl ight control computers for military aircraft, and in 1952 the Philbrick

company produced the fi rst (tube- based) stand- alone op amp component for electronic

design. Within a decade op amps were solid- state (i.e., transistor- based) and their price

had dropped to a small fraction of what the original vacuum tube models cost.)

7. Harry F. Olson, Dynamical Analogies; also see Olson’s, Music, Physics and Engineering.

8. J. H. Heilbron, Electricity in the 17th and 18th Centuries. Also see Hankins and Silver-

man, Instruments and the Imagination for a lively and inspiring history of the sometimes

porous boundary separating scientifi c demonstration and theatrical spectacle.

9. Panpsychism: the philosophical doctrine that all matter is in some degree conscious.

Among its subscribers are Leibniz, Spinoza, Berkeley, Gustav Fechner, William James,

Ernst Haeckel, A. N. Whitehead and J. A. Wheeler.

10. Compare Heraclitus: “The concord of the universe is like that of a lyre or bow,

resilient if disturbed” with Lao- Tzu: “Is not the way of heaven like the stretching of a

bow? The high it presses down, the low it lifts up; the excessive it takes from, the de-

fi cient it gives to.”

11. E. P. Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences.”

12. The manifesto is Norbert Wiener, Cybernetics, or Control and Communication in Ani-

mals and Machines. A rather more practical and reliable guide is W. Ross Ashby’s

Analog

30

Introduction to Cybernetics, which is available online at Principia Cybernetica: http: //

 pespmc1.vub.ac.be / ASHBBOOK.html / .

13. Bill Phillips’ MONIAC or “Financephalograph” was constructed largely from

scrounged parts (including bits of a war surplus Lancaster bomber) in his landlady’s

garage, for about 400 GBP. Upwards of a dozen were built and sold; a recently refur-

bished MONIAC, on loan from the New Zealand Institute of Economics, was featured

in an installation by artist Michael Stevenson at the 2003 Venice Biennale and one is

on display at the Science Museum in London.

14. Systems Ecology got underway with the 1953 publication of E. P. and H. T.

 Odum’s Fundamentals of Ecology. Howard Odum’s Systems Ecology is the most in- depth

account of graphical model construction; Robert Ulanowicz Ecosystems Phenomenology is

a contemporary treatment based on information theory principles. Robert Axelrod’s

Structure of Decision in the area of political science, developed a similar approach to

modelmaking with simple feedback diagrams.

15. Donella Meadows, Dennis L. Meadows, and Jørgens Randers, The Limits to Growth.

(Also see Meadows, Meadows, and Randers, Limits to Growth: The 30 Year Update.) The

Systems Dynamics approach was developed by MIT professor Jay Forrester between

1961 and 1973 in a series of books on Industrial Dynamics, Urban Dynamics and

World Dynamics. Forrester also invented random access magnetic core memory, used

before the introduction of semiconductor RAM.

16. “Age of Empires,” fi rst published in 1997, developed by Ensemble Studios and

published by Microsoft; AOE is now its own empire with several popular sequels, add-

 ons, and spinoffs. A sense of the continuity between system dynamics modeling and

video games is developed by Chris Crawford in The Art of Computer Game Design. The

following passage touches on the complex modeling decisions which inform the design

of a so- called “God Game”:

 To help keep the system balanced, each differential equation should have a damping fac-

tor that must be empirically adjusted:

new value = old value + (driving factor / damping factor)

 A small damping factor produces lively systems that bounce around wildly. A large

damping factor yields sluggish systems that change slowly. Unfortunately, recourse to

simple damping factors can backfi re when a relationship of negative feedback exists be-

tween the “new value” and the “driving force.” In this case, large damping inhibits the

negative feedback, and one of the variables goes wild.

Analog

31

17. “Lemonade Stand,” a text game created by Bob Jamison in 1973 for use on time-

 shared teletype terminals, ported to the Apple II computer in 1979. A copy of “Lemon-

ade Stand” was included with every Apple system sold throughout most of the 1980s.

18. Carver Mead, Analog VLSI and Neural Systems.

Button
Søren Pold

Buttons are everywhere in software interfaces, they “initiate an immediate ac-
tion” and are an essential part of the controls in the modern graphical user
interface (GUI). An intensive design effort has gone into the sculpting of but-
tons, they have become sonifi ed, texturized, sculpted, and various kinds are
developed with distinct functionality and signifi cation: push buttons, metal
buttons, bevel buttons, round buttons, help buttons, and radio buttons.1 They
appeared from the moment of the earliest graphical user interfaces such as in
Xerox’s SmallTalk and the Xerox Star computer from the 1970s and early
1980s.2 Buttons are a cornerstone in contemporary software interfaces. But why
and what do they signify, and why are buttons so important and seductive?

Buttons signify a potential for interaction. When the mouse was invented
by Douglas Engelbart’s team in the 1960s, it was used to click on text and hy-
pertext links. These gradually changed into buttons when the GUI became es-
tablished. Already ASCII interfaces like DOS shells and the notorious Norton
Commander (fi gure 1) had button- like text boxes to click on when the mouse
became a standard interface with PCs. The GUI introduced icons and its but-
tons gradually became reactive, inverting the black and white colors when they
were clicked. Later, in the 1990s, they became increasingly three- dimensional
in style as the available screen resolution increased. The interface designer
 Susan Kare, who had earlier worked on the Macintosh, worked for Microsoft in
the late 1980s on what was to become Windows 3.0 (1990), where she replaced
“black rectangles with images that looked like three- dimensional ‘pressable’
buttons.”3 By the mid- 1990s 3–D buttons were a fully fl edged standard in, for
example, Windows 95 (1995) and Mac OS 8.0 (1997).

A button indicates a functional control; something well defi ned and pre-
dictable will happen as a result of the user pressing it. The fact that it is often
rendered in 3–D simulates a physical, mechanical cause- and- effect relationship

Button

32

which is often emphasized by the system event sound of a mechanical button
being pressed. This is a simulation of how we know buttons from old machin-
ery and electronics, where the buttons are in fact the mechanical interface,
which might switch a relay through a mechanical lever, followed by an audible
click and noise from the machinery and electronics. Since the connection is
mechanical and not symbolic, such buttons are trustworthy, and one can feel
them working tactilely. They do not change functionality; they always pre-
cipitate the same action. There is an analog connection between pressing the
button and, by the force of one’s fi nger transmitted through a lever, changing
the state of the apparatus—as in old tape recorders, where one actually pushed
the tape head into place with the button. The computer interface does away
with the analog mechanical functionality, but the function of buttons here is
to signify the same stable denotation, even though its material basis is gone.
That is, interface buttons disguise the symbolic arbitrariness of the digital
mediation as something solid and mechanical in order to make it appear as if
the functionality were hardwired: they aim to bring the old solid analog ma-
chine into the interface. In this sense buttons are a part of a remediation4 of the
machine in the computer interface, a way of dressing it up as something well
known and well understood, but there is more to it than this. It points directly
to our limited understanding of the computer as a machine and as a medium
and how it functions in culture and society.

One pioneer of computer graphics, computer art, and semiotics, Frieder
Nake, has described the computer as an instrumental medium that we use in-

Figure 1 Norton Commander (1986)

Button

33

strumentally as a tool while communicating with it as a medium, thus it is
both machine and mediation simultaneously.5 Following Nake’s concept of the
instrumental medium, the computer is a new kind of media- machine that me-
diates the instrumental or functional and functionalizes the representational
medium. That is, function becomes mediated and the mediated representation
becomes functional. This chimerical quality, though diffi cult to grasp from
both a functional perspective (e.g., engineering) and from a media perspective
(e.g., postmodern media studies and aesthetic theory) has become a standard
mode of expression in software interfaces, with the button as a central element
of expression.

When pushing a button in an interface—that is, by movement of the mouse,
directing the representation of one’s hand onto the representation of a button
in the interface and activating a script by clicking or double- clicking—we
somehow know we are in fact manipulating several layers of symbolic repre-
sentation and, as such, interacting with a complex mediation of a functional
expression, engaging with what Steven Johnson characterizes as the “strange
paradoxical quality” of direct manipulation.6 But we nevertheless see and in-
terpret it as something that triggers a function—and for good reason, since
it is designed to perform in this way. It is a software simulation of a function,
and this simulation aims to hide its mediated character and acts as if the func-
tion were natural or mechanical in a straight cause- and- effect relation. Yet it
is anything but this: it is conventional, coded, arbitrary, and representational,
and as such also related to the cultural.

Just think about how many codes and values—from programming, com-
merce, and ideology—are mobilized when you click “buy,” pay with your
credit card, and download a tune in a proprietary fi le format with technically
and juridically imposed restrictions on how you can use, play, and copy it. The
cultural, conventional, and representational elements are disguised or “black-
 boxed” as pure technical functionality; you do not even realize the conse-
quences of the copy protection technology, the money transfer via your credit
card company, or the way the music is produced, commercialized, and regu-
lated by the recording company, the outlet, and the artist. The functional
spell is only broken when the software crashes, or when the software becomes
refl exive: either through artistic means as in net- and software art, in order
to surprise, criticize, or inform; or through juridical necessities such as when
submitting to licenses, etc. The installation screens where, before installing
the software, one has to accept a lot of restrictions and modes of conduct by

Button

34

pressing a button are perhaps some of the most perverse examples of using but-
tons in software. The long intricate message and the easy accept button seem
contradictory, and even though you are asked in capitals to read the agreement
carefully before using the software, it only seems symptomatically to point to
the contradiction. For example when installing Apple’s iTunes player, it states
that by clicking the button you accept a 4000- word contract stating that you
are only licensing the software, that you may only use it to reproduce material
which is not in violation of copyright, that you will not use iTunes to develop
nuclear missiles, chemical or biological weapons(!), and, among other things,
that you will be solely responsible for any damages to your computer or data.

This example highlights how buttons force decisions into binary choices.
There is no way of answering that one partially agrees, has not realized the
consequences of accepting, or does not care, even though these would probably
be franker answers from most users. Buttons are verbs that rule out tenses other
than present tense, and rule out modal auxiliary, subjunctive, and other more
sophisticated ways in which our language expresses activity. Buttons also des-
ignate you as a masterful subject in full control of the situation, which obvi-
ously is problematic in many cases, such as the one above, where one cannot
oversee, predict, or even understand the consequences of clicking “I accept,”
or in other examples where the buttons effectively hide the scripts enacted by
pressing it, such as in the “buy” example.

But as manufacturers of technological consumer goods from cars and hi- fi
equipment to computer hardware and software know, buttons have seductive
aesthetic qualities and should provide a satisfying response to the desire to push
them. They should evoke confi dence by returning a smooth response, not plas-
tickey or cheap, even though it might have nothing to do with functionality.
Buttons are tempting—just watch kids in technical museums. Their magne-
tism may refl ect a desire for control or for the capacity to have an effect, and this
is combined with a tactile desire that is emphasized by the adding of simulated
textures (e.g., metal, shadows, lighting, grooves, 3- D, etc., shown in fi gure 2),
as in the Mac OS 7.5.3 CD- Player. That buttons still are important for the suc-
cess of a product is demonstrated by the iPod’s Apple ClickWheel, which is the
tactical icon for the extremely successful iPod.

In fact the ClickWheel points out how software buttons have increasingly
become hardware. The ClickWheel is a button on the iPod hardware designed
to control specifi c functions of the software, thus materializing the software
into the hardware. Other and older examples of software buttons migrating

Button

35

back to hardware are the mouse itself, buttons on a computer for controlling
sound volume or various functions of the operating system (home, end, search)
or the function buttons (F1–F12) on the computer keyboard. These kind of
soft- hardware buttons are often seen when the universal computer is custom-
ized for special use, such as in mobile phones, iPods, game consoles, etc., and
they seem to be fl ourishing currently as seductive branding on fashionable
electronic gadgets. A special case is touch screens, where one interacts with the
interface by touching the screen and tapping its buttons. Here the interface
becomes directly touchable though it is only an illusion which does not exactly
feel right—instead of actually touching the interface it feels as if one’s fi nger
becomes a mouse. Still, even if next generation touch screen producers feel
tempted to produce screens that could automatically sculpt 3- D buttons with
a tactile feel to them, it would not solve the paradox of the button as an ex-
pression of the interface’s mediation of the functional and instrumentation of
the representational, as pointed out previously. Software buttons incarnate this
paradox. As exemplifi ed by the function buttons, software buttons turned into
hardware are often reconfi gurable, programmable, and, as such, they reverse
the logic of mechanical buttons from giving the interface a hardwired func-
tional trustworthiness to softening the buttons on the box. This both leads
to frustration (as when your keyboard layout is accidentally changed) and an
at least momentary frisson (e.g., playing computer games or handling SMS’s).

Powerful buttons have an unmistakably “trigger happy” feel to them. They
make the world feel controllable, accessible, and conquerable, providing “In-
formation at your fi ngertips” as the slogan goes, or, more broadly, the reduc-
tion of society, culture, knowledge, its complexity, countless mediations, and
transformations to a “double- click” information society,7 where everything
becomes packaged in manageable and functional scripts activated by buttons

Figure 2 CD- player from Mac OS System 7.5.3 (1996)

Button

36

offering easy rewards. From this perspective, the interface button becomes an
emblem of our strong desire to handle the increasingly complex issues of our
societies by effi cient technical means—what one may call the “buttonization”
of culture, in which our reality becomes clickable.

In Adrian Ward’s artistic software, Signwave Auto- Illustrator,8 there is a big,
tempting button in the preferences palette with the caption “Don’t push this
button,” which paradoxically pinpoints and heightens the desire to push it.
One could say that by its apparent denial of functional purpose the button self-
 consciously tempts our desire for the functional experience of tactical control
and mastery—a strong ingredient in the aesthetics of the functional interface,
even when denied.9

Notes

1. Apple Computer, Apple Human Interface Guidelines, Cupertino, CA, Apple Com-

puter, Inc. Retrieved March 20, 2006 from http: // developer.apple.com / documentation /

UserExperience / Conceptual / OSXHIGuidelines / .

2. See Steven Johnson, Interface Culture: How New Technology Transforms the Way We

Create and Communicate; N. Lineback, “GUI Gallery”; J. Petersen and J. H. Hansen,

“MacLab Danmark”; M. Wichary, “GUIdebook, Graphical User Interface Gallery”;

M. Tuck, “The Real History of the GUI”; J. Reimer, “A History of the GUI.”

3. Susan Kare, “Design Biography.” http: // www.kare.com / design_bio.html / .

4. J. David Bolter and R. Grusin, Remediation: Understanding New Media.

5. Frieder Nake, Der Computer als Automat, Werkzeug und Medium und unser Verhältnis

zu ihm.

6. Johnson, Interface Culture.

7. Bruno Latour, E. Hermant, et al. Paris Ville Invisible.

8. Adrian Ward, Signwave Auto- Illustrator.

9. Søren Pold, “Interface Realisms: The Interface as Aesthetic Form,” in Postmodern

Culture, vol. 15 no. 2, January 2005.

Button

37

Class Library
Graham Harwood

use Poetic::Violence;

Software for the aggressive assault on society.

Thank GOD It’s all right now — we all want equality —

use constant EQUALITY_FOR_ALL

=>

“the money to be in the right place at the right time”;

use constant NEVER = ‘for;;’;

use constant SATISFIED => NEVER;

It’s time to liposuck the fat from the thighs of the bloated

bloke society—smear it on ourselves and become invisible.

We are left with no option but to construct code that

concretizes its opposition to this meagre lifestyle.

 package DON’T::CARE;

 use strict; use warnings;

 sub aspire {

 my $class = POOR;

 my $requested_type = GET_RICHER;

 my $aspiration = “$requested_type.pm”;

 my $class = “POOR::$requested_type”;

 require $aspiration;

 return $class- >new(@_);

 }

 1;

bought off with $40 dvd players

sub bought_off{

 my $self = shift;

 $self- >{gain} = shift;

 for($me = 0;

Class Library

38

 $me <= SATISFIED;

 $me += EQUALITY_FOR_ALL){

 $Exploit

 =

 push(@poverty_on_someone_else,$self- >{gain});

 die “poor“ if $Exploit

 =~ m / ‘I feel better about $me’ / g;

 }

 foreach my $self_worth (@poverty_on_someone_else){

 wait 10;

 &Environmental_catastrophe (CHINA,$self_worth)

 }

}

TODO: we need to seek algorithmic grit

for the finely oiled wheels of capital.

Perl Routines for the redistribution of the world’s wealth

Take the cash from the rich and turn it into clean

drinking water

Constants

use constant SKINT => 0;

use constant TO_MUCH => SKINT + 1;

This is an anonymous hash record to be filled with

the Names and Cash of the rich

%{The_Rich} = {

 0 => {

 Name => ‘???’,

 Cash => ‘???’,

 },

}

This is an anonymous hash record to be filled

with the Price Of Clean Water

for any number of people without clean water

Class Library

39

%{The_Poor} = {

 0 =>{

 #the place name were to build a well

 PlaceName => ‘???’,

 PriceOfCleanWater => ‘???’,

 Cash => ‘???’,

 },

 }

for each of the rich, process them one at a time passing

#them by reference to RedistributeCash.

 foreach my $RichBastardIndex (keys %{The_Rich}){

 &ReDisdributeCash(\%{The_Rich- >{$RichBastardIndex}});

 }

This is the core subroutine designed to give away

cash as fast as possible.

sub ReDisdributeCash {

 my $RichBastard_REFERENCE = @_;

 # go through each on the poor list

 # giving away Cash until each group

 # can afford clean drinking water

 while($RichBastard_REFERENCE - >{CASH} >= TO _MUCH){

 foreach my $Index (keys @{Poor}){

 $RichBastard_REFERENCE- >{CASH}—;

 $Poor- >{$Index}- >{Cash}++;

 if($Poor- >{$Index}- >{Cash}

 =>

 $Poor- >{$Index}- >{PriceOfCleanWater}){

 &BuildWell($Poor- >{$Index}- >{PlaceName});

 }

 }

 }

}

Class Library

40

Code (or, How You Can Write Something Differently)
Friedrich Kittler

Codes—by name and by matter—are what determine us today, and what we
must articulate if only to avoid disappearing under them completely. They are
the language of our time precisely because the word and the matter code are
much older, as I will demonstrate with a brief historical regression. And have
no fear: I promise to arrive back at the present.

Imperium Romanum

Codes materialize in processes of encryption, which is, according to Wolfgang
Coy’s elegant defi nition, “from a mathematical perspective a mapping of a fi -
nite set of symbols of an alphabet onto a suitable signal sequence.”1 This defi ni-
tion clarifi es two facts. Contrary to current opinion, codes are not a peculiarity
of computer technology or genetic engineering; as sequences of signals over
time they are part of every communications technology, every transmission
medium. On the other hand, much evidence suggests that codes became con-
ceivable and feasible only after true alphabets, as opposed to mere ideograms
or logograms, had become available for the codifi cation of natural languages.
Those alphabets are systems of identically recurring signs of a countable quan-
tity, which map speech sounds onto letters more or less one- to- one and, hope-
fully, completely. A vocalic alphabet of a type such as Greek,2 justly praised
for being the “fi rst total analysis of a language,”3 does appear to be a prereq-
uisite for the emergence of codes, and yet, not a suffi cient one. For what the
Greeks lacked (leaving out of consideration sporadic allusions in the work of
Aischylos, Aenas, Tacticus, and Plutarch to the use of secret writing4 was that
second prerequisite of all coding, namely, developed communications technol-
ogy. It is anything but coincidental that our reports of the fi rst secret message
systems coincide with the rise of the Roman Empire. In his Lives of the Caesars,
Suetonius—who himself served as secret scribe to a great emperor—recounts
discovering encrypted letters among the personal fi les left behind by both the
divine Caesar and the divine Augustus. Caesar contented himself with mov-
ing all the letters of the Latin alphabet by four places, thus writing D instead
of A, E instead of B, and so forth. His adoptive son Augustus, by contrast, is

Code

41

reported to have merely skipped one letter, but a lack of mathematical dis-
cernment led him to replace the letter X, the last in his alphabet, by a double
A.5 The purpose was obvious: When read aloud by those not called upon to
do so (and Romans were hardly the most literate of people), a stodgy jumble
of consonants resulted. And as if such innovations in matters of encryption
were not suffi cient, Suetonius attributes to Caesar another invention immedi-
ately beforehand—that of having written in several columns, or even separate
pages, reports to the Roman Senate on the Gallic campaign. Augustus is cred-
ited with the illustrious deed of creating, with riders and relay posts, Europe’s
fi rst strictly military express- mail system.6 In other words, the basis on which
command, code, and communications technology coincided was the Empire,
as opposed to merely the Roman Republic or shorthand writers like Cicero.
Imperium is the name of both the command and its effect: the world empire.
“Command, control, communications, intelligence” was also the Pentagon’s
imperial motto until very recently, when, due to the coincidence of communi-
cation technologies and Turing machines it was swapped for C4—“command,
control, communication, computers”—from Orontes to the Scottish headland,
from Baghdad to Kabul.

It was the case, however, that imperia, the orders of the Emperor, were also
known as codicilla, the word referring to the small tablets of stripped wood
coated with wax in which letters could be inscribed. The etymon codex for its
part—caudex in Old Latin and related to the German verb hauen (to hew)—in
the early days of the Empire assumed the meaning of “book,” whose pages
could, unlike papyrus scrolls, for the fi rst time be leafed through. And that
was how the word that interests us here embarked on its winding journey to
the French and English languages. From Imperator Theodosius to Empereur
Napoleon, “code” was simply the name of the bound book of law, and codi-
fi cation became the word for the judicial- bureaucratic act needed to arrest in
a single collection of laws the torrents of imperial dispatches or commands
that for centuries had rushed along the express routes of the Empire. Message
transmission turned into data storage,7 pure events into serial order. And even
today the Codex Theodosius and Codex Iustinianus continue to bear a code
of ancient European rights and obligations in those countries where Anglo-
 American common law does not happen to be sweeping the board. In the
Corpus Iuris, after all, copyrights and trademarks are simply meaningless, re-
gardless of whether they protect a codex or a code.

Code

42

Nation- States

The question that remains is why the technical meaning of the word “code”
was able to obscure the legal meaning to such a degree. As we know, contem-
porary legal systems regularly fail to grasp codes in the fi rst place and, in con-
sequence, to protect them, be it from robbers and purchasers or, conversely,
from their discoverers and writers. The answer seems to be simple. What we
have been calling a code since the secret writings of Roman emperors to the
arcana imperii of the modern age was known as a “cipher” from the late Middle
Ages onward. For a long time the term code was understood to refer to very
different cryptographic methods whereby words could still be pronounced,
but obscure or innocuous words simply replaced the secret ones. Cipher, by
contrast, was another name for the zero, which at that time reached Europe
from India via Baghdad and put sifr (Arabic: “emptiness”) into mathematical-
 technical power. Since that time, completely different sets of characters have
been devised (in sharp contrast to the invention of Greek for speech sounds
and numbers: on one side of language the alphabet of the people, on the other
the numbers of the bearers of secrets—the name of which spelled the Arabic
sifr once again. Separate character sets, however, are productive. Together they
brew wondrous creatures that would never have occurred to the Greeks or Ro-
mans. Without modern algebra there would be no encoding; without Guten-
berg’s printing press, no modern cryptology. In 1462 or 1463, Battista Leone
Alberti, the inventor of linear perspective, was struck by two plain facts. First,
that the frequency of occurrence of phonemes or letters varies from language to
language, a fact which is proved, according to Alberti, by Gutenberg’s letter
case. From the frequency of shifted letters as they were written by Caesar and
Augustus, cryptanalysis can heuristically derive the clear text of the encrypted
message. Second, it is therefore insuffi cient to encrypt a message by shifting
all the letters by the same number of places. Alberti’s proposal that every new
letter in the clear text be accompanied by an additional place- shift in the se-
cret alphabet was followed up until World War II.8 One century after Alberti,
François Viète, the founder of modern algebra, and also a cryptologist in the
service of Henry IV, intertwined number and letter more closely still. Only
since Viète have there been equations containing unknowns and universal coef-
fi cients written with numbers encoded as letters.9 This is still the work method
of anybody who writes in a high- level programming language that likewise al-
locates variables (in a mathematically more or less correct manner) to alpha-

Code

43

numeric signs, as in equations. On this basis—Alberti’s polyalphabetic code,
Viète’s algebra, and Leibniz’ differential calculus—the nation- states of the
modern age were able to technically approach modernity.

Global Message Traffi c

Modernity began, however, with Napoleon. As of 1794, messengers on horse-
back were replaced by an optical telegraph which remote- controlled France’s
armies with secret codes. In 1806, the laws and privileges surviving from the
old days were replaced by the cohesive Code Napoléon. In 1838, Samuel Morse
is said to have inspected a printing plant in New York in order—taking a
leaf from Alberti’s book—to learn from the letter case which letters occurred
most frequently and therefore required the shortest Morse signals.10 For the
fi rst time a system of writing had been optimized according to technical crite-
ria—that is, with no regard to semantics—but the product was not yet known
as Morse code. The name was bestowed subsequently in books known as Uni-
versal Code Condensers, which offered lists of words that could be abbreviated
for global cable communications, thus reducing the length, and cost, of tele-
grams, and thereby encrypting the sender’s clear text for a second time. What
used to be called deciphering and enciphering has since then been referred to
as decoding and encoding. All code processed by computers nowadays is there-
fore subject to Kolmogorov’s test: Input is bad if it is longer than its output;
both are equally long in the case of white noise; and a code is called elegant
if its output is much longer than itself. The twentieth century thus turned a
thoroughly capitalist money- saving device called “code condenser” into high-
est mathematical stringency.

The Present Day—Turing

All that remains to ask is how the status quo came about or, in other words,
how mathematics and encryption entered that inseparable union that rules our
lives. That the answer is Alan Turing should be well known today. The Turing
machine of 1936, as the principle controller of any computer, solved a basic
problem of the modern age: how to note with fi nitely long and ultimately whole
numbers the real, and therefore typically infi nitely long, numbers on which
technology and engineering have been based since Viète’s time. Turing’s ma-
chine proved that although this task could not be accomplished for all real

Code

44

numbers, it was achievable for a crucial subset, which he dubbed computable
numbers.11 Since then a fi nite quantity of signs belonging to a numbered al-
phabet which can, as we know, be reduced to zero and one, has banished the
infi nity of numbers.

No sooner had Turing found his solution than war demanded its cryptana-
lytical application. As of spring 1941 in Britannia’s Code and Cipher School,
Turing’s proto- computers almost decided the outcome of the war by success-
fully cracking the secret codes of the German Wehrmacht, which, to its own
detriment, had remained faithful to Alberti. Today, at a time when computers
are not far short of unravelling the secrets of the weather or the genome—phys-
ical secrets, that is to say, and increasingly often biological ones, too—we all
too often forget that their primary task is something different. Turing himself
raised the question of the purpose for which computers were actually created,
and initially stated as the primary goal the decoding of plain human language:

Of the above possible fi elds the learning of languages would be the most impressive,

since it is the most human of these activities. This fi eld seems, however, to depend

rather too much on sense organs and locomotion to be feasible. The fi eld of cryptogra-

phy will perhaps be the most rewarding. There is a remarkably close parallel between

the problems of the physicist and those of the cryptographer. The system on which a

message is enciphered corresponds to the laws of the universe, the intercepted messages

to the evidence available, the keys for a day or a message to important constants which

have to be determined. The correspondence is very close, but the subject matter of

cryptography is very easily dealt with by discrete machinery, physics not so easily.12

Conclusions

Condensed into telegraphic style, Turing’s statement thus reads: Whether ev-
erything in the world can be encoded is written in the stars. The fact that
computers, since they too run on codes, can decipher alien codes is seemingly
guaranteed from the outset. For the past three- and- a- half millennia, alphabets
have been the prototype of everything that is discrete. But it has by no means
been proven that physics, despite its quantum theory, is to be computed solely
as a quantity of particles and not as a layering of waves. And the question re-
mains whether it is possible to model as codes, down to syntax and seman-
tics, all the languages that make us human and from which our alphabet once
emerged in the land of the Greeks.

Code

45

This means that the notion of code is as overused as it is questionable. If
every historical epoch is governed by a leading philosophy, then the philoso-
phy of code is what governs our own, and so code—harking back to its root,
“codex”—lays down the law for one and all, thus aspiring to a function that
was, according to the leading philosophy of the Greeks, exercised exclusively
by Aphrodite.13 But perhaps code means nothing more than codex did at one
time: the law of precisely that empire which holds us in subjection and for-
bids us even to articulate this sentence. At all events, the major research in-
stitutions that stand to profi t most from such announcements proclaim with
triumphant certainty that there is nothing in the universe, from the virus to
the Big Bang, which is not code. One should therefore be wary of metaphors
that dilute the legitimate concept of code, such as when, for instance, in the
case of DNS, it was not possible to fi nd a one- to- one correspondence between
material elements and information units as Lily Ray discovered in the case of
bioengineering. As a word that in its early history meant “displacement” or
“transferral”—from letter to letter, from digit to letters, or vice versa—code is
the most susceptible of all to faulty communication. Shining in the aura of the
word code one now fi nds sciences that do not even master their basic arithmetic
or alphabet, let alone cause something to turn into something different as op-
posed to merely, as in the case of metaphors, go by a different name. Therefore,
only alphabets in the literal sense of modern mathematics should be known as
codes, namely one- to- one, fi nite sequences of symbols, kept as short as possible
but gifted, thanks to a grammar, with the incredible ability to infi nitely re-
produce themselves: Semi- Thue groups, Markov chains,14 Backus- Naur forms,
and so forth. That, and that alone, distinguishes such modern alphabets from
the familiar one that admittedly spelled out our languages and gave us Ho-
mer’s poetry15 but cannot get the technological world up and running the way
computer code now does. For while Turing’s machine was able to generate real
numbers from whole numbers as required, its successors have—in line with
Turing’s daring prediction—taken command.16 Today, technology puts code
into the practice of realities, that is to say: it encodes the world.

I cannot say whether this means that language has already been vacated as
the House of Existence. Turing himself, when he explored the technical fea-
sibility of machines learning to speak, assumed that this highest art, speech,
would be learned not by mere computers but by robots equipped with sensors,
effectors, that is to say, with some knowledge of the environment. However,
this new and adaptable environmental knowledge in robots would remain

Code

46

obscure and hidden to the programmers who started them up with initial
codes. The so- called “hidden layers” in today’s neuronal networks present a
good, if still trifl ing, example of how far computing procedures can stray from
their design engineers, even if everything works out well in the end. Thus,
either we write code that in the manner of natural constants reveals the deter-
minations of the matter itself, but at the same time pay the price of millions
of lines of code and billions of dollars for digital hardware; or else we leave the
task up to machines that derive code from their own environment, although
we then cannot read—that is to say: articulate—this code. Ultimately, the
dilemma between code and language seems insoluble. And anybody who has
written code even only once, be it in a high- level programming language or
assembly, knows two very simple things from personal experience. For one, all
words from which the program was by necessity produced and developed only
lead to copious errors and bugs; for another, the program will suddenly run
properly when the programmer’s head is emptied of words. And in regard to
interpersonal communications, that can only mean that self- written code can
scarcely be passed on with spoken words. May myself and my audience have
been spared such a fate in the course of this essay.

Translated by Tom Morrison, with Florian Cramer

Notes

1. Wolfgang Coy, Aufbau und Arbeitsweise von Rechenanlagen: Eine Einführung in Rechner-

architektur und Rechnerorganisation für das Grundstudium der Informatik, p. 5.

2. On the latest research developments, see Barry B. Powell, Homer and the Origin of the

Greek Alphabet.

3. Johannes Lohmann.

4. See, Wolfgang Riepl, Das Nachrichtenwesen des Altertums: Mit besonderer Rücksicht auf

die Römer.

5. See, Caius Suetonius Tranquillus, Vitae Caesarum, I 56, 6 and II 86.

6. See Suetonius, I 56, 6 and II 49, 3. On the cursus publicus, in which Augustus

himself recorded passes, orders, and letters dated with the exact time of day or night

Code

47

(Suetonius, II 50), see Bernhard Siegert, “Der Untergang des römischen Reiches,”

in Hans Ulrich Gumbrecht and K. Ludwig Pfeiffer, eds., Paradoxien, Dissonanzen,

Zusammenbrüche: Situationen offener Epistemologie, 495–514.

7. On the subject of temporal and spatial media and the process of adjustment from

the empire to the monastic early Middle Ages, see Harold A. Innis, Empire and Com-

munications, 104–120.

8. On the subject of Alberti, see David Kahn, The Codebreakers: The Story of Secret Writ-

ing. On the Enigma of the German Wehrmacht, see Andrew Hodges, Alan Turing, The

Enigma of Intelligence.

9. Viète himself chose vowels for unknowns, and consonants for coeffi cients. Since

Descartes’ Géométrie (1637), the coeffi cients proceed from the beginning of the alphabet

and the unknowns from the end (a, b, c . . . x, y, z). Since then, xn + yn = zn has been

the classical example of a mathematical equation with no numbers at all, and thus one

that would have been inconceivable to the Greeks, Indians, and Arabs.

10. See Coy, Aufbau, 6.

11. See Alan M. Turing, Intelligence Service: Schriften, 19–60.

12. Ibid, 98. (“Intelligent machinery,” in Machine Intelligence 5, or in The Essential

Turing.

13. “daímohn hê pánta kubernâi” (“God, who [feminine form!] controls all”) is what

Aphrodite called Parmenides (DK 8, B 12, 3).

14. On the subject of Markov chains, see Claude E. Shannon, Ein / Aus: Ausgewählte

Schriften zur Kommunikations- und Nachrichtentheorie, 21–25.

15. On the subject of Homer and the vocalic alphabet, see Barry B. Powell, Homer and

the Origin of the Greek Alphabet.

16. See, Turing, Intelligence Service, 15.

Code

48

Codecs
Adrian Mackenzie

Codecs (coder- decoders) perform encoding and decoding on a data stream or
signal, usually in the interest of compressing video, speech, or music. They
scale, reorder, decompose, and reconstitute perceptible images and sounds so
that they can get through information networks and electronic media. Codecs
are intimately associated with changes in the “spectral density,” the distribu-
tion of energy, radiated by sound and image in electronic media.

Software such as codecs poses several analytical problems. Firstly, they are
monstrously complicated. Methodologically speaking, coming to grips with
them as technical processes may entail long excursions into labryinths of
mathematical formalism and machine architecture, and then fi nding ways of
backing out of them bringing the most relevant features. In relation to video
codecs, this probably means making sense of how transform compression and
motion estimation work together. Second, at a phenomenological level, they
deeply infl uence the very texture, fl ow, and materiality of sounds and images.
Yet the processes and parameters at work in codecs are quite counterintuitive.
Originating in problems of audiovisual perception, codecs actually lie quite a
long way away from commonsense understandings of perception. Third, from
the perspective of political economy, codecs structure contemporary media
economies and cultures in important ways. This may come to light occasion-
ally, usually in the form of an error message saying that something is missing:
the right codec has not been installed and the fi le cannot be played. Despite
or perhaps because of their convoluted obscurity, codecs catalyze new relations
between people, things, spaces, and times in events and forms.

Patent Pools and Codec Floods

Video codecs such as MPEG- 1, MPEG- 2, MPEG- 4, H.261, H.263, the im-
portant H.264, theora, dirac, DivX, XviD, MJPEG, WMV, RealVideo, etc.,
are strewn across networked electronic media. Roughly a hundred different au-
dio and video codecs are currently in use, some in multiple implementations.
Because codecs often borrow techniques and strategies of processing sound and
image, they have tangled geneologies.

Codecs

49

Leaving aside the snarled relations between different codecs and video tech-
nologies, even one codec, the well- established and uncontentious MPEG- 2 cod-
ing standard, is extraordinarily complex in its treatment of images. MPEG- 2
(a.k.a. H.262) designates a well- established set of encoding and decoding proce-
dures for digital video formalized as a standard.1 The standards for MPEG- 2 are
widely described. Many diagrams, defi nitions, and explanations of coding and
decoding the bitstream are available in print and online.2 Open source software
implementations of the MPEG- 2 standard offer a concrete path into its imple-
mentation. For instance, ffmpeg, “is a complete solution to record, convert and
stream audio and video.”3 It handles many different video and audio codecs, and
is widely used by many other video and audio projects (VLC, mplayer, etc.).

Economically, MPEG- 2 is a mosaic of intellectual property claims (640 pat-
ents held by entertainment, telecommunications, government, academic, and
military owners according to Wikipedia.4 The large patent pool attests to the
economic signifi cance of MPEG- 2 codecs. As the basis of commercial DVDs, the
transmission format for satellite and cable digital television (DVB and ATSC),
as the platform for HDTV as well as the foundation for many internet stream-
ing formats such as RealMedia and Windows Media, MPEG- 2 forms a pri-
mary technical component of contemporary audiovisual culture. It participates
in geopolitical codec wars (e.g., China’s AVC codec, versus the increasingly
popular H.264, versus other versions such as Microsoft Windows VC- 1—
Windows Media 9).

Many salient events in the development of information and digital cul-
tures (for instance, MP3- based fi le- swapping, or JPEG- based photography)
derive from the same technological lineage as MPEG- 2 (lossy compression us-
ing transforms). At a perceptual level, what appears on screen is colored by the
techniques of “lossy compression” that MPEG- 2 epitomizes. Codecs affect at a
deep level contemporary sensations of movement, color, light, and time.

Trading Space and Time in Transforms

The MPEG standard is complex. Digital signal processing textbooks caution
against trying to program it at home (which immediately suggests the desir-
ability of doing so). They suggest buying someone else’s implementation of
the standard.5 Where does this complexity come from? The purpose of the
MPEG- 2 standard developed in the early 1990s is generic:

Codecs

50

This part of this specifi cation was developed in response to the growing need for a

generic coding method of moving pictures and of associated sound for various ap-

plications such as digital storage media, television broadcasting and communication.

The use of this specifi cation means that motion video can be manipulated as a form of

computer data.6

How does a “generic coding method” end up being so complex that “it is
one of the most complicated algorithms in DSP [digital signal processing]”?7
MPEG- 2 defi nes a bitstream that tries to reconcile the complicated psycho-
physical, technocultural, and political- economic processes of seeing. MPEG- 2
puts more pictures, more often, in more places. It moves images further and
faster in media networks than they would otherwise.

To do that, the code in MPEG- 2 codecs reorganizes images at many scales.
The code works to reorganize relations within and between images. Algo-
rithmically, MPEG- 2 combines several distinct compression techniques (con-
verting signals from time domain to frequency domain using discrete cosine
transforms, quantization, Huffman and Run Length Encoding, block motion
compensation), timing and multiplexing mechanisms, retrieval and sequenc-
ing techniques, many of which are borrowed from the earlier, low- bitrate stan-
dard, MPEG- 1.8

From the standpoint of software studies, how can these different algorithms
be discussed without assuming a technical background knowledge? The tech-
nical intricacies of these compression techniques are rarely discussed outside
signal processing textbooks and research literature. Yet these techniques
deeply affect the life of images and media today. One strategy is to begin by
describing the most distinctive algorithmic processes present, and then ask to
what constraints or problems these processes respond. From there we can start
to explore how software transforms relations.

For instance, we could concentrate on what happens at the lowest levels of
the picture, the “block” (8 × 8 pixels). Digital video typically arrives at the co-
dec as a series of frames (from a camera, from a fi lm or television source). Each
frame or static digital image comprises arrays of pixels defi ned by color (chro-
minance) and brightness (luminance) values. Each frame then undergoes sev-
eral phases of cutting and reassembling. These phases probe and re- structure
the image quite deeply, almost to the pixel level. Digital video pictures are
composed of arrays of pixels that have much spatial redundancy. Many adja-
cent pixels in an image of a landscape will be very similar, and it wastes stor-

Codecs

51

age space (on a DVD) or bandwidth (on satellite transmitters or internet) to
repeat the same pixel over and over. A sky could be mostly blue. Rather than
transmit an exact replica of the sky, why not use an algorithmic process that
transforms the blue sky into a quasi- statistical summary of the spatial distri-
bution of blueness?

The so- called I- Picture or Intra- Picture is the product of one phase of en-
coding, transform compression. It is applied to selected frames. The I- Pictures
effectively become key- frames in the MPEG videostream. This phase relies
on spectral analysis carried out using Fourier transforms. What does spectral
analysis do? Broadly speaking, it breaks a complex waveform into a set of com-
ponent waveforms of different amplitude or energy. Many computational pro-
cesses today rely on Fourier Transforms or on a particular variant of the Fourier
Transform, the Discrete Cosine Transform (DCT). The DCT, implemented in
silicon or C code, encodes complex signals that vary over time or space into a
series of discrete component frequencies. They can be added together to recon-
stitute the original signal during decoding. Nearly all video codecs transform
spatially extended images into sets of simple frequencies. This allows them to
isolate those components of an image that are most perceptually salient to hu-
man eyes. These would include the brightest or most colorful components.

There is something quite counter- intuitive in transform compression ap-
plied to images. In what way can a videoframe be seen as a waveform? The
notion of the transform is mathematical: It is a function that takes an arbitrary
waveform and expresses it as a series of simple sine waves of different frequen-
cies and amplitudes. Added together, these sine or cosine waves reconstitute the
original signal. Practically, in encoding a given frame of video, the MPEG- 2
code divides the 720 × 576 pixel DVD image into 8 × 8 pixel blocks. So ap-
plication of the transform compression is not general or global. The image has
been turned into in an array of small blocks that can be quickly transformed
separately. This can be seen by freeze- framing a complex visual scene on a DVD.
It will appear “blocky.” The DCT sees each of these blocks as spatial distribu-
tion of brightness and color. It delivers a series of coeffi cients (or multiplicative
factors) of different frequency cosine waves.

The decomposition of a spatial or temporal signal into a series of different
frequency components allows correlation with the neurophysiological measure-
ments of human hearing and sight. For instance, because the transform treats
blocks as spectra of values, some of which are more signifi cant to human eyes
than others, it converts the spectrum values into a sequence in which the most

Codecs

52

important come fi rst. Components of the series that have small coeffi cients can
be discarded because they will not be visually salient. In this way, a block can
be compressed, transmitted or stored, and decompressed without ever sending
any information about individual pixels. The cosine wave coeffi cients represent
amplitudes of different frequency cosine waves. When the block is decoded
(for instance, during display of a video frame on screen), the coeffi cients are
reattached to corresponding cosine waves, and these are summed together to
reconstitute arrays of color and brightness values comprising the block.

What stands out in transform compression is decomposition of the framed
images through densely complex matrix manipulations occurring on the thou-
sands of blocks. In contrast to fi lm’s use of linear sequences of whole frames, or
television and video’s interlacing of scan- lines to compose images, transforms
such as DCT deal with grids of blocks in highly counterintuitive spectral
analysis that has little to do with space. Blocks themselves are not fragments
of pictures, but rather distributions of luminosity and chrominance that are
packed into the bit stream.

Motion Prediction—Forward and Backward in Time

What does it mean to say that codecs catalyze new relations between people,
things, spaces, and times in events and forms? Software has long been un-
derstood as closely linked to ideation or thought, particularly mathematical
thought. Despite the mathematical character of the DCT compression just
discussed, the thinking present in software cannot be reduced to mathemati-
cal thought, or not to mathematical thought as it is usually conceived. Codecs
perhaps challenge cinematic and televisual perception even as they participate
in making the world more cinematic or televisual. They deviate radically from
the normal cinematic or televisual production of frames in a linear sequence.
Video codecs are very preoccupied with reordering relations between frames
rather than just keeping a series of frames in order. Indeed just as frames them-
selves are individually reconfi gured as blocks of luminance and chrominance,
the relation between frames is subject to calculated reordering in the interests
of accelerated or compressed transport.

In order to gain purchase on the relation between frames, the MPEG co-
dec again breaks the frame into an array of discrete “macroblocks” (usually
four blocks put together). It compares successive frames to see how a spe-
cifi c macroblock shifts between frames. The working assumption behind the

Codecs

53

 motion- predicted encoding of video in MPEG- 2 is that nothing much happens
between successive frames that can’t be understood as macroblocks undergoing
geometric manipulations (translation, rotation, skewing, etc.). The fact that
nothing much happens between frames apart from spatial transformation is
the basis of the interframe compression and the generation of P and B pictures
(forward and backward motion prediction, respectively). P (Predicted) and B
(Backward) pictures, the pictures that accompany the I- Picture in a MPEG- 2
bitstream are, therefore, really nothing like fi lm frames. There will never be
a fl icker in an MPEG video because the boundaries between pictures are not
constructed in the same way they are in fi lm or even in television with its
interlaced scanned images.

If intrapicture compression is the fi rst major component of MPEG- 2, mo-
tion prediction between frames is the second. Interpicture motion prediction
compression relies on forward and backward correlations, and in particular
on the calculation of motion vectors for blocks. In the process of encoding a
video sequence, the MPEG- 2 codec analyzes for each picture how blocks have
moved, and only transmits lists of motion vectors describing the movement of
blocks in relation to a reference picture or keyframe, itself coded using DCT
transform compression. This fundamentally alters the framing of images. We
have already seen that rather than the raw pixel being the elementary material
of the image, the block becomes the elementary component. Here the picture
itself is no longer the elementary component of the sequence, but an object to
be analyzed in terms of sets of motion vectors describing relative movements
of blocks and then discarded. The P and I pictures, after encoding, are nothing
but a series of vectors describing how and where macroblocks move. Decod-
ing the MPEG stream means turning these vectors back into arrangements of
blocks animated across frames.

Motion prediction takes time to work out, but heavily compresses the video-
stream. Transform compression is fast to calculate, but yields quite a large
amount of data. Hence, the actual ratio of intraframe and interframe pictures
in a given bitstream is heavily weighted toward motion prediction. In an
MPEG datastream, the precise mixture of different frame- types (I, P- forward,
and B- backward) is defi ned at encoding time in the Group of Pictures (GOP)
structure. It is usually 12 or 15 frames in a sequence such as I_BB_P_BB_
P_BB_P_BB_P_BB_. One intracoded frame is followed by a dozen or so
block motion- compensation frames. The combination of forward- prediction
and backward- prediction found in the GOP means that the MPEG bitstream

Codecs

54

 effectively treats the video stream as a massive doubly linked list.9 Each item
in the list is itself a list describing where and how (rotated, translated, skewed)
each block should be placed on screen.

The ratio of different frame types to each other affects the encoding time
because motion compensation is much slower to encode than the highly op-
timized block transforms. Codecs must make direct tradeoffs between com-
putational time and space. The tradeoffs sometimes result in artifacts visible
on screen as, for example, blocking and mosaic effects. At times, motion pre-
diction does not work. A change in camera shot, the effect of an edit, might
mean that no blocks are shared between adjacent frames. In that case, a well-
 designed codec falls back on intraframe encoding.

From Complicated to Composite

Many of the complications and counterintuitive orderings of the MPEG- 2
codecs arise because they try to negotiate a fi t between network bandwidth
constraints (a commercially marketed service), viewing conventions (the rect-
angular frame of cinema and television), embodied perception (sensations of
motion, light, and color), and cultural forms (fast- moving images or action).
They respond to the economic and technical need to reduce the bandwidth
required to circulate high- resolution digital pictures and sounds. As a con-
vention, the MPEG- 2 standard refers implicitly to a great number of material
entities ranging from screen dimensions through network and transmission
infrastructures to semiconductor and data storage technologies. The generic
method of encoding and decoding images for transmission relates very closely
to the constraints and conditions of telecommunications and media networks.
And the codec more or less performs the function of displaying light, color,
and sound on screen within calibrated psycho- perceptual parameters.

However, the way the MPEG- 2 codec pulls apart and reorganizes moving
images goes further than simply transporting images. Transform compres-
sion and motion estimation profoundly alter the materiality of images, all the
while preserving much of their familiar cinematic or televisual appearance.
Like so much software it institutes a relational ordering that articulates reali-
ties together that previously lay further apart.

Codecs

55

Notes

1. ISO / IEC 13818- 1, I. I. (1995). “Information technology—Generic coding of mov-

ing pictures and associated audio information: Systems.” ISO / IEC 13818- 2 (1995).

“Information technology—Generic coding of moving pictures and associated audio

information: Video.”

2. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, p. 225;

Wikipedia, 2006, MPEG- 2, available at http: // en.wikipedia.org / wiki / MPEG- 2 / (ac-

cessed Jan. 12, 2006).

3. ffmpeg, FFMPEG Multimedia System, 2006.

4. Wikipedia, “MPEG- 2,” 2006.

5. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, p. 225.

6. ISO / IEC 13818- 2 (1995) (E), vi.

7. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 225.

8. ISO / IEC 11172- 1 (1993).

9. Donald Knuth, The Art of Computer Programming, p. 280.

Computing Power
Ron Eglash

Computational power plays an accelerating role in many powerful social loca-
tions. Simulation models, for example, sneak into our medical decisions, speak
loudly in the global warming debate, invisibly determine the rates we pay for
insurance, locate the position of a new bridge in our city, plot the course of our
nation’s wars, and testify in the courtroom both for and against the defense.
Other applications in which computing power matters are molecular biology,
communication surveillance, and nanotechnology. Social scientists concerned
with the relations of power and society commonly examine who has money,
who owns property, and who owns the means of production. But the ownership

Computing Power

56

of computing power is more evasive, and far less probed. This paper will out-
line some of the ways in which we might begin to examine the relations be-
tween computing power and social authority.

The Need for Alternatives to the Realist Critique

One of the most common analyses of the relations between computing power
and social power is what I call the “realist critique.” This analysis goes some-
thing like the following: The computer representation of X is used to substitute
for the real X, but since it’s an artifi cial version it has certain bad effects (prevents
us from seeing injustice, from being in touch with people or nature, etc.). There
are indeed moments in which some form of such realist critiques are applicable.
But the critique has been overused in ways that are quite problematic.

When we blindly start putting categories of the Real on the ethical side,
and categories of the Unreal on the unethical side, we imply a system of moral-
ity which mimics the Christian story of the fall from the Garden, or Rousseau’s
dichotomy between nobility of the natural and the evils of artifi ce. We imply
that computer simulations are unethical simply because they are unnatural.
Similar moral assumptions have been used in attacks on the civil rights of gays
and lesbians (“unnatural sex” is a violation of God’s plan), or arguments used
for purging Germany of its Jews (because they were not “natural” to Germany),
or denying citizens the right to birth control. Notions of the Real or Authentic
have been used in colonialism to differentiate between the “real natives” who
stayed on their reservation, versus “inauthentic natives” who could thus be im-
prisoned for their disruptions (seen again in recent times during the American
Indian Movement of the 1960s, when activists were criticized as being “ur-
ban indians”). Thus, when we read critiques that condemn digital activities
as “masturbation,”1 we need to think not about artifi cial worlds as pathologies,
but rather about how innocent sexual activity has been used to pathologize and
control individuals.

Even in cases where scholars of computing have been very aware of the sus-
pect ethics of realism, it can creep in. Take, for example, computer graphics
representations of the human body, such as the Visible Man project. Investiga-
tions of such anatomical simulations are immediately queried for all the right
reasons: how the social construction of the technical happened, who benefi ts,
how it infl uences the viewer’s experience, and so on. But inevitably there rises
what Wahneema Lubiano calls “the ghost of the real”; we are haunted by some

Computing Power

57

element of the pre- virtual past (almost literally in this case by the donor of the
body, a 39- year- old prisoner who was executed by lethal injection in Texas).2
Despite the best intentions of the writers, in the end simulation critiques often
imply an ethics of the Real. Even Sandy Stone, well known for her commit-
ment to virtual communities and identities, ends her oft- cited essay with the
line, “No refi gured virtual body, no matter how beautiful, will slow the death
of a cyberpunk with AIDS.”3 Again the real haunts us; critiques of simulation
accuracy or realism tend to move us toward an organicist framework.

Even when a realism critique is warranted—in the case, for example, of a
corporate sponsored simulation that attempts to dupe the public into a false
sense of environmental or health security—exclusive concern with issues of
accuracy can be problematic in that they focus on symptom rather than cause.
Ostensibly one could correct the inaccuracy, and then we would have noth-
ing to complain about. But most critics have a loftier goal in mind: They are
really trying to show how social elites have managed to manipulate the power
of computing to support their own interests. By focusing on the accuracy or
realism of the simulation, we lose sight of the original goal: We focus on get-
ting the American Petroleum Institute to use the right equations rather than
asking how they managed to control the truthmaking abilities of computing
in the fi rst place. How can we get at a more fundamental understanding of the
relationship between social power and computing power, and how might we
change those relations?

Three Dimensions of Computing Power:
Speed, Interactivity, and Memory

Let us begin with the technical defi nitions for computing power. On the one
hand, the mathematical theory of computation has precisely defi ned what we
mean by saying that one system is computationally more powerful than an-
other. The least powerful system is a fi nite state automaton, the greatest in
power is a Turing machine, and in between we fi nd machines such as the
push- down automaton. But such formal defi nitions for computing power, col-
lectively termed the Chomsky hierarchy, are essentially absent in the world
of commercial computing. There are two reasons for this disconnection. First,
there is the quite sensible and responsible distinction that real- world comput-
ing systems have multiple physical constraints that are poorly represented by
such abstract assessment; in fact features that matter a great deal for the real

Computing Power

58

world, such as the amount of time it takes to complete a calculation, are absent
in the traditional computational models of the Chomsky hierarchy.4 But there
is also the rather suspect way in which the social authority of computing power
requires an unfettered ability to make its claims. Let us now look at three cat-
egories for this slippage: speed, interactivity, and memory.

Speed
Consider the simulations which produce special effects for Hollywood movies
and television commercials. Computing power here is almost entirely a question
of processing speed, due to the computational requirements of high- resolution
graphic simulation. Movies like Terminator II and Jurassic Park were milestones
in visual simulations of physical movement, so much so that they are treated
like NASA projects whose “spin- offs” are for the general benefi t of humanity.
Special effects wizards have now become frequent speakers at mathematics con-
ferences; for example, the creator of the wave in the movie Titanic was a featured
speaker for National Mathematics Awareness Week. Often the visual spectacle
of their virtual realism is a much greater audience selling point than plots or
acting; in fact, it is precisely this uncanny ability to (apparently) manipulate re-
ality that becomes the proof of computing power. When the Coca- Cola corpo-
ration spends 1.6 million dollars on thirty seconds of airtime during the super
bowl, it is no surprise that supercomputing is at the center of their message. Like
the Marxist observation that “money is congealed labor,”5 special effects are con-
gealed computing. The power to command reality to do your bidding is sexy,
even if it is only a virtual reality. Marshal McLuhan’s theme that “the medium
is the message” was always too deterministic for my taste, but I am willing to
make an exception in the case of computational advertising, where the cliché
that “sex sells” has been augmented by the sexiness of simulacra.

Interactivity
We can fi nd a similar account of simulation’s sex appeal in the rise of multimedia
computing, particularly for websites. Here the measure of computing power
is most often presented in terms of “interactivity.” Yet formal assessments for
interactivity, as could be produced through the Chomsky hierarchy, are never
brought to bear. To understand this, it is useful to fi rst examine similar ques-
tions about the assessment of intricate behavior in simple biological organ-
isms. Spiders are not taught how to spin a web; the behavior is genetically
programmed. Even semi- learned behaviors such as bird songs are often charac-

Computing Power

59

terized as the result of a “serial pattern generator.” Tightly sequenced behaviors
such as spider webs and bird songs can be modeled as fi nite state automata,6
because they require little adaptive interaction with their environment. They
may appear to be complicated but they are in fact a “preprogrammed” se-
quence of actions. This stands in strong contrast to animal behaviors that re-
quire spontaneous interaction, as we see for example in the social cooperation
of certain mammals (wolves, orca, primates, etc.). Even lone animals can show
this kind of deep interactivity: A raccoon learning to raid lidded trash cans is
clearly not clocking through a sequence of prepared movements.

In the same way, our interactions with websites can vary from “canned”
interactions with a limited number of possible responses—pressing on various
buttons resulting in various image or sound changes—to truly interactive ex-
periences in which the user explores constructions in a design space or engages
in other experiences with near- infi nite variety. Such deep interactivity does
not depend on the sophistication of the media. The 1970s video game of Pong,
with its primitive low- resolution graphics, has far greater interactivity than
a website in which a button press launches the most sophisticated 3- D fl y-
 though animation. As Fleischmann7 points out in his analysis of web media,
rather than measure interactivity in terms of two- way mutual dependencies,
commercial claims for interactivity depend on an “interrealism effect” that
substitutes fl ashy video streaming or other one- way gimmicks for user control
of the simulation. Such multimedia attempts to create the effect of interactive
experience without relinquishing the producer’s control over the simulation.
At least speed, for all its elitist ownership, has a quantitative measure that
allows us to compare machines; for interactivity we have only the rhetoric of
public relations. Even in cases in which we are not duped by this interrealism
effect, and strive for deep interactivity, the informational limits of interactive
computing power (the bandwidth of the two- way communication pipeline) is
carefully doled out in accordance to social standing, with the most powerful
using high- speed fi beroptic conduits of Internet II, lesser citizens using cable
connections on Internet I, and the poorest segments of society making do with
copper telephone wires—truly a “trickle- down” economy of interactivity.

Memory
Third and fi nally, we must evaluate computing power in terms of access to
memory. Increasingly the users’ local hard drive memory has become aug-
mented or even superfl uous as internet companies such as MySpace or YouTube

Computing Power

60

shift to the “Web 2.0” theme of internet as operating system. In terms of in-
dividual use this is a move toward democratization through lay access, but in
terms of business ownership it is a move toward monopolization, as only large
scale corporations such as Google can afford the economy of scale that such mem-
ory demands place on hardware.8 Memory also plays a constraining / enabling
role in the professional utilization of large databases. Consider, for example,
the agent- based simulations that allow massively parallel interactions, such as
genetic algorithms based on Darwinian or Lamarckian evolution. The epicen-
ter for this activity has been the Santa Fe Institute, where mathematicians like
James Crutchfi eld have been admonishing researchers in the fi eld of Artifi cial
Life for their supposed willingness to put public acclaim over formal results.9
Crutchfi eld is on the losing side of the battle: He is forgetting that science is
a social construction, and thus those who are able to best exploit computing
power—in this case the artifi cial life folks—will be able to exploit the social
power that can defi ne the contours of the fi eld. To take another example, science
historian Donna Haraway expressed great surprise when she learned that criti-
cal sections of the Human Genome Project were being run out of Los Alamos
Labs: What in the world was the modernist location for transuranic elements
doing with the postmodern quest for trans- species organisms? The answer was
computing power: Whether modeling nuclear reactions or nucleic acid, the so-
cial authority of science requires the computational authority of machines.
From the MySpace of layusers to the gene space of molecular biologists, mem-
ory matters.

In sum, these three factors—computing speed, computing interactivity,
and computing memory—both defi ne the technical dimensions of simulation’s
computing power, as well as its social counterparts. Indeed, we can think about
them in terms of information equivalents: Computing memory is comparable
to social memory, interactivity is comparable to social discourse, and comput-
ing speed is comparable to social rhetoric. Thus we see the rhetorical power of
special effects, the discursive power of interactive websites, and the mnemonic
power of large- scale lay constructions and professional simulations.

Elite versus Lay Public Access to Computing Power

What can be done about this alliance between computing power and social
authority? Looking at the changes in computing power over time, we can see
both stable and unstable elements. For example, the public face of comput-

Computing Power

61

ing power is typically portrayed as the steady increase in computing speed
per dollar, often encapsulated in Moore’s Law, which posits that the number
of components (i.e., transistors) on a chip will double every eighteen months.
But privately chip manufacturing companies agonize over strategies to main-
tain this pace.10

Contrasting elite versus lay public access to computing power through time
makes this precarious stability even more apparent. The earlier modeling ef-
forts secured elite access through expertise: Even if laypersons were offered
access to a timesharing system, they preferred the shallow learning curve of a
wordprocessor—it was the user- unfriendly interface of text- based UNIX that
separated the hackers from the hacks. This barrier did not become compro-
mised until the advent of the graphical user interface (GUI) in the late 1970s.
During the mid- 1980s this sparked an unusual moment of lay access; thus the
creation of popular “toy” simulations such as SimCity during that time. But
by the early 1990s a gradient of computing power began to resolidify in which
the “cutting edge” of elite computer simulations could leverage truth claims in
ways unavailable to the “trailing shadow” of the lay public’s computer power
(fi gure 3). The introduction of techniques such as agent- based modeling and
genetic algorithms have established trajectories which tend to restabilize this
relation between the cutting edge and trailing shadow. Yet new technological
opportunities continue to arise. We have recently seen the birth of the Free
and Open Source Software movement, of Napster’s challenge to the recording

Computing Power

Figure 3 The Cutting Edge and the Trailing Shadow

62

industry, Wikipedia, and other quasi- popular appropriations. How might
similar challenges to the social authority of the cutting edge take place in the
domain of computing power?

In the early 1990s I had lunch one day with some graduate students in
computational mathematics at the University of California at Santa Cruz. They
were abuzz with excitement over the use of supercomputers for the design of a
yacht that might win the Americas Cup. For them, this was an exciting “popu-
lar” application; one that was neither military nor academic big science. But
I was struck by the ways in which computing power and fi nancial power had
managed to stick together, even in this ostensibly nonprofessional exception.
What did the yacht owners have that made their problem more attractive than
poverty, racism, sexism, and other pressing humanitarian problems? The an-
swer, I believe, is that they had good problem defi nition. Yes it is true that the
people associated with the Yachting Club of America are generally more fl ush
with cash than, say, those of the Southern Poverty Law Center, but half the
challenge is getting problems defi ned in ways that high- end computing power
can address. We need organizations like the National Science Foundation to
support research specifi cally directed to the challenge of problem defi nition in
the application of supercomputing power to nonelite humanitarian causes.11

The other half of the challenge is computing access. A breakthrough in ac-
cess to supercomputing power came as a result of the Berkeley Open Infrastruc-
ture for Network Computing (BOINC). The system was originally created for
SETI@home, which analyzed data from the Arecibo radio telescope in hopes of
fi nding evidence of radio transmissions from extraterrestrial intelligence. Or-
dinary lay users installed software that allows the BOINC system to run in the
background, or run while their computer is not in use, providing spectral anal-
ysis for small chunks of the 35 gigabyte daily tapes from Arecibo, and uploading
the results back to BOINC where they are integrated together. With over fi ve
million participants worldwide, the project is the world’s largest distributed
computing system to date. In upgrading to the BOINC system the program-
mers also called for broadening applications to include humanitarian projects.
However none of the current projects seem directed at humanitarian causes
for specifi cally nonelite groups, with the possible exception of Africa@home’s
Malaria Control Project, which makes use of stochastic modeling of the clini-
cal epidemiology and natural history of Plasmodium falciparum malaria.

What other kinds of problem defi nition might allow greater computing
power to be applied to the challenges of survival and sustainability for those

Computing Power

63

at the margins of social power? Consider, for example, fl exible economic net-
works (FENs). First observed in the revitalization of regional European econo-
mies,12 FENs allow small- scale businesses to collaborate in the manufacture
of products and services that they could not produce independently. These
networks rapidly form and re- form in response to market variations, creating
spinoff businesses in the process, which then give rise to further FEN growth.
More recently the Appalachian Center for Economic Networks (ACENet) has
demonstrated that this approach can be successfully applied in a low- income
area of the US. But ACENet found that they were hampered by lack of in-
formation about both the resources of potential participants and the poten-
tial market niches to be exploited. Similar problems in establishing “virtual
enterprise” cooperatives for large- scale industrial production—collaboration
between multiple organizations and companies for the design and manufac-
ture of large, complex, mechanical systems such as airframes, automobiles,
and ships—has been addressed through the application of cutting- edge com-
puting.13 Why not apply similar techniques to generate FENs for low- income
areas in either fi rst or third world contexts?

In conclusion, the social authority of computing power follows the gradi-
ent of cutting edge and trailing shadow, stabilizing what might be gains for
popular use by always putting that promise for equality in the near future.
But we can also see ruptures in both technical and social dimensions of these
relations, which create new opportunities to reconfi gure both social and com-
putational power.

Notes

1. For example, Sally L. Hacker, Doing it the Hard Way.

2. Catherine Waldby, The Visible Human Project: Informatic Bodies and Posthuman Medicine.

3. Stone, Allucquére Rosanne, “Will The Real Body Please Stand Up?: Boundary Sto-

ries About Virtual Cultures.”

4. See Sloman, Aaron, “The Irrelevance of Turing Machines to AI,” in Matthias Scheutz,

ed., Computationalism: New Directions, 87–127.

5. Donna Haraway, Lecture, UCSC, 1992.

Computing Power

64

6. Kazuo Okanoya, “Finite- State Syntax in Bengalese Finch Song: From Birdsong to

the Origin of Language.” Third Conference on Evolution of Language, April 3–4, Paris

2000. Available online at http: // www.infres.enst.fr / confs / evolang / actes / _actes52.html / .

7. Kenneth R. Fleischmann, “Exploring the Design- Use Interface: The Agency of

Boundary Objects in Educational Technology,” Doctoral dissertation, dept of STS,

Rensselaer Polytechnic Institute, 2004.

8. See George Gilder, “The Information Factories,” Wired, vol. 14, no. 10, pp. 178–

202, October 2006.

9. Stefan Helmreich, Personal communication, 1999.

10. Aart J. de Geus, “To the Rescue of Moore’s Law.” Keynote address, 20th annual

Custom Integrated Circuits Conference, Santa Clara, CA. May 11–14, 2000.

11. I’ve qualifi ed this as non- elite because to simply say “humanitarian” often allows

the loophole of limiting the studies to those humanitarian causes that elites themselves

benefi t from, such as the development of expensive medical treatments, expensive new

prosthetics, solutions to types of pollution that affect affl uent suburbs, etc.

12. Charles Sabel and Michael Piore, Dialog on Flexible Manufacturing Networks.

13. M. Hardwick, D. Spooner, T. Rando and K. Morris, “Sharing Manufacturing In-

formation in Virtual Enterprises,” Communications of the ACM, Vol. 39, No. 2, (Febru-

ary 1996).

Concurrent Versions System
Simon Yuill

The highest perfection of software is found in the union of order
and anarchy.
—pierre- joseph proudhon (patched)1

Concurrent Versions System (CVS) is a tool for managing collaborative soft-
ware development. It enables groups of coders working on the same set of
source fi les to coordinate and integrate the changes they make to the code, and
acts as a repository to store all those changes. If, for example, two different pro-

Concurrent Versions System

65

grammers alter the same section of code, CVS can compare both versions and
show that there is a difference between them (known as a “confl ict” in CVS)
that needs resolved or “merged.” Another feature of the system is to keep an
historical record of the project’s development over time, enabling people to re-
trieve earlier versions. It also supports the possibility of the code “branching,”
meaning that alternative versions of the same code can be split off from the
main project and maintained in parallel without causing confl icts. If someone
wants to experiment with re- writing a certain section of a project, they can do
so in a new branch while everyone else continues to use the main branch unaf-
fected by the experiment.

The repository is a set of fi les in a directory structure that is maintained by
the CVS server. Programmers submit updates and new fi les to the repository
through a CVS client. This enables them to work remotely, with the CVS
server acting as a central coordination point. Each entry in the CVS repository
is represented by an individual fi le that maintains a record of both its content
and changes. Other information relating to the project’s development within
the repository is stored as metadata. These enable logs of who has done what
to be retrieved from the repository.

CVS was originally developed as a set of UNIX shell scripts by Dick Grune
in 1984 as part of the Amsterdam Compiler Kit (ACK), a cross- platform C
compiler developed at the Free University in Amsterdam. It was made public
in 1986 and converted into C by Brian Berliner, from whose code the current
version of CVS derives.2 Other tools providing similar functionality, such as
BitKeeper, also exist, and the new Subversion system is emerging as a pos-
 sible replacement for CVS; however, CVS is currently the most widely used code
management system.3 In many ways CVS has been essential to the success of
FLOSS (Free / Libre Open Source Software), as it facilitates the collaboration of
the widely dispersed individuals who contribute to such projects. This facilita-
tion, however, is restricted solely to the archiving of the code and its changes.
Other aspects of development, such as communication between developers, are
managed through tools such as mailing lists and IRC (Internet Relay Chat, or
other online chat systems). Savane, used by the GNU project’s Savannah reposi-
tory, and Trac, are examples of larger toolsets that have been developed to pull
these different components together.4 Because CVS focuses on cohering code
implementations, it is arguably not well suited to facilitating discussion of more
abstract, conceptual aspects of a particular project. While mailing lists and IRC
are often the forums for such discussions, they do not, by the very temporality

Concurrent Versions System

66

of their nature, allow for such discussions to be built into identifi able docu-
ments. Similarly, comments in source code, while also facilitating this, can be-
come too diffuse to gather such ideas together. The Wiki emerged as a response
to this need, adapting the version control of CVS into a simpler web- based sys-
tem in which the more conceptual modeling of projects could be developed and
archived, exemplifi ed in the very fi rst Wiki, the Portland Pattern Repository,
which gathered different programming “design patterns” together.5 CVS, never-
theless, remains a central plenum within which the material origination of soft-
ware is performed.6

Code creation is an inherently social act. It involves processes of collabora-
tion, consensus, and confl ict resolution, and embodies social processes such as
normalization and differentiation. Software development tools such as CVS
implicitly formalize such processes and, in doing so, potentially provide means
of tracking them. As a result of this, forms of sociological analysis have devel-
oped based around “archaeological” studies of CVS repositories.7 These studies
revolve around questions of how FLOSS development actually works, especially
given that it runs counter to many conventional models of product creation
and production management. There is, for example, a lack of clearly delineated
team structures in FLOSS projects; people can choose what they work on rather
than being assigned jobs, there are frequently no project roadmaps or contrac-
tual deadlines, and you have a mixture of professional and amateur contribu-
tors, some working from within a paid capacity (such as in commercially or
institutionally supported projects), others in their spare time.

Rather than following predefi ned managerial models, the practices and
tools of FLOSS development facilitate emergent organizational structures.
These can vary from one project to another, and may refl ect aspects of the so-
cial situatedness of a given project, such as whether it is driven by institutional
research, commercial development, or people with shared interests but no of-
fi cial affi liation. One recurrent form is described as an “onion structure,”8 in
which a reasonably stable core team of developers who are the main contribu-
tors and maintainers for a project is surrounded by layers of more occasional
contributors and users. In some projects this may give a highly centralized
shape to the overall social structure of the project, but in others there may be
several such “core nodes” with an organizational form that is characterized by
multiple interacting clusters. This latter formation is particularly evident in
 large- scale projects with many subareas, such as the KDE or GNOME desktop
systems, or those that are largely driven by shared interest rather than institu-

Concurrent Versions System

67

tional or commercial bodies.9 Other studies describe a kind of guild structure,
in which newcomers to a project have to serve a kind of apprenticeship and
prove their capabilities before becoming accepted within the core development
group.10 Shadow networks might also infl uence the social structures of a proj-
ect, such as secondary affi liations constructed through ideological, institutional
or corporate links.11 These kinds of studies provide an understanding of agency
and governance within FLOSS, and clarify how software development operates
as a form of discursive formation.

As Foucault describes it, a discursive formation arises through the relations
“established between institutions, economic and social processes, behavioural
patterns, systems of norms, techniques, types of classifi cation, modes of charac-
terization”12 that are not inherent within an object of discourse or practice itself,
such as a piece of software, but is that which “enables it to appear, to juxtapose
itself with other objects, to situate itself in relation to them.”13 All software is in-
herently discursive, it exists not as a set of discrete, stable artifacts, but rather as
interrelated components, entering into various combinations with one another.
This is evident both in the user experience of software and in how software is
constructed. At a user level we can see this in the way in which a web browser,
for example, will interact with various web server systems and the content tools
they support, which may in turn feed into other pieces of software or computer-
 mediated processes. If I buy an air ticket online this will connect with other
processes such as the management of my bank account and that of the airline com-
pany, and then in making my journey, the check- in process and management of
the airport and air fl ight itself will utilize various software systems, all of which
construct and articulate different relations “between institutions, economic and
social processes, behavioural patterns . . .” etc. Similarly, no piece of software is
a singular entity. The simple act of writing a piece of code involves the use of
multiple software tools, such as text editors and compilers, but also issues such
as which specifi c language the code is written in, whether it uses external code li-
braries and, if so, which choice of libraries, and what design patterns are followed
in its construction. These derive not solely from pragmatic issues of functional-
ity but also factors such as institutional alignment, the distribution and use of
the fi nal software, whether it operates by itself or as part of a larger system, and
whether or not the source code will be made available for others to develop into
and upon. Numerous decisions underlie the development of a software project:
which language to develop in—whether to use Python, C or Microsoft’s .Net, for
example; what external code libraries to use (e.g., Apple’s QuickTime library or

Concurrent Versions System

68

the open source Simple Direct Media library); what kind of license to use—to
distribute the code under an open source license that prohibits any commercial
use, or one that allows the code to be used but not altered by others; and issues
such as what fi le formats the software will support and what protocols it uses
to interact with other software—will these be based on open standards such as
SVG and HTTP, or on closed systems? The outcomes of such decisions are all
infl uenced by the wider relations in which the production of the software is situ-
ated. The ways in which tools such as CVS are used will carry a residue of these
factors, and the CVS repository can become a territory in which these issues and
debates are inscribed. CVS is not simply a tool to manage the production of code
therefore, but as “the space in which code emerges and is continuously trans-
formed” (to paraphrase Foucault), also an embodiment and instrument of its
discursive nature.

Notes

1. Proudhon’s original statement was: “The highest perfection of society is found in the

union of order and anarchy.” Pierre- Joseph Proudhon, What Is Property? An Inquiry into

the Principle of Right and of Government, 286, translated from the French by Benjamin R.

Tucker. The translation in the Dover edition has a slightly different phrasing from

that used here.

2. For historical documents on the development of CVS see: Wikipedia, Concurrent Ver-

sions System, available at http: // en.wikipedia.org / wiki / Concurrent_Versions_System

(accessed March 31, 2006), and Dick Grune, “Concurrent Versions System CVS.”

http: // www.cs.vu.nl / ~dick / CVS.html (accessed March 31, 2006).

3. The main websites for the different tools are http: // www.cvshome.org, http: // www

.bitkeeper.com, http: // subversion.tigris.org.

4. For information on Savane see https: // gna.org / projects / savane (accessed April 11,

2007). Savannah is the GNU project’s main repository for free software development:

http: // savannah.gnu.org (accessed April 11, 2007). Trac is documented at http: // trac

.edgewall.org (accessed April 11, 2007).

5. The Portland Pattern Repository is available at http: // c2.com / ppr (accessed April 11,

2007). Design Patterns are high- level descriptions of how particular structures of code

can be built, or problems in the design of software systems addressed. The notion of

design patterns was derived from the architect Christopher Alexander’s work on pat-

Concurrent Versions System

69

tern languages in building design, see Christopher Alexander, et al., A Pattern Language:

Towns, Buildings, Construction.

6. A plenum can be a “fully attended meeting” or a “space fi lled with material.” In

relation to CVS it carries both meanings: the gathering point of developers, and the

space in which code is most evident in its material form.

7. Examples of such studies include Kevin Crowston and James Howison, “The Social

Structure of Open Source Software development teams,” available at http: // crowston

.syr.edu / papers / icis2003sna.pdf, 2003; Stefan Koch and Georg Schneider, “Results

from Software Engineering Research into Open Source Development Projects Using

Public Data” in H. R. Hansen and W. H. Janko, eds., Dikussionspapiere zum Tatigkeits-

feld Informationsverarbeitung unde Informationswirtschaft; Gregory Madey, Vincent Freeh,

and Renee Tynan, “Modeling the Free / Open Source Software Community: A Quanti-

tative Investigation,” in Stefan Koch, ed., Free / Open Source Software Development,

203–220; Christopher R. Myers, “Software Systems as Complex Networks: Structure,

Function, and Evolvability of Software Collaboration Graphs,” Physical Revue E; and

Rishab Aiyer Ghosh, “Clustering and Dependencies in Free / Open Source Software

Development: Methodology and Tools,” First Monday, 8(4), April 2003.

8. Crowston and Howison, “The Social Structure” p. 3.

9. KDE and GNOME are two of the desktop environments available for the Linux

operating system. For an analysis of the relationship between institutional interests and

Open Source project development see Gilberto Camara, “Open Source Software Produc-

tion: Fact and Fiction,” in MUTE, volume 1, issue 27, Winter / Spring 2004, 74–79.

10. For a discussion of such issues see Biella Coleman, “The Politics of Survival and

Prestige: Hacker Identity and the Global Production of an Operating System,” available

at http: // healthhacker.org / biella / masterslongversion.html, Masters Thesis, University

of Chicago, 1999; Biella Colemann, “High- Tech Guilds in the Era of Global Capi-

tal,” available at http: // www.healthhacker.org / biella / aaapaper.html, undated; Warren

Sack, “Aesthetics of Information Visualization.”

11. Madey, Freeh and Tynan, “Modeling the Free / Open Source Software Community,”

13–14.

12. Michel Foucault, The Archaeology of Knowledge, p. 45.

13. Foucault, ibid.

Concurrent Versions System

70

Copy
Jussi Parikka

The process of copying is a key cultural technique of modernity. The mechani-
zation of imitatio awed even the hailed Renaissance artist Leon Battista Alberti
at the dawn of the Gutenberg era: “Dato and I were strolling in the Supreme
Pontiff’s gardens at the Vatican and we got talking about literature as we so of-
ten do, and we found ourselves greatly admiring the German inventor who to-
day can take up to three original works of an author and, by means of movable
type characters, can within 100 days turn out more than 200 copies. In a single
contact of his press he can reproduce a copy of an entire page of a large manu-
script.”1 In Alberti’s time, the spiritual concept of imitatio (Latin) or mimesis
(remediated from the philosophy of Ancient Greece) became the cornerstone of
art theory, which lasted for hundreds of years, but also turned at the same time
into a material process of copying: especially the texts of the ancients.

From the printing press that replaced the meticulous work of monks copy-
ing texts to the technique of mass production of photographs and other techni-
cal media objects, “copy” has become a central command routine of modernity.
Modern media can be understood as products of a culture of the copy as Walter
Benjamin has analyzed in relation to fi lm. Paraphrasing Benjamin, mechanical
reproduction is an internal condition for mass distribution. In contrast to liter-
ature and painting, fi lm production is about mechanical reproduction, which
Benjamin claims “virtually causes mass distribution.”2 This coupling of copy-
ing and mass distribution is not, however, restricted to the media technology
of cinema, but also characterizes networked and programmable media such as
computers. I will return to this point at the end of the text.

Nineteenth- century enthusiasm for the copy was tied to the possibility of
producing low- cost photographs and fi lms, and the commercial prospects of
such a process. Similarly the mass production and distribution of printed ma-
terial was inherently connected to material principles of production, notably
the rotation press, and other factors such as the cheapening of paper. Even the
Gutenberg printing machine is fundamentally a copy machine, ingenious in
its use of standardized modular parts for individualized signs. During the nine-
teenth century the fi rst copy machines entered offi ces due to the rising need
for archiving and distributing documents. Such machines slowly replaced the
work done by scribes, or copy clerks, such as Bob Cratchit in Charles Dickens’s

Copy

71

A Christmas Carol from 1843 or the dysfunctional copy- man in Herman Mel-
ville’s Bartleby the Scrivener from 1853 (who would “rather not” do his work).3

To guarantee obedience and effi ciency, the copy routine was technologically
automated and also integrated as part of computing systems fairly early on.
The early punch card machines used standardized copy processes in the form
of special reproducing punch- machines (i.e., the IBM 514) to copy the cards
used as templates for further data processing purposes. Some reproduction ma-
chines apparently also incorporated special control programs. The data fi elds
of the specifi c cards to be copied were fed to a control panel, and were then du-
plicated onto blank cards.4 In other words, the instructions for making copies
were in themselves part of the mass- production of copies: recursive algorithms
are at the heart of modernity. With digital computers, the mechanical process
is substituted for the informationalization of modular entities and creation of
abstract mathematical patterns that are the focus of copying and reproduction.5
This in itself has eased the copying of cultural products and consequently led
to new techniques of copy protection and consumer surveillance.

In digital software culture “copy” is used in two different ways (1) in the
context of fi le- management and as a new phase of cultural reproduction and
(2) as part of copy / paste—a cultural technique and aesthetic principle. The two
lineages constantly overlap in the modern history of media technologies, where
copying, the verb, designates a shift in the cultural techniques of reproduction
from humans to machines, and copy, as a noun, presents itself as the key mode
of becoming- object of digital culture—as easily reproducible and distributed
packages of cultural memory.

With the early computers that used core memory, copy routines were a source
of maintenance as well as amusement. The cleaning programs used copying
routines to move themselves from one memory location to the next one. This
was to fi ll the memory space with a known value, allowing it to be programmed
with a new application.6 As Ken Thompson recollects, the FORTRAN lan-
guage was employed for the competitive fun of a “three- legged race of the pro-
gramming community”: to write the shortest program that “when compiled
and executed, will produce as output an exact copy of its source.”7 Several kinds
of “rabbit” and “bacteria” programs were used to clog up systems with mul-
tiple copies of the original program code. The general idea was to make the pro-
gram spread to as many user accounts as possible on the IBM 360 system. This
“constipated” the system. The rabbit program could input itself back into the
jobstream over and over again.8 Such self- referential procedures connect with

Copy

72

recursive algorithms, which are part of every major programming language.
Recursion can be understood as a subroutine that calls (or invokes) itself. The
very basic memory functions of a computer involve copying in the sense of data
being continuously copied between memory registers (from cache memory to
core storage, for example.) Such operations can be termed “copying” but can
equally justifi ably be given names such as “read” and “write” or “load” and “store
register” operations.9

With the move from the mechanical programming of computers to infor-
mational patterns, the copy command became integrated as an organic part of
fi le management and programming languages in the 1960s.10 The UNIX sys-
tem, developed at Bell Labs, was one of the pioneers with its “CP” command.
The CP command was a very basic fi le management tool, similar to, for in-
stance, the use of the “copy” command in the later DOS environment.

The emerging trends and demands of network computing underlined the
centrality of the copy command. Instead of mere solitary number crunchers,
computers became networked and communicatory devices where resource
sharing was one of the key visions driving the design of, among other things,
the ARPANET.11 During the same time as the early computer operating sys-
tems for wider popular use were developed, meme theory, originally conceived
by Richard Dawkins in the mid- 1970s, depicted the whole of culture as based
on the copy routine. Memes as replicators are by defi nition abstract copy ma-
chines “whose activity can be recognized across a range of material instan-
tiations.”12 Informatics is coupled with meme copying; media technological
evolution can be seen as moving toward more precise copy procedures, as Susan
Blackmore suggested. Copying the product (mechanical reproduction tech-
nologies of modernity) evolves into copying the instructions for manufactur-
ing (computer programs as such recipes of production).13 In other words, not
only copying copies, but more fundamentally copying copying itself. What
makes meme theory interesting is not whether or not it is ultimately an ac-
curate description of the basic processes of the world, but that it expresses well
this “cult of the copy” of the digital era while it abstracts “copying” from its
material contexts into a universal principle.

During the 1990s, copy routines gained ground with the Internet being
the key platform for copying and distributing audiovisual cultural products.
Of course, such techniques were already present in early fax machines. Since
the latter half of the nineteenth century, these routines allowed for the trans-

Copy

73

mission of ones “own handwriting” over distances. Soon images also followed.
(Technically, mid- nineteenth- century phototelegraphy already allowed the
encoding of data into patterns and the transmission of this copy via telegraph
lines.) Hence, facsimile, factum simile, should be seen as “a copy of anything
made, either so as to be deceptive or so to give every part and detail of the orig-
inal; an exact copy likeness.”14 Of course, no copy is an exact reproduction of
the original but an approximation that satisfi es, for example, the expectations
of the consumer. To guarantee such consumer satisfaction, especially since the
1970s, with the help of engineers at Philips and Sony, digital optical archiving
techniques have presented us with a material memetic technology of cultural
reproduction that happens via a simple command routine: copy.

The material processes of copy routines have often been neglected in cultural
analysis, but the juridical issue of copyright has had its fair share of attention.
Yet the issues are intimately tied, both being part of the same key thematics of
modernization that spring from the fact that automated machines can reproduce
culture (a major change of the mode of cultural reproduction when compared
to, e.g., the nineteenth- century emphasis on civilization). Copy routines that
originated with medieval monks are integrated in special copy / ripper programs
with easy point- click routines and CSS interpretation possibilities. Hermeneu-
tic questions of meaning are put aside and attention is paid to the minuscule
routines of reproduction: “Thus, it was only after the fall of the Roman Empire
that writing fell as an obligation on monks, nuns, and fi nally male students. Of
all forms of manual labor, mechanical copying, just as in present day comput-
ers, most closely corresponded to Saint Benedict’s dictum: ora et labora. Even if
the writer, simply because his tongue knew only some vernacular dialect, had
no understanding of the Latin or even Greek words he was supposed to preserve,
his handicap augmented the monastery library.”15

The difference between such earlier forms of preserving and reproducing
cultural memory and contemporary digital archiving techniques has to be em-
phasized. Contemporary forms of copy are intimately tied to the consumer
market and the commercial milieu of the digital culture (especially the inter-
net), whereas the work done by monks was part of the theological networks
where God, in theory, played the key mediator (and the fi nal guarantor of
mimesis) instead of, for example, Sony BMG or Microsoft. Theological issues
defi ned the importance of what was copied and preserved, whereas nowadays
the right to copy and to reproduce culture is to a large extent owned by global

Copy

74

media companies. This illustrates how copying is an issue of politics in the
sense that by control of copying (especially with technical and juridical power)
cultural production is also hierarchized and controlled.

The high fi delities of consumer production connect to the other key area of
copy within computer programming: the copy / paste routine that is part and
parcel of graphic user interfaces (GUI). Aptly, the Xerox Company, now a kind
of cultural symbol of the modern culture of copy, and especially its Palo Alto
research center (PARC), are responsible for the original ideas of graphic user
interfaces and point- click user control using the mouse. The Gypsy graphical
interface system from 1974 / 1975 was probably the fi rst to incorporate the cut
and paste command as part of its repertoire (although Douglas Engelbart and
the “Augmentation Research Center” had introduced the idea in 1968). The
command was designed as a remediation of the paper- and- scissors era, keeping
nonprofessionals especially in mind. The interface was designed for effi cient
offi ce work, where adjustments could be done on screen while always hav-
ing a clean copy in store for backup. The idea at PARC was to create an offi ce
workstation that would seem as invisible to the lay user as possible. This was
effected by providing a set of generic commands.16

The Xerox Star (1981) was hailed as the software system of the future, de-
signed as a personal workspace for networks. The Star offi ce system incorporated
key commands (Move, Copy, Open, Delete, Show Properties, and Same [Copy
Properties]) as routines applicable “to nearly all the objects on the system: text,
graphics, fi le folders and fi le drawers, records fi les, printers, in and out bas-
kets, etc.”17 Being generic, such commands were not tied to specifi c objects. In
addition, the commands were accessible using special function keys on Star’s
keyboard. Star’s design transferred, then, responsibilities from the user to the
machine. The user no longer had to remember commands, but could fi nd them
either in special function keys or in menus.18 The desktop became for the fi rst
time the individualized Gutenberg machine, or the hard- working and pious
medieval monk that followed the simple commands universalized as generic.

The very familiar point- click copy- paste routine originates from those sys-
tems, and is now integrated into everyday consumer culture. This, as Lev Man-
ovich suggests, is perhaps how Fredric Jameson’s ideas of postmodernization
should be understood: Copy production as the dominant mode of cultural pro-
duction culminated in the digital production techniques of GUI operating sys-
tems that originated in 1980s. Manovich notes that “[E]ndless recycling and
quoting of past media content, artistic styles and forms became the new ‘in-

Copy

75

ternational style’ and the new cultural logic of modern society. Rather than
assembling more media recordings of reality, culture is now busy reworking,
recombining, and analyzing already accumulated media material.”19 In addi-
tion, recycling is also incorporated as part of the actual work routines of pro-
gramming in the sense of reusing already existing bits and pieces of code, and
pasting them into novel collages (so- called copy and paste programming). Since
the 1960s, copying has been elevated into an art practice but it is more likely to
be articulated in monotonous offi ce work context or as pirate activity.20

In general, “CTRL + C” functions as one of the key algorithmic order- words
piloting the practices of digital culture. This returns focus on the key economic-
 political point: who owns and controls the archives from which content is
quoted and remediated? The question does not only concern the software pro-
ducers who are in a key position to defi ne the computer environment but also
the large media conglomerates, which have increasingly purchased rights to
the audiovisual archives of cultural memory. Purchasing such rights means
also purchasing the right to copying (as a source of production) and the right
to the copy as an object of commercial distribution. The archive functions as
the key node in the cultural politics of digital culture. One alarming trend is
how such key nodes are being defi ned in commercial interests, such as in the
1996 Copy Protection Technical Working Group, in which technical manufac-
turers (Panasonic, Thomson, Philips), content producers (Warners Bros, Sony
Pictures), Digital Rights Management (Macrovision, Secure Media), telecom-
munications (Viacom, Echostar Communications) and the computer industry
(Intel, IBM, Microsoft) are represented.21 The issue under consideration is not
only about content that is archived in private corporate collections but about
how copying is subject to technical, commercial, and political restrictions.

“Postmodernization” should be understood as a media technological condi-
tion. Aesthetic and consumer principles have been intimately intermingled
with the engineering and programming routines of modern operating systems
that are part of the genealogy of modern technical media. For Friedrich Kittler,
the Turing machine as the foundation of digital culture acts as a digital ver-
sion of the medieval student, “a copying machine at almost no cost, but a
perfect one.” Similarly for Kittler, “The internet is a point- to- point transmis-
sion system copying almost infallibly not from men to men, but, quite to the
contrary, from machine to machine.”22 Hence we move from the error- prone
techniques of monks to the celluloid- based cut and paste of fi lm, and on to the
copy machines of contemporary culture, in which digitally archived routines

Copy

76

replace and remediate the analog equivalents of prior discourse networks.
With computers, copying becomes an algorithm and a mode of discrete- state
processing. Digital copying is much more facile (if not totally error- free) than
mechanical copying, and copies are more easily produced as mass- distribution
global consumer products. In digital products the tracking and control of the
objects of copying is easier, and there is the added capability to tag the copies
as copyright of the producer or the distributor. The novelty of the digital copy
system is in the capability to create such copy management systems or digital
rights management (DRM) techniques, which act as microcontrollers of user
behavior: Data is endowed with an inherent control system, which tracks the
paths of software (for example, restricting the amount of media players a digi-
tally packed audiovision product can be played on).

In addition, copying is intimately entwined with communication as a cen-
tral mode of action of network culture. Such sociotechnological innovations
as nineteenth- century magnetic recording, the modem (1958), the c- cassette
(1962), the CD- disc (1965), the Ethernet local network (1973), and Napster
(1999) and subsequent fi le- sharing networks can be read from the viewpoint of
the social order words, “copy” and “distribution.” The act of copying includes
in a virtual sphere the idea of the copy being shared and distributed. What
happens in copying is fi rst the identifi cation or framing of the object to be cop-
ied, followed by the reproduction of a similar object whose mode of existance
is predicated upon its being distributed. There is no point in making copies
without distributing them. Copying is not merely reproducing the same as
discrete objects, but coding cultural products into discrete data and commu-
nicating such coded copies across networks: seeding and culturing. Similar to
how Benjamin saw mechanical reproduction and distribution as inherent to
the media technology of cinema, copy routines and distribution channels are
intimate parts of the digital network paradigm: connecting people, but also
copying machines.

Notes

1. Quoted in David Kahn, The Codebreakers: The Story of Secret Writing, 125.

2. Walter Benjamin, Illuminations: Essays and Refl ections, 244 fn. 7.

3. See the online Early Offi ce Museum pages for copying machines, available at http: //

www.offi cemuseum.com / copy_machines.htm.

Copy

77

4. See the Waalsdorp museum online page at http: // www.museumwaalsdorp.nl /

computer / en / punchcards.html. Thanks also to Jaakko Suominen for his notes.

5. As Hillel Schwartz notes in his thought- provoking The Culture of the Copy, two modes,

or philosophies, of copying were early rivals: copying discretely bit by bit, or analogi-

cally copying an entirety, as with chemical copying. Hence the cultural origins of com-

puterized scanning and the calculation of, for example, images, and the copying of these

images in the form of bits spans further in time than actual digital machines. See Hillel

Schwartz, The Culture of the Copy: Striking Likenesses, Unreasonable Facsimiles, 223.

6. Robert Slade, “History of Computer Viruses,” 1992, available at http: // www.cknow

.com / articles / 6 / 1 / Robert- Slade&%2339%3Bs- Computer- Virus- History.

7. Ken Thompson, “Refl ections of Trusting Trust,” Communications of the ACM, vol.

27, issue 8 (August 1984), 761.

8. Bill Kennedy, “Two Old Viruses,” The Risks Digest, Vol. 6, Issue 53 (March 1988),

available at http: // catless.ncl.ac.uk / risks. Another similar observation is dated to

1973, which shows that several programmers thought about the same ideas. See “Old

Viruses,” The Risks Digest, vol. 6, issue 54 (April 1988), available at http: // catless.ncl

.ac.uk / risks. Another example are the “bacteria” programs that have been listed as one

of the oldest forms of programmed threats. A bacterium is another name used for rab-

bit programs. It does not explicitly damage any fi les, its only purpose is to reproduce

exponentially, but can thus take up all the processor capacity, memory, or disk space.

See Thomas R. Peltier, “The Virus Threat,” Computer Fraud & Security Bulletin, June

1993, p. 15.

9. Thank you to Professor Timo Järvi for pointing this out to me.

10. See B. I. Blum, “Free- Text Inputs to Utility Routines,” Communications of the ACM,

vol. 9, issue 7 (July 1966), 525–526.

11. See Janet Abbate, Inventing the Internet, 96–106.

12. Matthew Fuller, Media Ecologies: Materialist Energies in Art and Technoculture, 111.

13. Susan Blackmore, The Meme Machine, 214.

14. See the “Facsimile & SSTV History,” available at http: // www.hffax.de / html /

 hauptteil_faxhistory.htm.

Copy

78

15. Friedrich Kittler, “Universities: Wet, Hard, Soft, and Harder,” Critical Inquiry,

vol. 31, issue 1 (Autumn 2004), 245.

16. Michael Hiltzik, Dealers of Lightning: Xerox PARC and the Dawn of the Computer

Age, 209–210.

17. Butler W. Lampson, “Hints for Computer System Design,” Proceedings of the Ninth

ACM Symposium on Operating Systems Principles (1983), 39.

18. See Jeff Johnson and Teresa L. Roberts, “The Xerox Star: A Retrospective,” IEEE

Computer (September 1989), 11–29.

19. Lev Manovich, The Language of New Media, 131.

20. Schwartz, The Culture of the Copy, 238–239.

21. See Volker Grassmuck, “Das Ende der Universalmaschine,” in Zukunfte des Com-

puters, ed. Claus Pias, 251.

22. Kittler, “Universities,” 252.

Data Visualization
Richard Wright

Any transformation of digital material into a visual rendering can arguably
be called a visualization, even the typographic treatment of text in a termi-
nal window. Conventionally, however, “data visualization” is understood as a
mapping of digital data onto a visual image. The need for visualization was
fi rst recognized in the sciences during the late 1980s as the increasing power
of computing and the decreasing cost of digital storage created a surge in the
amount and complexity of data needing to be managed, processed, and under-
stood. In 1987 the US National Science Foundation published their “Visual-
ization in Scientifi c Computing” report (ViSC) that warned about the “fi rehose
of data” that was resulting from computational experiments and electronic
sensing.1 The solution proposed by the ViSC report was to use visualization to
quickly spot patterns in the data that could then be used to guide investiga-
tions toward hypotheses more likely to yield results. By using these “intuitive

Data Visualization

79

perceptual qualities as a basis for evaluation, verifi cation and understanding,”
the ViSC panelists intended to put “the neurological machinery of the visual
cortex to work.”

In a book published in 2000, visualization scientist Colin Ware concisely
summed up the main advantages of modern visualization techniques.2 As men-
tioned above, visualization permits the apprehension of large amounts of data.
The fl exibility of human vision can perceive emergent properties such as subtle
patterns and structures. It can compare small scale and large scale features at
the same time. It can also help with the discernment of artifacts or mistakes in
the gathering of the data itself. Yet despite these observations being at the in-
tuitive level it is still possible to use them to suggest more formal hypotheses
about the data in question. The early criticism that “pictures don’t prove any-
thing” has gradually been mitigated by the promise that apparent relation-
ships can be later confi rmed by applying more exact analytical methods.

Visualizations are created for people rather than for machines—they imply
that not all computational processes can be fully automated and left to run
themselves. Somewhere along the line a human being will need to evaluate or
monitor the progress of the computation and make decisions about what to
do next. Yet despite the fact that the material operations of software and data
processing are perfectly objective and describable, they are rarely directly ac-
cessible to us. One of the fundamental properties of software is that once it is
being executed it takes place on such a fi ne temporal and symbolic scale and
across such a vast range of quantities of data that it has an intrinsically differ-
ent materiality than that with which we are able to deal with unaided. Visu-
alization is one of the few techniques available for overcoming this distance.
In the visualization process, the transformations that lead from data to digital
image are defi ned through software, often in a direct or “live” relationship
with it, yet aim to be apprehended at a level of human sensibility far beyond
it. A visualization is therefore distinguished by its algorithmic dependence on
its source data and its perceptual independence from it.

Early writers on visualization such as Edward Tufte developed guidelines
and examples for how to design information graphics that are still infl uen-
tial today. Tufte’s main concern is now referred to as the principle of being
“expressive”: to remove all unnecessary graphical ornamentation and show as
much data as possible; to “let the data speak for itself.”3 To some extent, when
we use computer graphics we can often “express” so much data that we do
not have to choose which is the most signifi cant. But even if we are able to

Data Visualization

80

show everything we may still not know how to show it—how do we order the
variables into an image in a way that expresses their interrelationships? The
semiologist Jacques Bertin did important early work during the 1970s on how
to organize a “visual structure” that refl ects the features and relations between
the data.4 The usual approach is to start from some basic knowledge about the
data’s internal structure. In theory the data we start with is raw and uninter-
preted, but in practice there is always some additional information about its
composition, usually derived from the means by which it was gathered. For
instance, if the data has up to three variables it can be directly mapped into a
 three- dimensional graph of x, y, z values (or by transforming it using an inter-
mediate stage called a “data table”). Ware provides a typical example of such a
visualization from oceanography—a multibeam echo sounder scanning of the
tides at Passamoquoddy Bay in Canada, which produces a three- dimensional
array of height fi elds, rendered as a color image (fi gure 4).5 This data used to be
sampled and rendered as a set of contour lines, but the continuous computer-
 generated image allows us to clearly see the more subtle features, textures, and
artifacts in all the millions of measurements made. Of course, we do not have
to render it in this way—if we chose to we could unravel the array into a one-
 dimensional sequence of values, interpret each one as a frequency and “play”
the data as a series of tones. But this would be to ignore the variables’ posi-
tional structure and we would almost certainly not be able to “see” the ripples
and pockmark patterns that we can in the image. Ordering the values into a
linear sequence might also imply precedence or ranking not in the original
data. The internal structure of the data is spatial rather than temporal.

If we are using visualization to forage for particular known pieces of infor-
mation such as which stocks are rising most steeply or in creating a graphic
notation for structuring conceptual propositions, then we are dealing with
more explicit functions of data catered to by specialized fi elds of information
visualization, “data mining,” or knowledge visualization. These disciplines are
often closer to interface design, employing popular techniques such as interac-
tive “fi sheye” views, “table lens” document graphs, or spatial “mind mapping”
tools.6 But in a more general context, if the properties of the data are yet to
be discovered, then visualization has less to do with retrieval, monitoring, or
communication and is more of an experimental technique. In contrast to a dia-
gram that is constructed on the basis of a preestablished set of signifi cances, a
visualization is about fi nding connections (or disconnections) between dataset
attributes like amounts, classes, or intervals that were previously unknown.

Data Visualization

81

Visualizations are always partial and provisional and they may entail the ap-
plication of a number of different methods until the data gives up its secrets.
The images frequently exhibit the continuous qualities of the familiar visual
world despite the fact that they are utterly constructed. It is these implicit
visual properties that are valued for their openness to perceptual inference—a
continuous interplay of surface features rather than discrete graphic elements
or symbols. At this end of the spectrum, visualization is nonrepresentational
because it is speculatively mapped from the raw, isolated data or equations and
not with respect to an already validated representational relation. A visualiza-
tion is not a representation but a means to a representation.

As recently as 2004, visualization scientist Chaomei Chen described visual-
ization as still being an art rather than a science.7 There is still no taxonomy of
techniques that might help designers select one that is more effective for their
requirements, and no generic criteria with which to assess the value of a visu-
alization once they have. In the absence of guidance, there has been a tendency
by some scientists to seize upon the underlying code of a successful visualiza-
tion and make it a de facto standard. Colin Ware has tried to remedy this by
grounding visualization as a specifi cally scientifi c discipline by combining the
fi elds of physiology, human perception, and cognitive studies.8 This feeds into
a desire among many scientists to conform visualization to scientifi c method

Data Visualization

Figure 4 Three dimensional array of height fi elds from a multibeam echo sounder scanning of

tides at Passamoquoddy Bay, Canada.

82

by treating visual perception and cognition in terms of computation itself, to
be harnessed as an instrumental resource. For instance, the ability of the eye
to instantly see that one visual feature is bigger than another is referred to as
“computational offl oading” in some places: “a diagram may allow users to avoid
having to explicitly compute information because users can extract information
‘at a glance.’”9 There is now a push to try to streamline visualization by design-
ing it for the faster “automatic processing” stage of human vision that deals
with the unconscious detection of light, pattern, orientation, and movement. If
the abilities of this retinal level of processing can be defi ned and standardized
then the hope is that visualization can be freed of the ineffi ciencies and contin-
gencies of learned visual conventions, that it can promise a fast and universal
“understanding without training” that crosses all cultural boundaries.10

In the literature there is little emphasis on how to see visualizations, only
on how they are seen. Despite the fact that low level perceptual mechanics
may not be formally learned, they can still be exercised, sensitized, tuned, and
focused as an acquired skill. The editor of a fi lm can see a hair on an individual
frame that appears far too briefl y for his audience to be conscious of it. Visual-
ization as a practice is not just a question of designing for human perception
but of being perceptive. In fact, some people’s eyes have been “retrained” by
visualization itself until it has altered their apprehension of the world. Some
of the earliest and most ubiquitous forms of scientifi c visualization were im-
ages of fractals, chaos theory, and complex systems of the late 1980s.11 De-
spite the fact that, as media theorists such as Vilém Flusser pointed out, these
pictures were “images of equations” rather than “images of the world,” they
were frequently used to model the appearance of natural phenomena such as
mountains, plants, and marble textures.12 Some scientists working with fractal
modeling, such as Michael Barnsley, found that after a while they began to
“see” the rivers, trees, and clouds around them in terms of fractal mathemat-
ics,13 internalizing concepts of self- similarity and strange attractors until they
had become a way of thinking and perceiving itself, as though turning the
whole world into a “natural” visualization. Both algorithm and sensory vision
are thus fi nally reunited in the cortex, in an endless circularity of computation
and perception.

Visualization is usually separated out as a tool for knowledge formation
rather than a visual form of knowledge itself. Although forms such as “analogi-
cal representation” (which preserves some structural features of the object such
as visual resemblance) or “enactive knowledge” (which is bound to actions

Data Visualization

83

such as a certain skill) are recognized as valid forms of knowledge, scientists
still mainly characterize their aims in terms of “conceptual knowledge”: that
which can be symbolically represented or discursively expressed.14 This causes
some uncertainty in the status of visuality; the literature frequently switches
between statements like “using vision to think,” “using visual computation to
think,” and “visual sense making.”15 Michel Foucault described a similar situ-
ation in his study of the origins of modern systems of knowledge at the end of
the Renaissance.16 He pointed out how the principle of “resemblance,” which
had previously been so important, became relegated to a preliminary stage on
the borders of knowledge during the Enlightenment. This was despite the
fact that at the dawn of representational knowledge, as now, no order could be
established between two things until a visual similarity had occasioned their
comparison. The use of memory and imagination in the discovery of a latent
resemblance is what makes the creation of knowledge possible. Whether such
visual relations will continue to be restricted to the rudimentary status of per-
ceptual pre- processing under the reign of visualization will defi ne one of the
most important characteristics of knowledge in the age of computer software.

Although initially applied to imagery, visualization has now become a more
generic term that covers the sensory presentation of data and processing using
interactive techniques, animation, sonics, haptics, and multi- user VR environ-
ments. Over the course of the 1990s, visualization has spread from the sciences
into engineering disciplines, marketing, law, policy making, and art and en-
tertainment, indeed to any fi eld that has found its object of interest replaced
by datasets or computer models. It helps make visible the fl uctuations in the
international money market, defends the innocent through accident recon-
struction, discloses network traffi c in order to detect telephone fraud, and re-
ports the proportion of fi les consolidated by one’s disk defragmenter.

These new fi elds obviously exceed the original scientifi c aims of visualiza-
tion, yet even in art and design applications some form of cognitive knowledge
may still be the intention. Christian Nold is an artist who has been building
“bio maps” of communities using a mixture of consciously and unconsciously
recorded data.17 For the “Greenwich Emotion Map” (fi gure 5), groups of local
residents each received a Galvanic Skin Response unit which measured their
emotional arousal as they went for a walk around the neighbourhood. Every
four seconds their level of excitation was recorded along with their geographi-
cal location as they reacted or failed to react to whatever coincidence of en-
counters, sights, and smells the city channelled to them that day. When they

Data Visualization

84

returned, their data was uploaded and plotted onto a map of Greenwich and
annotated with written notes and photos they made at the time. When up-
loaded and rendered as an overlay of nervous peaks and troughs, markers, and
pop- ups over a Google Earth satellite image, we are able to pick apart Google’s
naturalistic photographic image of Greenwich in terms of a mass of individual
responses and rejoinders. “BioMapping” recreates the urban crowd using data
visualization to become a dynamic object of fl uctuating emotional intensities,
informal commentaries, and subjective trajectories.

There also exist many noncognitive “visualizations” in common use. In
some cases this is because they move so far from their source data that the data
disappear from relevance entirely. For example, it is easy to take any arbitrary
data including random, unstructured data and contrive a rich pattern from it
using elaborate visualization tools. Noise functions are widely used in media
production software as the starting point for synthetic image generation. By
repeatedly applying a barrage of frequency fi lters, scalings, and interpolation
methods it is routinely possible to design the convincing appearance of natural
phenomena such as marble, wood, smoke, or fi re, or the vertiginous synaes-
thetic abstractions familiar to users of the Windows Media Player. In these
cases we move away from “data visualization” as such to the more general cat-
egory of computer generated “visualization.”

Figure 5 Christian Nold, detail from Greenwich Emotion Map, 2006.

Data Visualization

85

But there are other noncognitive visualizations whose power is derived from
the very strain of stretching yet maintaining a connection to their original data-
base. “Lungs: Slave Labour,” (fi gure 6), by Graham Harwood, is an acoustic,
affective visualization based on Nazi records of the foreign laborers that were
forced to work in the ex- munitions factory that now houses the Centre for Me-
dia Art in Karlsruhe.18 By interrogating their age, sex, and height, “Lungs” is
able to calculate their vital lung capacity and emit a “breath” of air for each
worker through a speaker system. The general aim of the “Lungs” project is to
take computer records of local events or communities that have been reduced
or demeaned to the status of information and to allow people to re- experience
and recover their own value. This attempt to give a database a pair of lungs

Data Visualization

Figure 6 Graham Harwood, Lungs: Slave Labour, 2005.

86

reconnects people with a political atrocity in a very visceral way that seems to
belie the muteness of the bureaucratic records themselves.

This last example might be seen as highly tendentious, but it factually
elaborates the politics involved in any representation of data. It still meets the
central requirement for data visualization of algorithmically deriving a sensory
expression from the structures implicit in digital data, even when, and espe-
cially when, that expression takes us far from the realm of computer code. The
greatest material distance between human senses and computer code, when
compared to the simplest material connections between them, delineates the
imaginative possibilities of data visualization. Within this area we can explore
the most extreme perspectives that software can create of itself. It is its ability
to put cognitive and affective modes of perception into creative tension with
data structures and with each other, and to articulate the gap between the pro-
cessing of data, social life, and sensory experience, that will allow visualization
to reach its full potential, both as a scientifi c and as an artistic technique.

Notes

1. Bill H. McCormick, Tom A. DeFanti, and Maxine D. Brown, “Visualization in

Scientifi c Computing,” Computer Graphics, 21, no. 6 (November 1987).

2. Colin Ware, Information Visualization: Perception for Design, 2.

3. Edward Tufte, Visual Explanations, 45.

4. Jacques Bertin, Graphics and Graphic Information Processing.

5. Ware, Information Visualization, 2.

6. Sigmar- Olaf Tergan and Tanja Keller, eds., Knowledge and Information Visualization:

Searching for Synergies (Lecture Notes in Computer Science), 5.

7. Chaomei Chen, Information Visualization, 2nd edition, 1.

8. Ware, Information Visualization, 5.

9. Mike Scaife and Yvonne Rogers, “External Cognition how do graphical representa-

tions work?,” International Journal of Human- Computer Studies, vol. 45, no. 2, 185–213.

Data Visualization

87

10. Ware, Information Visualization, 10.

11. Hans Otto Peitgen and Peter Richter, The Beauty of Fractals: Images of Complex

Dynamical Systems.

12. Vilém Flusser, “Curie’s Children: Vilém Flusser on an Unspeakable Future,” Art-

forum (March 1990).

13. Michael Barnsley, Fractals Everywhere: The First Course in Deterministic Fractal Ge-

ometry, 1.

14. Tergan and Keller, Knowledge and Information Visualization, 4.

15. Stuart Card, Jock Mackinlay, and Ben Schneiderman, eds., Readings in Information

Visualization: Using Vision to Think, 33, 34, 579.

16. Michel Foucault, The Order of Things, 67–68.

17. Christian Nold, “Greenwich Emotion Map,” 2006, available at http: // www.emotion

map.net.

18. Graham Harwood, “Lungs: Slave Labour,” 2005. Permanent collection, ZKM,

Karlsruhe, Germany, available at http: // www.mongrel.org.uk / lungs.

Elegance
Matthew Fuller

In Literate Programming,1 Donald Knuth suggests that the best programs can
be said to possess the quality of elegance. Elegance is defi ned by four criteria:
the leanness of the code; the clarity with which the problem is defi ned; spare-
ness of use of resources such as time and processor cycles; and, implementation
in the most suitable language on the most suitable system for its execution.
Such a defi nition of elegance shares a common vocabulary with design and en-
gineering, where, in order to achieve elegance, use of materials should be the
barest and cleverest. The combination is essential—too much emphasis on one
of the criteria leads to clunkiness or overcomplication.

Elegance

88

Such a view of elegance is supported by Gregory Chaitin’s formulation of
 program- size defi nition of complexity: A measure of the complexity of an an-
swer to a question is the size of the smallest program required to compute it.
The resulting drive to terse programs produces a defi nition of elegance being
found in a program “with the property that no program written in the same
programming language that produces the same output is smaller than it is.”2

The benefi t of these criteria of elegance in programming is that they estab-
lish a clear grounding for the evaluation of approaches to a problem. This set
of criteria emerging from programming as a self- referent discipline it works on
the level of disciplinary formalization, as a set of metrics that allow for a scale
of abstraction. This formalization can also be politically crucial as a rhetorical
and intellectual device that allows programmers to stake their ground in con-
texts where they might be asked to compromise the integrity of their work,
and something that allows them to derive satisfaction from work that might
otherwise be banal.

When writing code to test compilers, Knuth takes the opposite route. He
writes test programs that are, “Intended to break the system, to push it to its
extreme limits, to pile complication on complication, in ways that the system
programmer never consciously anticipated.” He continues, “To prepare such
test data, I get into the meanest, nastiest frame of mind that I can manage,
and I write the cruelest code I can think of; then I turn round and embed that
and embed it in even nastier constructions that are almost obscene.”3 There is
a clear counter- position between code that contains as much vileness as one
could want and model code that is good. For users of software confi gured as
consumers such “metaphysical” questions aren’t often the most immediately
apparent, although questions of elegance, as will be suggested below are also
recapitulated at the scale of interface.

To return to the politics of elegance at the level of programming practice it
is also useful to think about those contexts where paradoxically, in order to be-
come more adequately self- referent, the process of writing software fi nds itself
constituted in combination with other elements. In working conditions where
programmers might be concerned with conserving elegance against other im-
peratives, such as the cutting of costs, the criteria are often posed in terms of
benign engineering common sense, or the ethics of satisfying the needs of the
user in the clearest way possible, or the onus of clarity to one’s collaborators.
Elegance is often invoked defensively. In each case however, elegance remains
a set of parameters against which a program can be measured.

Elegance

89

In the four criteria proposed by Knuth, elegance is constructed between the
machine and the talents of the programmer, with the context of the program
occurring as something already fi ltered into a problem defi nition. Elegance in
this sense is defi ned by its containment within programming as a practice that
is internally self- referent and stable.

Knuth’s criteria for elegance are immensely powerful when evaluating pro-
gramming as an activity in and of itself. It might be useful, however, to think
about the terms against which they might be modifi able, or for the context
of elegance to be allowed to roam, to make obscene couplings, to fi nd other
centers of gravity. In such cases, software is not simply software, and it in turn
conjugates those other realities with which it mixes with computation. Differ-
ent criteria for elegance pour into the domain of software, and those of software
begin to manifest in combination with other scales of reality.

At the same time, something interesting happens to stability at the level
of software. Further work by Gregory Chaitin has revealed that the decision as
to whether a program is the shortest possible is complicated by a fundamen-
tal incompleteness.4 As a program’s complexity increases, and concomitantly
that of the problem it deals with, there is an increasing diffi culty in accurately
stating the most concise means of answering it. At a certain threshold, the
possibility of stating the tersest formula for arriving at an answer is undecid-
able. The elegance of software then, by at least one of the above criteria, is not
absolutely defi nable at a mathematical level. This is not the same as saying,
as of software debugging, “If you don’t have an automated test for a feature,
that feature doesn’t really exist.”5 Elegance, because it cannot be proven, comes
down to a rule of thumb, something that emerges out of the interplay of such
constraints, or as something more intuitively achievable as style (in Knuth’s
terminology, an “art”). Like William Burroughs’ proposal for an informal self-
 discipline of movement, “Do Easy,”6 it is something that can be practiced and
learned, the dimensions, weights, capacities of objects dancing in an endless
dynamic geometry incorporating the body of the adept and the repositories
of heuristics that have gone before in the form of languages, institutions, ar-
chives, books, and techniques. Eventually, a certain effortlessness is achieved.

Effortlessness is offered straight out of the box in the vision of computing
which sees interaction with information as being best achieved through simple
appliances that are easy to use and which operate with defi ned, comprehen-
sible scopes. At this point, elegance gives way to another set of criteria, which
provide powerful, occasionally even fundamental constraints. Such constraints

Elegance

90

act as limiting devices that force a piece of software toward elegance. A condi-
tion of elegance, however, is that it charts a trajectory, often an unlikely one,
through possible conditions of failure. Finding a way of aligning one’s capaci-
ties and powers in a way that arcs through the interlocking sets of constraints
and criteria, the material qualities of software, and the context in which it is
forged and exists is key to elegance.

Achieving striking effects with an economy of means has been crucial to for-
mulating elegance within software, particularly within the domain of graphic
interaction. To produce a convincing animated sprite within a tiny cluster of
pixels, to develop a bitmapped font working at multiple scales, or to develop a
format allowing for the fast transfer and calculation of vector graphics over lim-
ited bandwidth requires a variation in criteria from those Knuth set for elegance
at the level of programming. (For instance, one might be working for a pre-
defi ned platform or a range of them, or within a particular protocol.) Equally, at
the level of the operating system, a language, a data- structure, or within a pro-
gram, defi ning the core grammars of conjunction and differentiation of digital
objects each provide scalar layers wherein elegance might be achieved or made
diffi cult. In such cases, elegance can be found in the solutions that allow a user
to get as close to the bare bones of the underlying layer of the system, without
necessarily having to go a layer deeper. In proprietary software, a good example
of such elegance is the formulation of the Tool Kit, built into the ROM of the
early Macintoshes, which defi ned the available vocabulary of actions, such as
cut, paste, save, copy, and so on that were able to work powerfully across many
different applications.7 Such work builds upon the particularity of digital and
computational materials. Crucially, however, it also abstracts from the many
potential kinds of interaction with data that might be desirable to produce a
limited range of operations that can be deployed across many different kinds
of information. While the range of such a vocabulary of functions might be
constrained, the concrete power that arises from the conjoint and recursive use
of these operations elegantly directs the power of computation in a trajectory
toward its conjugation with its outside. The outside in this case consists of the
multiple uses of these functions in programs aimed at the handling of multiple
kinds of data. Elegance then is also the capacity to make leaps from one set of
material qualities and constraints to another in order to set off a combinatorial
explosion generated by the interplay between their previously discrete powers.

Elegance can also be seen in the way in which a trajectory can be extended,
developing the reach of an abstraction, or by fi nding connections with do-

Elegance

91

mains previously understood as being “outside” of computation or software. A
fi ne example of such elegance would be achieved if a way was found to conjoin
the criteria of elegance in programming with constraints on hardware design
consonant with ecological principles of nonpollution, minimal energy usage,
recyclability or reusability, and the health requirements of hardware fabrica-
tion and disposal workers.8 Good design increasingly demands that elegance
follows or at least makes itself open to such a trajectory. The criteria of mini-
mal use of processor cycles already has ecological implications.

While elegance, then, demands that we step outside of software, keep com-
bining it with other centers of gravity, computation also suggests a means by
which we can think it through, prior to its formulation. The virtual has be-
come an increasingly signifi cant domain for philosophical thought, but it is
also one that is always simultaneously mathematical. Steven Wolfram’s fi gure
of the “computational universe”9 suggests that it is possible to map out every
possible algorithm, and every possible result of every algorithm. A concept of
the virtual reminiscent of Linneas’s attempts to graph the entirety of specia-
tion, this is a decisive imaginal fi gure, if not quite a mapping, of the constraint
of computability itself. It follows from Emile Borel’s idea that it would be
possible to construct a table containing every possible statement in the French
language, and indeed from Turing’s formalization of all possible computa-
tions. Needless to say, Borel’s table did not account for irony, that multiple
semantic layers can be embedded in the same string of characters. If an ironic
computational universe is not the one we currently inhabit, it will inevitably
occur as soon as computation snuggles up to its outside. The condensation of
multiple meanings into one phrase or statement turns elegance from a set of
criteria into a, necessarily skewed, way of life.

Here we can see a further clue to elegance within multiscalar domains, that
is to say, how it is produced in most actual computing work. The transversal
leap or arc characteristic of elegance does not necessarily depend on a struc-
tural, ethical, or aesthetic homomorphy between code, the problem it treats,
and the materials it allies itself with (such as hardware, language and people).
Elegance also manifests by means of disequilibrium, the tiny doses of poison,
doping, required to make a chip functional, to make it hum: a hack can be el-
egant, a good hack is inherently so. Elegance exists in the precision madness of
axioms that cross categories, in software that observes terseness and clarity of
design, and in the leaping cracks and shudders that zigzag scales and domains
together.

Elegance

92

Notes

1. Donald Knuth, Literate Programming.

2. Gregory Chaitin, Epistemology as Information Theory: From Leibniz to Omega. See also

Gregory Chaitin, MetaMaths! The Quest for Omega.

3. Donald Knuth, Literate Programming, 266–267.

4. Gregory Chaitin, “Elegant LISP Programs” in Cristian Calude, People and Ideas in

Theoretical Computer Science, 35–52.

5. Eric Kidd, “More Debugging Tips.”

6. William S. Burroughs, “The Discipline of DE.”

7. The Mac ToolKit was programmed by Andy Hertzfeld; see his Revolution in the Valley.

8. See Basel Action Network, available at http: // www.ban.org / ; Silicon Valley Toxics

Coalition, available at http: // www.svtc.org / ; Greenpeace, Green My Apple Campaign,

available at http: // www.greenmyapple.org / .

9. See Steven Wolfram, A New Kind of Science.

Ethnocomputing
Matti Tedre and Ron Eglash

Social studies of the relations between culture and knowledge in science and
technology have in general been approached from three directions. First, in
the ethnosciences approach, the study of the knowledge of indigenous so-
cieties has been given terms such as ethnobotany, ethnomathematics, and
 ethno- astronomy.1 Second, in the social constructionist approach, the cultural
dimensions of contemporary science and technology have been analyzed as a
“seamless web” of both social and natural constraining and enabling factors.2
Third, in the interactionist approach, the researchers take into account that
after technology has been designed and produced, its use may vary depending
on cultural context, adaptation, appropriation, and reinvention.3 Ethnocom-

Ethnocomputing

93

puting is an umbrella term that encompasses all three of these approaches to
examine the relations between computing and culture.

The technical elements of ethnocomputational practices include (formal or
non- formal) (a) data structures: organized structures and models that are used
to represent information, (b) algorithms: ways of systematically manipulating
organized information, and (c) physical and linguistic realizations of data struc-
tures and algorithms: devices, tools, games, art, or other kinds of realizations
of computational processes.4 Non- Western examples of the fi rst element can
be found in, for instance, Inca Quipu5; examples of the second element include
techniques for calculating textile lengths and costs6; examples of the third ele-
ment can be found in, for instance, the Owari game.7

The foregoing examples are manifestations of computational ideas in indig-
enous cultures, and they exemplify the diversity of computational ideas. There
are two central arguments in ethnocomputing: a design / social justice argu-
ment and a theoretical / academic argument. The fi rst argument is that a better
understanding of the cultural dimensions of computing can improve the de-
sign of computational devices and practices in disadvantaged groups and third
world populations. The second argument is that an understanding of the cul-
tural dimensions of computing can enrich the disciplinary self- understanding
of computer science at large.

Theory: Conceptual Starting Points

One of the most diffi cult barriers to the research of ethnocomputational ideas
is the unequal assessment of knowledge in locations of high social power (e.g.,
Western, fi rst- world, high- tech) and knowledge at the margins of social power
(e.g., indigenous, third- world, vernacular). By using the term ethnocomputing
to encompass both domains, the tendency to privilege the Western version as
the universal, singularly correct answer is avoided: all computing can be seen
as equally cultural, and cultural variation should be seen as a resource for di-
versity in theory, design, and modeling.

Stressing the sociocultural construction of computing does not mean advo-
cating ontological or epistemological relativism, that is, it does not mean ques-
tioning the existence of the real world or its underlying principles of physics
and mathematics. However, all human attempts to derive these laws and ex-
ploit them through technology are done through cultural lenses. Computing is
a fi eld in which sociocultural factors play a big role. Unlike the natural sciences,

Ethnocomputing

94

where most theoretical and practical problems arise from the complexity of the
physical world, in computer science the diffi culties usually stem from computer
scientists’ earlier work—computer scientists have created the complexity of
their own discipline. Earlier design choices in control structures, architectures,
languages, techniques, data structures, syntax, semantics, etc., affect future de-
sign choices.

However, the sociocultural infl uences in computing—whether in the fi rst
world or third world—should not be considered to be a problem, but rather
means for the design and understanding of effective computing technologies
and practices. For instance, Andrew Pickering8 has argued that science pro-
ceeds by accommodations, not by replacement. He argued that scientists ac-
commodate for whatever anomalies experiments may reveal, by reconfi guring
various elements of a model’s technical, social, and natural relations. There
are undoubtedly universal physical laws that govern the operation of compu-
tational devices, but only through a multiplicity of experiments—whether
carried out by silicon chips, carved African game boards, or the generation of
theorems and proofs—can one learn those principles.

Research Directions

As an umbrella term, ethnocomputing entails a number of active research di-
rections, of which three examples are presented here. Firstly, there is the project
that focuses on the history of computer science. Compared to the millennia-
 long history of mathematics, the standard history of computer science is very
short. As a discipline, computer science is typically thought of as having arisen
only with the advent of electronic computers. From the small group of coun-
tries that have led the computer revolution, an even smaller segment of people
have set the development trends of Information and Communication Technol-
ogy (ICT). The early development of computer science was mostly determined
by military and industrial priorities. Not surprisingly, home computers are also
designed for the Western knowledge worker.9

Computers are cultural artifacts in which a Western understanding of logic,
inference, quantifi cation, comparison, representation, measurement, and con-
cepts of time and space are embedded at a variety of levels. That is not to say
that all aspects of the computer should be redesigned to aid its cultural fi t but
that one needs to be aware of the underlying viewpoints of computing. Because

Ethnocomputing

95

of a lack of knowledge about the sociocultural history of computing, the lack
of cultural diversity in its teaching material, literature, and problems are more
easily overlooked. One project of ethnocomputing is to reassess the history of
computer science,10 just as ethnomathematics has inspired a reconsideration
of the infl uence of non- Western cultures in mathematics.

Secondly, there is the project of ethnocomputing that focuses on cultural is-
sues in human- computer interaction. It has been argued that there is an ongo-
ing shift from computer- centered computer science to user- centered computer
science.11 At the same time, computers, ICT in general, and the internet are
spreading to the developing countries. The ongoing diffusion of computing
technology in developing countries is increasingly diversifying the user base.12
Consequently, there is a clear motivation for learning more about users rather
than thinking of them as superfi cial “cultural markers,” and to take more re-
sponsibility for the effects modern ICT may have on people’s everyday lives.

Thirdly, there is the project of ethnocomputing that focuses on translations
between indigenous / vernacular and high- tech representations of computing.
For example, Ron Eglash describes a project that began with modeling tradi-
tional African architecture using fractal geometry. Field work in Africa showed
that these architectural fractals result from intentional designs, not simply
unconscious social dynamics, and that such iterative scaling structures can be
found in other areas of African material culture—art, adornment, religion,
construction, games, and so forth—often as a result of geometric algorithms
known (implicitly or explicitly) by the artisans.

Computational models of these fractals have been developed into a suite
of interactive tools in which grade 4–12 students could control simulation
parameters (such as geometric transformations and iterative levels) and create
not only simulations of the original indigenous designs, but also new creations
of their own making. The tools also include modeling computational aspects
of Native American design (such as iterative patterns in beadwork, basketry,
and weaving), Latino design (such as least common multiple relations in tra-
ditional drumming patterns and the iterative construction of pyramids), and
youth subculture designs (linear and nonlinear curves in graffi ti). The collec-
tive website, titled “Culturally Situated Design Tools”13 has been successfully
used in math, art, and technology education classes, primarily with minor-
ity students from African American, Native American, and Latino cultures
(fi gure 7).

Ethnocomputing

96

Applications in ICT Education

Information and Communication Technology research has created many gains
for majority populations in Western countries. But both students from dis-
advantaged groups in the West and the general population in non- Western
nations have had substantially fewer gains from ICT research. Some of this is
attributable to economic factors. Schools with concentrations of disadvantaged
groups in Western nations tend to have fewer ICT resources, and non- Western
general populations have much less computer access. There are also cultural
factors that hinder ICT education and its use in developing countries. ICTs are
not culturally- neutral objects and concepts.

The cultural specifi city of ICTs is perhaps most evident in the case of peda-
gogy. Different kinds of curricula, textbooks and other study material, the ex-
amples used, the choice of pedagogical approaches, and even what is considered
a “valid problem” in ICT education often have a heavy Western bias. This bias
sets expectations that only the students with a Western cultural background
can meet without extra cognitive overhead. Students from other cultures expe-
rience more diffi culties than Western students when trying to adapt to cultur-
ally specifi c examples and applications that the current ICT education exhibits,

Figure 7 Cornrow curves design tool.

Ethnocomputing

97

and when the non- Western students’ own mental imagery is not supported.
The problem with the cultural specifi city of ICT education in developing coun-
tries has been addressed on a number of levels ranging from mere importing of
technology, to technology transfer, application, and contextualization.14

Applications in Innovation and Diffusion

Technological decisions are often made on grounds other than technical limi-
tations: for instance, on economic, political, ideological, or cultural grounds.15
Several motivations can be attributed, for example, to the development of
GNU / Linux and its introduction into use.16 Arguably, GNU / Linux is advanced
(technical motivation), free of initial investment (economical motivation), its
roots are in hacker ethics and the free software movement (ideological and social
motivations), and sometimes it can emphasize a cultural or political message
(e.g., IMPI Linux in South Africa and RedFlag Linux in China). If one wants to
really understand why GNU / Linux has developed as it has, these motivations
cannot be ignored, and the same applies to all other computational systems.

Modern ICT tools are not detached from other technologies, but because
complete systems are bound to and based on the design decisions of pre- existing
tools,17 they have to be relevant to the existing infrastructure.18 ICT can be im-
plemented in highly variable situations, as long as the local infrastructure (e.g.,
electricity, phone lines, or OSI layers) is known. Second, the ICT systems have
to be relevant to local needs. Technologies that are not advantageous from the
viewpoint of the users are not easily taken into use, no matter how great their
“objective” advantage is.19 Third, ICT systems have to be relevant to the local
users. Systems that are hard to use are adopted more slowly than those that are
easy to use, or they may be rejected altogether. Fourth, ICT systems have to be
relevant to the local culture and society. The structure of a social system may
facilitate or impede the diffusion of technologies. Technology transfer from
Western countries to developing countries often ignores aspects of relevance.

Other Ethnocomputing Exemplars

Examples of ethnocomputational phenomena are numerous and they range
from social to technical, from theoretical to practical, from low- tech to high-
 tech, and so forth. A number of different ethnocomputing projects are pre-
sented below.

Ethnocomputing

98

Cellular Automata Model for Owari
Aspects of the Ghanaian game Owari have been modeled in computational terms
such as one- dimensional cellular automata.20 But cellular automata have their
own history and cultural dimensions. For example, John von Neumann, the
founder of cellular automata, was motivated by his interest in self- reproducing
robots; his interest has been attributed to the uncertain environment of his child-
hood as a Jew in Eastern Europe.21 The particular form of cellular automata that
von Neumann chose—two- dimensional cells with only four nearest- neighbors
that are oriented vertically and horizontally—was a result of the computa-
tional restrictions of his day. Later models utilized eight nearest- neighbors (the
additional four at each corner), hexagonal cells, one- dimensional and three-
 dimensional arrays, and even (e.g., in the case of Sugarscape, one of the fi rst
artifi cial society models) a return to von Neumann’s four nearest- neighbor con-
fi guration. Each of the varieties of cellular automata, including the Ghanaian
game Owari, is the result of a combination of technical and social features.

Simputer and the $100 Laptop
The famous Simputer project provides an example of the hardware side of ethno-
computing. Conceived during the organization of the International Seminar on
Information Technology for Developing Countries (Bangalore, October 1998),
the original Simputer (simple, inexpensive, multilingual computer) plan dis-
cussed the need for a low- cost device that will bring local- language IT to the
masses. Another technology- oriented project, the OLPC (one laptop per child)
project (also dubbed “the $100 laptop”), developed by researchers at MIT, uses
open- source software focused on education, and is connected with several in-
dustrial partners. However, at a UN conference in Tunisia, several African offi -
cials were suspicious of the motives of the project, suggesting it was excessively
infl uenced by an American framework for development. The important point
here is not the outcomes of Simputer and OLPC projects, but that such designs
must be considered from a wide range of socio- technical intersections.

IAAEC Alternative to the Desktop Metaphor Project
Brian Smith from MIT Media Lab and Juan Gilbert from Auburn University
have explored culturally- specifi c alternatives to the desktop metaphor. They
note that prior attempts to redesign the graphical user interface (GUI) by re-
placing the desktop with spatial metaphors (e.g., rooms, buildings, villages)
had largely failed—they were more cumbersome than the desktop metaphor.

Ethnocomputing

99

The aim of Smith and Gilbert is to focus on African- American populations and
to explore the various approaches to information manipulation that are already
in use in these communities. While replacing the desktop GUI is one pos-
sible outcome, it is not necessarily the ultimate goal. Rather the aim is to use
the metaphor research as a spring board for broader research that aims to cap-
ture aspects of use that have been neglected by the dominance of the desktop
metaphor.

Culturally Embedded Computing Group
Headed by computer scientist Phoebe Sengers, this Cornell University group
has been generating collaborations between the Department of Information Sci-
ences and the Department of Science and Technology Studies. They emphasize
critical technical practice (a term coined by Phil Agre) as a means of integrat-
ing IT design with cultural, philosophical, and social analysis. Many of their
projects make use of culturally and individually unique home environments,
fusing various IT devices with new modes of communication and self- refl ection.
For example, a mailbox that responds to the affective content of postcards (via a
hidden barcode) becomes a social probe for various human interactions.

Native American Language Acquisition Toys
With the support of the Cherokee Nation tribal council, fi lmmaker Don
Thorton teamed with the Neurosmith Corporation to create a version of their
educational toy for Native American languages. Neurosmith provided the pro-
prietary software, and Thorton himself digitized the script. The resulting toy,
“Little Linguist,” became commercially available in 2001. It is physically the
same toy used for all the languages; the only difference is the cartridge con-
taining the digitized script. A similar project is planned for the Cree language
from an MIT team headed by Vinay Prabhakar and Carlos French, with the aim
of providing a more culturally- specifi c physical device as well as its digital
scripting.

Conclusion

The multidimensional approach that ethnocomputing promotes encourages a
partnership between computer science and social science. The common goal
is to bring the historical and societal constructions of the computational prac-
tices of different cultural groups to bear on technological design and practice.

Ethnocomputing

100

Notes

1. See, C. M. Cotton, Ethnobotany: Principles and Applications.

2. For example, Wiebe E. Bijker, Thomas P. Hughes, and Trevor Pinch, eds., The

Social Construction of Technological Systems: New Directions in the Sociology and History of

Technology; Donald MacKenzie and Judy Wajcman, eds., The Social Shaping of Technol-

ogy, 2nd ed.

3. For example, Nelly Oudshoorn and Trevor Pinch, eds., How Users Matter; Ron Eg-

lash, Jennifer L. Croissant, Giovanna Di Chiro, and Rayvon Fouche, eds., Appropriating

Technology: Vernacular Science and Social Power.

4. Matti Tedre et al., “Ethnocomputing: ICT in Social and Cultural Context,” in Com-

munication of the ACM, vol. 49 no. 1.

5. Marcia Ascher and Robert Ascher, Code of the Quipu: A Study in Media, Mathematics,

and Culture.

6. Claudia Zaslavsky, Africa Counts: Number and Pattern in Africa Culture.

7. Ron Eglash, African Fractals: Modern Computing and Indigenous Design.

8. Andrew Pickering, The Mangle of Practice: Time, Agency, and Science.

9. See Ron Eglash and J. Bleecker, “The Race for Cyberspace: Information Technology

in the Black Diaspora.” Science as Culture, vol. 10, no. 3.

10. Matti Tedre et al., “Is Universal Usability Universal Only to Us?”

11. Ben Shneiderman, Leonardo’s Laptop: Human Needs and the New Computing Technologies.

12. Minna Kamppuri, Matti Tedre, and Markku Tukiainen, “Towards the Sixth Level

in Interface Design: Understanding Culture.”

13. “Culturally Situated Design Tools,” available at http: // www.rpi.edu / ~eglash / csdt.html.

14. Mikko Vesisenaho et al. “Contextualizing ICT in Africa: The Development of the

CATI Model in Tanzanian Higher Education,” African Journal of Information and Com-

munication Technology 2(2) (June 2006) 88–109.

Ethnocomputing

101

15. See, for example, MacKenzie & Wajcman, The Social Shaping of Technology.

16. Matti Tedre et al., “Ethnocomputing: ICT in Social and Cultural Context.”

17. MacKenzie & Wajcman, The Social Shaping of Technology.

18. Everett M. Rogers, Diffusion of Innovations.

19. Ibid.

20. See Ron Eglash, “Geometric Algorithms in Mangbetu Design,” and Henning

Bruhn, “Periodical States and Marching Groups in a Closed Owari.”

21. Steve Heims, The Cybernetics Group.

Function
Derek Robinson

A word is a box containing words.
—gertrude stein1

A function in programming is a self- contained section of code (one still comes
across the term “subroutine,” which is the same thing) that is laid out in
a standard way to enable deployment and re- use at any number of different
points within a program. It’s a way of minimizing the duplication of intel-
lectual effort, of making things routine, and as Alfred North Whitehead
remarked, “Civilization advances by extending the number of important op-
erations which we can perform without thinking about them.”2

Functions are usually small and limited to performing a single task. They
are active, they do things to things. Some typical examples of functions would
be arithmetic operators like “plus,” “times,” and “square root,” which can be
combined with other arithmetic operations to compose expressions. If they
might be useful in the future, these expressions can be named and turned into
functions. Programmers will often keep personal fi les of utility functions for
importing into projects; collections of greater breadth and size are made into
libraries and maintained in repositories for use by other coders. It wasn’t so
long ago that libraries of machine code subroutines, with a light dusting of
syntactic sugar, formed the basis of the fi rst high level computer languages.3

Function

102

Programming is a civic- minded activity. Politeness counts. Intense thought
is expended in the hope that others, including most importantly one’s future
self, will not have to keep repeating the same tired phrases again and again.
We try to be smart about parameterizing and abstracting, about dignifying
as Variables those parts of things that vary, and as Functions the parts that do
not, and which are to this degree redundant, vulnerable to automation, ripe
for refactoring or removal. The activity of programming, like Jean Tinguely’s
famous self- destroying automaton (“Homage to New York,” 1960), occupies
the peculiar position, part teleological and part topological, of existing, ulti-
mately, to obviate its own existence. (Q: “If computers are so smart, why don’t
they program themselves?” A: “Somebody would fi rst have to write the pro-
gram, and no- one has yet been that smart.”)

When defi ning a function, there is some sort of preamble establishing its
identity (usually a name, although sometimes not) and declaring any arguments
or parameters that it will require. Something like “function defunknose

(x,y)”—defunknose here being the name and x and y the arguments—fol-
lowed by the function’s “body,” the block of code that actually carries out the
computation the function was designed to perform. When later this function
is called (by invoking “defunknose (5,6)” for example) each instance of an ar-
gument found in the function’s body gets replaced by its corresponding value.
In general, calling a function with different argument values produces differ-
ent results. In the more sophisticated languages like Lisp or JavaScript, func-
tions can be passed as arguments to functions (it might well be an anonymous
“lambda” function that is passed). Finally it is customary (but not obligatory)
for functions to return results to their callers. The code that invokes a function
should have no reason to care how the result was produced.

A function’s defi nition is a symbolic expression built up recursively from
previously defi ned functions. The regressus of expressions composed of func-
tions whose defi nitions are expressions composed of functions ultimately bot-
toms out in a small and irreducible set of atomic elements, which we may call
the “axioms” or “ground truths” of the symbol system. In a computer these are
the CPU’s op- codes, its hardwired instruction set. In the system of arithmetic
they would be the primitives “identity” and “successor,” from which the four
basic arithmetic operations can be derived and back into which they can be re-
duced. Such radical atomism was a favorite pastime of analytical philosophers
of the mid- twentieth century, prefi guring the development of electronic giant
brains designed to tirelessly carry out just this sort of task (which our little

Function

103

human brains have diffi culty keeping straight). (This is why writing software
is so hard.)

Functional Programming

Functional Programming is an approach to programming and programming
language design that uses only functions. It abjures any assignment of values to
variables on the grounds that this can lead to unexpected side effects and thus
compromise correct execution of programs. A function ought not, according to
this philosophy, affect anything outside its scope; consequences shall owe only
to results returned, and the only proper way to interact with a function is by
means of the values passed to it as arguments when the function is invoked.

The fi rst functional programming language was GEORGE, created in 1957
by Charles Hamblin for use on DEUCE, an early Australian computer. (Every-
thing was upper case in those days.) The design was termed a zero- address
architecture, because no memory was allocated for named, persistent variables;
thus no symbol table was needed either. Any argument values needed by a
function were accessed though a special dynamically growing and shrinking
range of addresses called the “stack.” (Imagine a stack of plates: the last plate
added is the fi rst removed.) A function could count on its arguments having
been the last things pushed onto the stack before it was called; a stack pointer
kept track of the current “top” cell as data were added to and removed from it.
All calculations used the stack to store intermediate results, and the fi nal result
would be left on top of the stack as an argument for the next function in line.
GEORGE programs used Reverse Polish Notation, a strange- looking syntax
where operands precede their operators. Today’s programming languages will
often translate their code into RPN internally, and use a data stack for expres-
sion evaluation. Again, functions are recursively constructed symbolic expres-
sions, and stacks are essential to their unraveling.4

Purely functional programs, despite or because of their elegant construc-
tion, are rarely found outside computer science textbooks. Most programming
jobs involve states of affairs and making changes thereto conditional thereupon,
but functions of the purer stripe don’t acknowledge the concept of “mem-
ory”—for them there is only a continual process of transformation. It’s very
Zen, very committed, very macrobiotic. A function- ish style of programming,
on the other hand, is encouraged in languages like Lisp, Forth, or JavaScript;
it is empirically, programmer- lines- of- code- measurably a very productive way

Function

104

to realize interesting and useful things in software. It’s about writing many
little functions that you then get to reuse inside the defi nitions of not yet de-
fi ned little functions, and so on, and so on, bootstrapping one’s way up a per-
sonal tower of metalinguistic abstraction until at the very top there is perched
one fi nal function: the program itself. (Think of a bathtub full of mousetraps,
and yourself poised there, ping- pong ball in hand. Think cascades, fusillades,
think detonations of denotations. Now let go, let fl y.)

Functions as Mappings

But real mathematical functions aren’t executable subroutines. A function is
an ideal abstract consensual cerebration, and the code a programmer commits
is only one out of indefi nitely many possible materializations, each a pale sub-
lunary refl ection of the ideal. A function proper is propaedeutic, telling how
the thing should behave, giving the theory but not concerning itself with how
it is to be implemented. The “real” sine function, for example, defi ned over the
real numbers, would require infi nite- precision arithmetic—demanding an in-
fi nite supply of memory to inscribe its unscrolling digits, and asking all eter-
nity for its satisfaction.

Our familiarity with functions like the sine curve shouldn’t get in the way of
a more general, modern conception of functions as mappings. Functions as un-
derstood by programmers are pretty close to the modern idea. That computers
can’t represent continuous values isn’t really a big deal; human mathematicians,
after all, share the same limitation. (Even if by dint of drill and long contempla-
tion they learn to conceive in themselves a supple, subtle, logical intuition of the
infi nitely great and the vanishingly small, to the point where they may indeed
come to see their occult fi ctions as Reality. As actually the realer Reality. As in-
deed, gone far and deep enough into their cups, the very thoughts of God.)5

A function can be regarded as a look- up table (often enough it may be
implemented as one too) which is to say a mapping from a certain symbol, the
look- up key, to a value associated with this key. Modern scripting languages
typically include as a native data type the “associative array” (also known as
hash table, dictionary, or map) for managing look- up tables of arbitrary com-
plexity. In JavaScript associative arrays are at the same time “objects,” the
main building blocks (as “lists” are in Lisp) out of which all other entities are
constructed. Associative arrays, as the name suggests, can, with a bit of coding
cleverness, give software an associative capability, permitting programmers

Function

105

to emulate (after a fashion) the more fl exible, soft- edged categories of natural
cognition,6 against the all- or- nothing, true- or- false Boolean logic, which many
people still seem to think is all that computers are capable of.

To briefl y pursue the organic analogy: individual neurons, while glacially
slow by comparison with CPU switching speeds, in their imprecise massively
parallel way still vastly “outcompute” (buying the theory that computations are
what brains do) the swiftest supercomputers. It’s a version of the classic algo-
rithmic trade- off between processing time and memory space, fi rst essayed by
the nineteenth- century computing pioneer Charles Babbage.7 It may often be
advantageous to precompute a function and save having to recalculate it later
by compiling the results into a table of key- value pairs (with its argument vec-
tor as the look- up key and the result returned as the key’s value), perhaps with a
rule for interpolating (or “connecting the dots”) between tabulated data values
at look- up time. In cases where all one has is a collection of discrete samples—
where the function that generated the data isn’t known a priori, for example
measurements of things and events taking place in the world—a look- up table
and a rule for smoothing the data belonging to nearby or similar points is hard
to beat. (Many of the techniques used in statistics and neural network modeling
can be seen as wrinkles on this “nearest neighbors” idea.) Such numerical meth-
ods date back to the Ptolemys, when trigonometric tables were fi rst compiled
for use by astronomers, navigators, and builders.

Functions and Logic

A function is an abstract replica of causality. It’s what it is to be a simple, de-
terministic machine: the same input must always map to the same output.
This intuition is at the heart of logic. If repeating the same operation with the
same input gives a different output, you know without a doubt that something
changed: it isn’t the function you thought it was, it isn’t a simple machine. Or
perhaps one’s measuring instrument was faulty; maybe you blinked. Still you
will know for certain that something went sideways since (it is of our human-
ness to believe) nothing happens without a reason. This inferential form was
anciently termed “modus tollens.” It says that “A implies B; but not B; hence
not A.” In other words, there is some theory “A” with testable consequence “B,”
but when the experiment is performed the predicted outcome wasn’t observed,
so we must conclude (assuming that the twin constancies of nature and reason
haven’t failed us) that the theory was wrong.8

Function

106

There’s a one- wayness to functions, an asymmetry. They can be one- to- one,
where a single input value (which could be an argument list or vector made up
of several values) is associated with a single output value. Or they can go from
many- to- one: two or more inputs arrive at the same output. But they can never
go from one- to- many. The same input must always—if this thing is rational,
if it’s a machine—produce the same result. One can’t in general simply replace
a function’s inputs by its outputs, run the function backwards and expect to
get the inputs back as the result; that isn’t deterministic, it’s not a function,
it will not work.

The exception to the above would be a class of reversible logic functions that
at some point might emerge from pure theory to fi nd practical uses in cryptog-
raphy and / or quantum computing.

Theoretically, a universal computer could be made entirely out of reversible
logic gates; in principle therefore any irreversible function can be replaced by
a reversible function having certain nice theoretical properties like extremely
low or even nonexistent power dissipation. It will certainly be interesting to
see what comes of it. There are a few well- known examples of simple reversible
functions: multiplication by – 1, which toggles the sign of a number; the Bool-
ean NOT (turning 0 into 1, and 1 into 0); and EXCLUSIVE OR. This last-
 named is a personal favorite: given two equal- length bit- patterns as inputs,
XOR will yield a bit- pattern which XORed with either of the two original
bit- patterns reproduces the other one. But these simple reversible functions
are not suffi cient for universal reversible computation.9

A corollary of the asymmetry of functions is that observing a function’s out-
put, even when we know its internal mechanism, doesn’t allow inferring with
certainty the input that caused the output. What is past is past, nor is it logi-
cally valid to adduce absent causes from present signs: a moment’s refl ection will
reveal that any state of affairs could be a consequence of many different possible
causes. How odd then, that this native forensic mode of reasoning, in real life
so relied upon, should be logically invalid. Aristotle called it the “enthy meme”
or “logically fallacy” of “affi rming the consequent.” (An unfortunate transla-
tion: logical fallacies though fallible need not always lead to false conclusions.)
To affi rm the consequent reverses the deductive syllogism (“modus ponens”)
which states, “If A implies B, and A, then B.” It is to say rather, “If A implies
B, and B, then A.” The American philosopher C. S. Peirce thought affi rming
the consequent (which he termed “abduction”) was after deduction and induc-
tion, the missing but vital third form of reasoning without which any account

Function

107

of logic or science would remain incomplete. It’s what the palaeontologist does
in reconstructing a whole brontosaurus from a brontosaur’s toe- bone; or the de-
tective, in reconstructing a crime. It is the fallible anti- logic, the “analogic,” of
sense perception, pattern recognition, diagnosis: how we read the signs and in-
 between the lines.10 Computer science rediscovered abductive inference in the
1980s; it had been neglected since AI broke with cybernetics and information
theory some twenty years before.

Abductive or analogical pattern- matching is easily realized by means of an
inverted index, a variant form of look- up table where rather than having keys
mapped to single values they are mapped to sets or lists of values. (An inverted
index therefore isn’t a function but rather a “relation.”) Nothing too com-
plicated, it’s how a book index or search engine works. The words given in a
search query will have already been associated by the search engine with lists
of spidered web pages where these terms have occurred. The best matching
pages are identifi ed by superimposing the result lists belonging to the given
terms, so that the more times a page is cited in the aggregated multiset, then
the higher, all else being equal (indexes also employ statistical methods that
assign numeric “weights” to terms and items to better refl ect their probable
relevance) it will be placed in the outcome.11

The index, as it were, “reverses time.”12 It is an imperfect, indeterminate,
in logical terms strictly illegitimate one- to- many mapping that goes from a
single “effect” (the input key) to the set of its multiple possible “causes” (the
key’s inverted fi le). It is a kind of abstract deconvolution, a way to tackle what
physical scientists call the “general inverse problem.” The evidential traces
or signs of an event are convolutions (literally “enfoldings”) of the event with
whatever objects or medium its nth- order effects encounter and become mixed
up with. The material imparts its own intrinsic bias or twist to the event
record; it acts like a fi lter or lens. To recover an “image” of the time- and-
 space- distant original entails superimposing many scattered, diffuse, faint, re-
dundant, and to unknown degree noise- corrupted13 signals from its spreading
“event- cone.” A term from physical optics perfectly captures the idea: “circles
of confusion.” Drawn together14 and superimposed, the circles of confusion re-
solve an image (doubtless rather blurry, but still useful) of the original event.
(The “circles” are really cross- sectional slices of a spherical (roughly) wavefront
of effects propagating outwardly in space and forward in time to intersect the
plane of image formation in what I hope isn’t too strained an analogy.)

Function

108

Embedding Functions

Computers and software, for all that they have become ordinary parts of life
and when working correctly are as much taken for granted as sewers or electric-
ity, are scaffolded upon certain inviolable rules, “deep structures” that under-
lie (we are led to infer) both physical reality and the mental apparatus by whose
aid we are able to recognize and grasp reality, to name and shape it. The ele-
ments of software, its functions and variables, are at bottom simple things; as
equally, in the faith of scientists and philosophers, must be the elements and
principles which make up the world.

But software also teaches that the simplicity is hard- won; it is hard to slow
thoughts down to allow their dissection into irreducible, atomic components
of structure and action that permit reconstructing them into something that
behaves the way you imagined it would when you had the idea. Underwrit-
ing the ability of people to create software is a bedrock gnosis of “how things
work,” a kinesthetic intuition of causes and effects that is as much physical
as logical. The function is a mental diagram of an ideal machine. With the
development of computers, so deeply enmeshed in the semiconductor phys-
ics of the substrate, it became evident (if it wasn’t before) that thought’s rig-
ging of logic—the “it- is- so”- ness of recognizing when a thing makes sense and
when it doesn’t, quite—is at least conditioned by the basic construction of the
world; and that to know one clearly is also to know the other.15

Notes

1. Gertrude Stein, as quoted in William Gass, The World Within the Word.

2. Alfred North Whitehead, Introduction to Mathematics.

3. Pride of place goes to the “A- O compiler,” created in 1952 for the Remington Rand

UNIVAC computer by a team under Grace Hopper’s admiralship. Also notworthy is

Kenneth Iverson’s APL, which was an early functional programming language originat-

ing in a Fortran matrix subroutine library. (K. E. Iverson, A Programming Language.)

4. For stacks, see Phil Koopman’s defi nitive, Stack Computers: The New Wave, now avail-

able online from the author’s home page.

5. No one save the mathematician or theologian could get so precise about something

that by its defi nition is so indefi nite. It’s not for nothing (it was rather for aleph- null)

Function

109

that the fi nest speculative theologist of the modern era was Georg Cantor, inventor of set

theory and the transfi nite numbers. (Even while his career in the higher abstraction was

punctuated by periods of enforced repose in asylums for the deeply spiritually affl icted.)

6. The psychologist Roger Shepard, in an essay on the preconditions of knowing, de-

scribes how the world transduced by the sensory enfi lade serves as an index into “con-

sequential regions of psychological space” where are found and activated a suite of

innate and acquired propensities and preparednesses—memories and knowledge that

will likely prove equal to the circumstances at hand. Vertebrate brains seem to be orga-

nized in such a way that a high- dimensional feature vector (a “sparse population code”

representing the animal’s ensemble sensory nerve activity) acts as an “address” into, in

effect, a very large, wet, sloppy look- up table. (R. N. Shepard, “Towards a Universal

Law of Generalization for Psychological Studies.”) in Science Vol. 237 Issue 4820.

7. Charles Babbage, The Ninth Bridgewater Treatise.

8. Sir Karl Popper was knighted for, among other things, having pointed out that the

power of science is mostly negative, and that scientifi c progress proceeds by disproving

erroneous theories (i.e., by modus tollens) not by proving “correct” theories true. The

latter possibility obtains only in tightly circumscribed synthetic worlds like Euclidean

geometry or deductive logic—or, in principle, software. Resolution theorem prov-

ing—the basis of the logic programming language Prolog—does its stuff by disprov-

ing in a reductio ad absurdum the logical complement of the proposition whose truth

one wishes to prove. Obviously it can only work under the closed- world assumption

that each concept has one and only one antithesis whose negation exactly reproduces

and so vouchsafes true the original proposition. Full certainty can only be had in a de-

ductive system whose logical, causal constitution has been established from the bottom

up. (Descartes: “If you want to know how a body works, or a world, then build one.”)

9. Pop science treatments of quantum computing (and the role of reversible functions

therein) include Julian Brown, Minds, Machines, and the Multiverse. People who are tired

of being told that quantum mechanics (and with it virtually the entire past hundred

years of physics) must lie forever beyond the grasp of ordinary understanding will ap-

preciate Carver Mead’s well- credentialed demurral, Collective Electrodynamics.

10. On abduction: Carlo Ginzburg, “Clues: Morelli, Freud, Sherlock Holmes.”

11. For best matching see Derek Robinson, “Index and Analogy: A Footnote to the

Theory of Signs.” The fi rst inverted index was the Biblical concordance undertaken

in 1230 by an ecclesiastical data processing department of fi ve- hundred monks,

Function

110

directed by Hugo de Sancto Caro (Hugues de Saint- Cher), a Dominican friar later

made a cardinal.

12. In an intriguing if eccentric book, Symmetry, Causality, Mind, computer vision

researcher Michael Leyton proposes that “time reversal” is the sole task undertaken by

intelligence. He sees vision as a two- fold problem: fi rst, the eye must reverse the forma-

tion of the optical image incident on the retina (a classic “inverse problem”) to identify

objects and the spatial relations between them; secondly, the mind must “reverse the

formation of the environment”—it must adduce reasons why these objects should be

where they are, and should have the forms they have, and it must ascertain as best it

can the intentions or implications of these things with respect to its own needs and

goals. Only then can it be in a position to decide what, if anything, to do about the

situation.

13. “Noise- corrupted” is synonymous with “massively convolved with impractically

many broadly diffused and attenuated traces of events that we happen not to be inter-

ested in right now.”

14. “Drawn together”—see Bruno Latour’s essay “Drawing Things Together” for an

account of broadly analogous issues in the social production of knowledge.

15. Readers with a taste for such deliberations might enjoy following the elegant turns

Paul Valery’s curiosity takes in his essay, “Man and the Seashell.”

Glitch
Olga Goriunova and Alexei Shulgin

This term is usually identifi ed as jargon, used in electronic industries and
services, among programmers, circuit- bending practitioners, gamers, media
artists, and designers. In electrical systems, a glitch is a short- lived error in a
system or machine. A glitch appears as a defect (a voltage- change or signal of
the wrong duration—a change of input) in an electrical circuit. Thus, a glitch
is a short- term deviation from a correct value and as such the term can also de-
scribe hardware malfunctions. The outcome of a glitch is not predictable.

When applied to software, the meaning of glitch is slightly altered. A
glitch is an unpredictable change in the system’s behavior, when something
obviously goes wrong.

Glitch

111

Glitch is often used as a synonym for bug; but not for error. An error might
produce a glitch but might not lead to a perceivable malfunction of a system.
Errors in software are usually structured as: syntax errors (grammatical errors
in a program), logic errors (error in an algorithm), and exception errors (arising
from unexpected conditions and events).

Glitches have become an integral part of computer culture and some phe-
nomena are perceived as glitches although they are not glitches in technical
terms. Artifacts that look like glitches do not always result from an error. What
users might perceive as “glitchy” can arise from a normally working function of
a program. Sometimes these might originate from technical limitations, such as
low image- processing speed or low bandwidth when displaying video. For ex-
ample, the codecs of some video- conferencing software, such as CU- Seeme,1 vis-
ibly “pixelize” the image, allowing the compression of parts of the images that
remain static over different frames when, for instance, the transfer speed drops.

To comply with the customary usage of “glitch” we propose to think of
glitches as resulting from error, though in reality it might be diffi cult or im-
possible to distinguish whether the particular glitch is planned or results from
a problem. To understand the roles glitches play in culture, knowing their ori-
gin is not of primary importance. Understanding glitches as erroneous brings
more to a comprehension of their role than trying to give a clear defi nition that
would include or subordinate encoded glitches and glitches as malfunctions.

Glitches are usually regarded as marginal. In reality, glitches can be
claimed to be a manifestation of genuine software aesthetics. Let us look at
machine aesthetics as formed by functionality and dysfunctionality, and then
proceed to the concept of glitches as computing’s aesthetic core, as marks
of (dys)functions, (re)actions and (e)motions that are worked out in human-
 computer assemblages.

Computers do not have a recognizable or signifi cant aesthetic that possesses
some kind of authenticity and completeness. It is commonplace that the aes-
thetics of software are largely adopted from other spheres, media, and conven-
tions. Thus, the desktop is a metaphor for a writing table, icons descend from
labels or images of objects, while the command line interface is inherited from
telegraph, teletype, and typewriter.

The aesthetics of computers that developed over a few decades from the
early 1950s to the early 1980s, when they were fi rst introduced to the public
and on to the current time (consisting of dynamic menus, mouse, pointer,
direct manipulation of objects on the screen, buttons, system sounds, human

Glitch

112

computer interaction models) are, in our opinion, not rich and self- suffi cient
enough to be called the aesthetic of the computer.

On top of that the current aesthetic of software is not complete; it does
not work very well as it does not contribute enough to the computer’s user-
 friendliness. Besides, it is a widely acknowledged problem that the customary
information design principles of arranging computer data, derived from ear-
lier conventions (such as the treelike folder structure), result in users having
problem, with data archiving and the memorization of document names and
locations.

Historically, the shape, style, and decoration of every new technology has
been introduced in a manner owing much to the aesthetics and thinking cus-
tomary of the time. Thus, when mechanism had not yet replaced naturalism as
means of framing reality, Lewis Mumford argues, mechanisms were introduced
with organic symbols. For instance, a typical eighteenth century automaton, “the
clockwork Venus,” consisted of a female mannequin resting on top of a clock-
work mechanism.2 As technology developed further, some genuine machine
aesthetics were born, primarily derived from machine functionality. And it was
their functionality that some avant- garde movements of the twentieth century
admired in the machine. For instance, among the Russian avant- garde move-
ments of the beginning of the twentieth century (e.g., Cubo- Futurism, Abstrac-
tionism, Rayonism, Suprematism) artists such as Mayakovsky, Gontcharova,
Kandinsky, Larionov, and Malevich poeticized new machines for their speed,
energy, and dynamics. The methods they used to depict movement, light,
power, and speed could be regarded aesthetically as grandparents of some of
today’s glitches (certain correlation of color mass; unlimited diversity of colors,
lines and forms; repeating geometrical structures, fi gures, lines, dots, etc.).

Rationalism and the precision of technical creation inspired many. Thus,
Meyerhold writes: “Arts should be based on scientifi c grounds.”3 Russian con-
structivists such as Tatlin established a compositional organization based on
the kinetics of simple objects and complex ideas of movement—rotating in-
ner mechanisms and open structure, using “real” materials—all intended to
function for utilitarian use. Punin writes of Tatlin’s Tower: “Beneath our eyes
there is being solved the most complex problem of culture: utilitarian form
becomes pure creative form.”4

Functional machines, primarily built by engineers, established strong aes-
thetic principles that have defi ned technological design for years. Functional
elements are later used as nonfunctional design elements that are appreciated

Glitch

113

as “beautiful” by users not least due to the cultural memory of their origin. For
instance, the curved part of the wing over the tire of some car models repro-
duces the guards used in horse- driven vehicles and early automobiles to pro-
tect users and vehicle from dust and to affi x lights onto. It does not carry any
advance in function, but is used in automobile design as a recognizable and
nostalgic element.

Today, the functionality of the computer is concealed inside the gray / white /
beige box that covers the cards, slots, motherboard, and wires. In modding5
these parts are reimagined as elements of visual richness that convey a sym-
bolism. Hardware elements are aestheticized: Users might install neon lights,
weird jumbo fans and colorful wires into a transparent computer case or even
build an entirely new one from scratch. Electronic boards jutting out at 90
degree angles and architectures of twisted wire are widely used, as in cinema
and design, to represent technical substances.

By contrast, the way data is presented on a hard drive is not human- readable.
It is stored in different segments of the disk and reassembled each time the
documents are retrieved according to a plan kept as a separate fi le. Software
functionality here is invisible and an interface is needed to use the machine.
Modern software almost always conceals its functionality behind the window.
It provides us instead with images such as a page fl ying from one folder to an-
other, an hourglass, or that of a gray line gradually being fi lled with color.

There are moments in the history of computer technology that are rich in
computer functionality producing distinct aesthetics. At such times, computer
functionality reveals itself through technological limitations. Bottlenecks, such
as processor speed, screen resolution, color depth, or network bandwidth—
4- bit, 8- bit music, 16- color pixelized visuals, slow rendering, compressed im-
age and video with artifacts—create an authentic computer aesthetics, that is,
the aesthetics of low- tech today.

There are vast contemporary 8- bit music communities (such as Micromusic
.net), based entirely on producing music on emulators or surviving models of
the early home computers of the 1980s, such as Atari or Commodore. Along-
side producing sine waves, the sound chips of such computers attempted to
simulate preexisting musical reality: guitar, percussion, piano. Imperfect and
restricted, the chips could only produce idiosyncratic, funny and easy to rec-
ognize sounds which were far from the originals. Scarcity of means encouraged
a special aesthetics of musical low- tech: of coolness, romanticism and imper-
fection. People making 8- bit music nowadays relate back to their childhoods’

Glitch

114

favorite toys, memories that are shared by many people. Returning to a genu-
ine computer aesthetics of obsolete technology is not a question of individual
choice, but has the quality of a communal, social decision.

Functionality, as a characteristic of established machine aesthetics is al-
ways chased by dysfunctionality (if not preceded by it). Functional machines,
robots, mechanized people (from Judaism’s Golem,6 Frankenstein’s monster7)
to the rebellious computers of the twentieth century) are interpreted as alien
to human nature, sooner or later becoming “evil” as they stop functioning
correctly. Thus, the dysfunctional mind, conduct, and vision become human,
compelling, sincere, meaningful, revelatory. As aesthetic principles, chance,
unplanned action, and uncommon behaviors were already central to European
and Russian literature of the nineteenth century in the work of writers such as
Balzac, Flaubert and Dostoyevsky.

In the technological era, society became organized according to the logic of
machines, conveyor belt principles, “rationally” based discrimination theories,
and war technology, with an increase in fear, frustration, refusal, and protest.
As a response, errors, inconsistencies of vision, of method, and of behavior be-
come popular modernist artistic methods used in Dadaism, Surrealism, and
other art movements. One of Surrealism’s declared predecessors, the Comte
de Lautréamont, provided us with the lasting phrase that something could be
as “beautiful as the chance encounter of a sewing machine and an umbrella on
a dissection table.”8 The introduction of chance, “hasard,” (fr.), subconscious-
ness, and irrationality into art and life was seen as being both opposed to and
deeply embedded in rationality and functionality.

Dysfunctional machines are not only those that are broken (images and
fi gures of crashed cars and other mass produced imperfections fi gure in the
aesthetics of Fluxus and Pop Art); they are also those that do not comply with
the general logic of machines, by acting irrationally and sometimes even turn-
ing into humans. Thus, at the end of the Soviet movie Adventures of Electronic
Boy (1977), a robotic boy starts crying and this emotion symbolizes that he has
become human.

A glitch is a singular dysfunctional event that allows insight beyond the
customary, omnipresent, and alien computer aesthetics. A glitch is a mess that
is a moment, a possibility to glance at software’s inner structure, whether it is
a mechanism of data compression or HTML code. Although a glitch does not
reveal the true functionality of the computer, it shows the ghostly convention-
ality of the forms by which digital spaces are organized.

Glitch

115

Glitches are produced by error and are usually not intended by humans.
As a not- entirely human- produced reality, its elements are not one- hundred
percent compatible with customary human logic, visual, sound, or behavioral
conventions of organizing and acting in space. Aesthetically some glitches
might inherit from avant- garde currents, but are not directly a product of the
latter (fi gure 8). Avant- garde artists inspired or disgusted by technology and
its societal infl uence have created a range of artistic responses, the aesthetics of
which today’s glitches strangely seem to comply with. A glitch reminds us of
our cultural experience at the same time as developing it by suggesting new
aesthetic forms.

A glitch is stunning. It appears as a temporary replacement of some boring
conventional surface; as a crazy and dangerous momentum (Will the computer
come back to “normal”? Will data be lost?) that breaks the expected fl ow. A
glitch is the loss of control. When the computer does the unexpected and goes
beyond the borders of the commonplace, changes the context, acts as if it is not
logical but profoundly irrational, behaves not in the way technology should,

Glitch

Figure 8 Glitch on Google Earth, 2006.

116

it releases the tension and hatred of the user toward an ever- functional but
uncomfortable machine.

Error sets free the irrational potential and works out the fundamental concepts and

forces that bind people and machines. An error [is] a sign of the absence of an ideal

functionality, whether it be understood in the technical, social or economic sense.9

As with every new aesthetic form, glitches are compelling for artists and
designers as well as regular users. Glitches are an important realm in elec-
tronic and digital arts. Some artists focus on fi nding, saving, developing, and
conceptualizing glitches, and glitches form entire currents in sonic arts and cre-
ative music making. For example, the Dutch- Belgian group Jodi are known
for their attention to all kinds of computer visual manifestations that go be-
yond well- known interfaces. It’s enough only to look at their web- page http: //
wwwwwwwww.jodi.org to get a sense of their style (fi gure 9). On http: // text
.jodi.org a user browses through an endless sequence of pages that are obviously

Figure 9 JODI, http: // text.jodi.org.

Glitch

117

of computer origin, and appear to be both meaningless and fascinatingly
beautiful.

Video gamers practice glitching (exploiting bugs in games).10 Game modi-
fi cations by Jodi, such as Untitled Game,11 as well as by other artists, such as
Joan Leandre’s (Retroyou) R / C and NostalG12 are achieved by altering parts
of the code of existing games (fi gure 10). The resulting games range from ab-
surd environments in which cars can be driven, but with a distinct tendency
to sometimes fl y into outer space, to messy visual environments one can hardly
navigate, but which reveal dazzling digital aesthetic qualities.

In his aPpRoPiRaTe! (fi gure 11) Sven Koenig exploits a bug found in a video
player that makes a video compression algorithm display itself.13 By deleting
or modifying key frames (an encoded movie does not contain all full frames but
a few key frames, the rest of the frames are saved as differences between key
frames) he manages to modify the entire fi lm without much effort. As a result

Glitch

Figure 10 Jean Leandre, (Retroyou) R / C.

118

we get excitingly distorted yet recognizable variants of videos popular in fi le
exchange networks, where such algorithms are widely used. And, of course,
with this much work already done for them in advance, we’ll see the power of
the new aesthetics of the glitch used in commercial products very soon.

Notes

1. Traces of CU- SeeMe can be found through http: // archive.org by searching for http: //

cu- seeme.com.

2. Lewis Mumford, Technics and Civilization, 52–55.

3. Vsevolod Meyerhold, “Artist of the Future,” in Hermitage, no. 6, 10.

4. Nikolay Punin, The Memorial to the Third International, 5.

5. See “case modifi cation” in Wikipedia: http: // en.wikipedia.org / wiki / Case_modifi cation / .

6. For an excellent account of Golem, see: http: // en.wikipedia.org / wiki / Golem / .

Figure 11 Stefan Koenig, aPpRoPiRaTe!.

Glitch

119

7. Mary Shelley, Frankenstein.

8. Lautréamont, Les chants de Maldoror, Russian edition, 55.

9. Pit Schultz, “Jodi as a Software Culture.” in Tilman Baumgarten, ed. Install.exe,

Christoph Merian Verlag.

10. See “glitch” in Wikipedia: http: // en.wikipedia.org / wiki / Glitch / .

11. JODI, http: // wwwwwwwww.jodi.org / .

12. Joan Leandre (Retroyou), R / C and NostalG, http: // www.retroyou.org / and http: //

runme.org / project / +SOFTSFRAGILE / .

13. Sven Koenig, aPpRoPiRaTe!, http: // popmodernism.org / appropirate / .

Import / Export
Lev Manovich

Although “import” / “export” commands appear in most modern media au-
thoring and editing software running under GUI, at fi rst sight they do not
seem to be very important for understanding software culture. You are not
authoring new media or modifying media objects or accessing information
across the globe, as in web browsing. All these commands allow you to do is to
move data around between different applications. In other words, they make
data created in one application compatible with other applications. And that
does not look so glamorous.

But think again. What is the largest part of the economy of the greater Los
Angeles area? It is not entertainment—from movie production to museums
and everything in between accounts for only around 15 percent. It turns out
that the largest part is import / export business, accounting for over 60 percent.
A commonly invoked characteristic of globalization is greater connectivity—
places, systems, countries, organizations, etc., becoming connected in more
and more ways. And connectivity can only happen if you have certain level
of compatibility: between business codes and procedures, between shipping
technologies, between network protocols, and so on.

Import/Export

120

Let us take a closer look at import / export commands. As I will try to show,
these commands play a crucial role in software culture, and in particular in
media design. Because my own experience is in visual media, my examples
will come from this area, but the processes I describe apply now to all media
designed with software.

Before they adopted software tools in the 1990s, fi lmmakers, graphic design-
ers, and animators used completely different technologies. Therefore, as much
as they were infl uenced by each other or shared similar aesthetic sensibilities,
they inevitably created different- looking images. Filmmakers used camera
and fi lm technology designed to capture three- dimensional physical reality.
Graphic designers worked with offset printing and lithography. Animators
worked with their own technologies: transparent cells and animation stands
with stationary fi lm cameras capable of making exposures one frame at a time
as the animators changed cells and / or moved background.

As a result, twentieth- century cinema, graphic design, and animation (that
is, standard animation techniques used by commercial studios) developed dis-
tinct artistic languages and vocabularies both in terms of form and content.
For example, graphic designers worked with a two dimensional space; fi lm di-
rectors arranged compositions in three- dimensional space; and cell animators
worked with a “two- and- a- half” dimensional space. This holds for the over-
whelming majority of works produced in each fi eld, although of course excep-
tions do exist. (For instance, Oscar Fishinger made one abstract fi lm that in-
volved moving three- dimensional shapes, but as far as I know, this is the only
time in the whole history of abstract animation where we see an abstract three-
dimensional space).

The differences in technology infl uenced what kind of content would appear
in different media. Cinema showed photorealistic images of nature, built en-
vironment, and human forms articulated by special lighting. Graphic designs
featured typography, abstract graphic elements, monochrome backgrounds,
and cutout photographs. And cartoons showed hand- drawn fl at characters and
objects animated over hand- drawn but more detailed backgrounds. The ex-
ceptions are rare. For instance, while architectural spaces frequently appear in
fi lms they almost never appeared in animated fi lms in any detail—until ani-
mation studios started using 3- D computer animation.

Why was it so diffi cult to cross boundaries? In theory one could imagine
making an animated fi lm in the following way: printing a series of slightly dif-
ferent graphic designs and then fi lming them as though they were a sequence

Import/Export

121

of animated cells. Or in a fi lm, a designer could make a series of hand drawings
that use the exact vocabulary of graphic design and then fi lm them one by one.
And yet, to the best of my knowledge, such a fi lm was never made. What we
fi nd instead are many abstract animated fi lms that refl ect the styles of abstract
painting. We can fi nd abstract fi lms, animated commercials, as well as movie
titles in the graphic design style of the times. For instance, some moving im-
age sequences made by motion graphics pioneer Pablo Ferro around 1960s dis-
play psychedelic aesthetics which can be also found in posters, record covers,
and other works of graphic design in the same period.1

And yet, it is never exactly the same language. Projected fi lm could not ad-
equately show the subtle differences between typeface sizes, line widths, and
grayscale tones crucial for modern graphic design. Therefore, when the artists
were working on abstract art fi lms or commercials that used design aesthetics
(and most key abstract animators produced both), they could not simply expand
the language of printed page into time dimension. They had to invent a parallel
visual language that used bold contrasts, more easily readable forms and thick
lines, which because of their thickness were in fact no longer lines but shapes.

Although the limitations in resolution and contrast of fi lm and television
image compared to that of the printed page played a role in keeping the dis-
tance between the languages used by abstract fi lmmakers and graphic design-
ers for the most of the twentieth century, ultimately I do not think it was the
decisive factor. Today the resolution, contrast, and color reproduction between
print, computer screens, and television screens are also substantially different,
and yet we often see exactly the same visual strategies deployed across these
different display media. If you want to be convinced, leaf through any book
or a magazine on contemporary 2- D design (i.e., graphic design for print,
broadcast, and the web). When you look at a spread featuring the works of a
particular designer or design studio, in most cases it is impossible to identify
the origins of the images unless you read the captions. Only then do you fi nd
that this image is a poster, that one is a still from a music video, and this one
is a magazine editorial.

Taschen’s Graphic Design for the 21st Century: 100 of the World’s Best Graphic
Designers has several good examples.2 Peter Anderson’s images showing a head-
ing against a cloud of hundreds of little letters in various orientations turn out
to be the frames from the title sequence for a television documentary. Another
of his images, which similarly contrasts jumping letters in a large font against
irregularly cut planes made from densely packed letters in much smaller

Import/Export

122

fonts turns to be a spread from IT Magazine. Since the fi rst design was made
for broadcast while the second was made for print, we would expect that the
fi rst design would employ bolder forms; however, both designs use the same
scale between big and small fonts, and feature texture fi elds composed from
text that does not need to be read. A few pages later we encounter a design by
Philippe Apeloig that uses exactly the same technique and aesthetic as Ander-
son. In this case, tiny lines of text positioned at different angles form a 3- D
shape fl oating in space. On the next page another design by Apeloig also cre-
ates a fi eld in perspective made from hundreds of identical abstract shapes.

These designs rely on software’s ability (or on the designer being infl uenced
by software use and following the same logic while doing the design manu-
ally) to treat text as any graphical primitive and to easily create compositions
made from hundreds of similar or identical elements positioned according to
some pattern. Since an algorithm can easily modify each element in the pat-
tern, changing its position, size, color, etc., instead of the completely regular
grids of modernism we see more complex structures that are made from many
variations of the same element.

Each designer included in the Taschen book was asked to provide a brief
statement to accompany the portfolio of their work, and the design studio Lust
provided this phrase as their motto: “Form- follows- process.” So what is the
nature of the design process in the software age, and how does it infl uence the
forms we see today around us?

Everybody who is involved in design and art today knows that contem-
porary designers use the same set of software tools to design everything. The
crucial factor is not the tools themselves but the workfl ow process, enabled by
“import” and “export” operations.

When a particular media project is being put together, the software used at
the fi nal stage depends on the type of output media and the nature of the project.
For instance, After Effects is used for motion graphics projects and video com-
positing, Illustrator or Freehand is for print illustrations, InDesign for graphic
design, Flash for interactive interfaces and web animations, and 3DS Max or
Maya for 3- D computer models and animations. But these programs are rarely
used alone to create a media design from start to fi nish. Typically, a designer
may create elements in one program, import them into another program, add
elements created in yet another program, and so on. This happens regardless
of whether the fi nal product is an illustration for print, a website, or a mo-
tion graphics sequence, whether it is a still or a moving image, interactive or

Import/Export

123

noninteractive, etc. Given this production workfl ow, we may expect that the
same visual techniques and strategies will appear in all media designed with
computers.

A designer can use Illustrator or Freehand to create a 2- D curve (technically,
a spline). This curve becomes a building block that can be used in any project.
It can form a part of an illustration or a book design. It can be imported into
an animation program where it can be set into motion, or imported into 3- D
program where it can be extruded in 3- D space to defi ne a solid form.

Each of the types of programs used by media designers—3- D graphics,
vector drawing, image editing, animation, compositing—excel at particular
design operations, that is, particular ways of creating a design element or mod-
ifying on already existing element. These operations can be compared to the
different blocks of a Lego set. While you can make an infi nite number of proj-
ects out of these blocks, most of the blocks will be utilized in every project,
although they will have different functions and appear in different combina-
tions. For example, a rectangular red block may become a part of the tabletop,
part of the head of a robot, etc.

Design workfl ow that uses multiple software programs works in a similar
way, except the building blocks are not just the different kinds of visual ele-
ments one can create—vector patterns, 3- D objects, particle systems, etc.—but
also various ways of modifying these elements: blur, skew, vectorize, change
transparency level, spherisize, extrude, etc. This difference is very important.
If media creation and editing software did not include these and many other
modifi cation operations, we would see an altogether different visual language at
work today. Instead of “digital multimedia”—designs that simply combine el-
ements from different media—we see what I call “metamedia”—the remixing
of working methods and techniques of different media within a single project.

Here are a few typical examples of this media remixability that can be seen
in the majority of design projects done today around the world. Motion blur is
applied to 3- D computer graphics; computer generated fi elds of particles are
blended with live action footage to produce an enhanced look; fl at drawings
are placed into virtual spaces where a virtual camera moves around them; fl at
typography is animated as though it is made from a liquid- like material (the
liquid simulation coming from computer animation software). Today a typical
short fi lm or a sequence may combine many of such pairings within the same
frame. The result is a hybrid, intricate, complex, and rich media language—or
rather, numerous languages that share the basic logic of remixabilty.

Import/Export

124

The production workfl ow specifi c to the software age has two major con-
sequences: the hybridity of media language we see today in the contemporary
design universe, and the techniques and strategies used are similar regardless
of the output media and type of project. Like an object built from Lego blocks
today’s typical design combines techniques coming from multiple media. It
uses the results of the operations specifi c to different software programs that
were originally created to imitate work with different physical media (e.g.,
Illustrator was created to make illustrations, Photoshop to edit digitized pho-
tographs, After Effects to create 2- D animation, etc.). While these techniques
continue to be used in relation to their original media, most of them are now
also used as part of the workfl ow on any design job.

The essential condition that enables this new design logic and the resulting
aesthetic is compatibility between fi les generated by different programs. In
other words, “import” and “export” commands of graphics, animation, video
editing, compositing, and modeling software are historically more important
than the individual operations these programs offer. The ability to combine
raster and vector layers within the same image, to place 3- D elements into a
2- D composition and vice versa, and so on, is what enables the production
workfl ow with its reuse of the same techniques, effects, and iconography across
different media.

The consequences of this compatibility between software and fi le formats
that was gradually achieved during the 1990s are hard to overestimate. Besides
the hybridity of modern visual aesthetics and the reappearance of the same
design techniques across all output media, there are also other effects. For in-
stance, the whole fi eld of motion graphics as it exists today came into existence
to a large extent because of the integration between vector drawing software,
specifi cally Illustrator, and animation / compositing software such as After Ef-
fects. A designer typically defi nes various composition elements in Illustrator
and then imports them into After Effects, where they are animated. This com-
patibility did not exist when the initial versions of different media authoring
and editing software initially became available in the 1980s. It was gradually
added in subsequent software releases. But when it was achieved around the
middle of the 1990s, within a few years the whole language of contemporary
graphic design was fully imported into the moving image area—both literally
and metaphorically.

In summary, the compatibility between graphic design, illustration, ani-
mation, and visual effects software has played the key role in shaping the visual

Import/Export

125

and spatial forms of the software age. On the one hand, never before have we
witnessed such a variety of forms as today. On the other hand, exactly the same
techniques, compositions, and iconography can now appear in any media. And
at the same time, any single design may combine multiple operations that pre-
viously only existed within distinct physical or computer media.

Notes

1. Jeff Bellantoni and Matt Woolman, Type in Motion: Innovations in Digital Graphics,

26–27.

2. Charlotte Fiell and Peter Fiell, eds., Graphic Design for the 21st Century: 100 of the

World’s Best Graphic Designers.

Information
Ted Byfi eld

“Information” can describe everything from a precise mathematical property
of communication systems, to discrete statements of fact or opinion, to a staple
of marketing rhetoric, to a world- historical phenomenon on the order of agri-
culture or industrialization. The frequency and disparity of its use, by special-
ists and lay people alike, to describe countless general and specifi c aspects of
life, makes it diffi cult to analyze; no single academic discipline or method can
offer an adequate explanation of the term or the concept, to say nothing of the
phenomena it encompasses.

A typical approach to a problem of this kind is to address it on the level
of the word as such: to gather examples of its use, codify their meanings, and
arrange them into a taxonomy, whether “synchronic” (limited to a specifi c pe-
riod—say, current usage), or “diachronic” (as they have transformed over time).
This has been done, of course, with varying degrees of success. One prominent
 American- English dictionary defi nes the word in slightly less than two hun-
dred words. These efforts are admirable, but the popularity of claims that we
live in an “information society” (or even more grandly in an “information age”)
suggest, in their inclusiveness, that information is the sum of the word’s mul-
tiple meanings. Apparently, it—the word or, more properly, the category—
is sui generis, and in a particularly compelling way. What qualities make it so?

Information

126

The word itself dates in English to the late fourteenth century, and even
so many centuries ago was used in ways that mirror current ambiguities. The
Oxford English Dictionary cites early attestations (in, among other sources, Chau-
cer’s Canterbury Tales) as evidence for defi ning it variously as “The action of
informing” and the “communication of instructive knowledge” (I.1.a); “Com-
munication of the knowledge or ‘news’ of some fact or occurrence” (I.2); and
“An item of training; an instruction” (I.1.b)—generally, an action in the fi rst
cases, and a thing in the last case. Even the ambiguity of whether it is singular
or plural, which is still unclear, seems to date to the early sixteenth century (“an
item of information or intelligence,” curiously “with an and pl[ural]” [I.3.b]).

As the word came into wider use in the centuries leading up to the twen-
tieth, it took on a variety of additional meanings. Of these, the most striking
trend was its increasingly legalistic aspect. This included informal usages (for
example, related to or derived from “informing” on someone [I.4]) as well as
narrow technical descriptions of charges lodged “in order to the [sic] institu-
tion of criminal proceedings without formal indictment” (I.5.a) This incon-
sistency—in one instance referring to particular allegations of a more or less
precise factual nature and, in another, to a formal description of a class or type
of assertion—is still central to current usage of the word; so are connotations
that information relates to operations of the state.

Yet it was in the twentieth century that the word was given decisively dif-
ferent meanings. The fi rst of these modern attestations appears in the work of
the British statistician and geneticist R. A Fisher. In his 1925 article, “Theory
of Statistical Estimation,” published in Proceedings of the Cambridge Philosophical
Society,1 he described “the amount of information in a single observation” in
the context of statistical analysis. In doing so, he appears to have introduced
two crucial aspects to “information”: that it is abstract yet measurable, and
that it is an aspect or byproduct of an event or process.

“Fisher information” has had ramifi cations across the physical sciences, but
its most famous and most infl uential elaboration was in the applied context of
electronic communications. These (and related) defi nitions differ from Fisher’s
work, but they remain much closer to his conception than to any earlier mean-
ings.2 Three years after Fisher’s paper appeared, the American- born electron-
ics researcher Ralph V. L. Hartley, who had studied at Oxford University at
almost exactly the same time that Fisher studied at Cambridge (1909–1913)
before returning to the United States, published a seminal article in Bell Sys-
tem Technical Journal.3 In it, he built upon the work of the Swedish- American

Information

127

engineer Harry Nyquist (who was working mainly at AT&T and Bell Labora-
tories), specifi cally on Nyquist’s 1924 paper “Certain Factors Affecting Tele-
graph Speed,”4 which sought in part to quantify what he called “intelligence”
in the context of a communication system’s limiting factors. Hartley’s 1928
article, “Transmission of Information,” fused aspects of Fisher’s conception of
information with Nyquist’s technical context (albeit without citing either of
them, or any other source). In it, he specifi cally proposed to “set up a quan-
titative measure whereby the capacities of various systems to transmit infor-
mation may be compared.” He also added another crucial aspect by explicitly
distinguishing between “physical as contrasted with psychological consider-
ations”—meaning by the latter, more or less, “meaning.” According to Hart-
ley, information is something that can be transmitted but has no specifi c
meaning.

It was on this basis that, decades later, Claude Shannon, the American
mathematician and geneticist turned electrical engineer, made the most well
known of all modern contributions to the development of the idea of infor-
mation.5 At no point in his works did he ever actually defi ne “information”;
instead, he offered a model of how to quantitatively measure the reduction of
uncertainty in receiving a communication, and he referred to that measure as
“information.” Shannon’s two- part article in 1948, “A Mathematical Theory
of Communication,”6 and its subsequent reprinting with a popularizing expla-
nation in his and Warren Weaver’s book, The Mathematical Theory of Commu-
nication,7 are widely heralded as the founding moment of what has since come
to be known as “information theory,” a subdiscipline of applied mathematics
dealing with the theory and practice of quantifying data.

Shannon’s construction, like those of Nyquist and Hartley, took as its con-
text the problem presented by electronic communications, which by defi nition
are “noisy,” meaning that a transmission does not consist purely of intentional
signals. Thus, they pose the problem of how to distinguish the intended sig-
nal from the inevitable artifacts of the systems that convey it, or, in Shannon’s
words, how to “reproduc[e] at one point either exactly or approximately a
message selected at another point.” Shannon was especially clear that he didn’t
mean meaning:

Frequently the messages have meaning; that is they refer to or are correlated according

to some system with certain physical or conceptual entities. These semantic aspects of

communication are irrelevant to the engineering problem.8

Information

128

In The Mathematical Theory of Communication, he and Weaver explained that
“information is a measure of one’s freedom of choice when one selects a mes-
sage” from a universe of possible solutions.9 In everyday usage, “freedom” and
“choice” are usually seen as desirable—the more, the better. However, in try-
ing to decipher a message they have a different consequence: The more free-
dom of choice one has, the more ways one can render the message, and the less
sure one can be that a particular reproduction is accurate. Put simply, the more
freedom one has, the less one knows.

Small wonder that the author of such a theory would view efforts to apply
his ideas in other fi elds as “suspect.”10 Of course, if Shannon sought to limit the
application of his “information” to specifi c technical contexts—for example,
by warning in his popularizing 1949 book that “the word information, in this
theory, is used in a special sense that must not be confused with its ordinary
usage”—he failed miserably. The applications of his work in computational
and communication systems, ranging from read- write operations in storage
devices to the principles guiding the design of sprawling networks, have had
pervasive effects since their publication.”11 Those effects offer quite enough
reason for “nonspecialists” to take a strong interest in information, however
it is defi ned; their interests, and the “popular” descriptions that result, surely
carry at least as much weight as Shannon’s mathematical prescription.

However disparate these prescriptions and descriptions may be, both typi-
cally have one general and essential thing in common: mediation. Where
Shannon’s information is an abstract measure, analogous to the negative space
around a sculpture in a crate, the common experience of what is often called
information is indirect, distinguished from some notional immediate or imma-
nent experience by mediation—say, through a commodity (hardware, software,
distribution, or subscription) and / or an organization (a manufacturer, a devel-
oper, or a “resource”). So, to the growing list of paradoxes that have marked
information for centuries—whether it is an action or a thing, singular or plu-
ral, an informal assertion of fact or a procedure for making a formal statement,
its ambivalent relationship to operations of state, and so on—we can add some
modern ones: It is abstract yet measurable, it is signifi cant without necessarily
being meaningful, and, last but not least, it is everywhere and nowhere.

It’s tempting to ask how a single category that has come to encompass such
a babel of ideas could be very useful, of course; the underlying assumption of
such a question is that a word’s worth is measured by the consistency or speci-
fi city of its meanings. That assumption is false: very common words—“stuff,”

Information

129

say, or “power”—are useful because they are indiscriminate or polysemic. But
those are very different qualities12; for now—which may be very early in terms
of historical periodization—information is (or does) both.

On the one hand, it seems to proffer an indiscriminate lumping- together
of everything into a single category in common phrases such as “information
society,” “information age,” and “information economy.” And those phrases,
in turn, are fairly specifi c compared to the wild (and wildly contradictory)
implications attributed to information in commercial communications (for
example, advertising and marketing). In those contexts, at one extreme, in-
formation appears as a cudgel—a driving, ubiquitous, relentless, inevitable,
almost malevolent historical force that overturns assumptions, disrupts and
threatens institutions, and forces adaptation. At the other extreme it appears as
a carrot—an enticing, endless, immaterial garden of delights in which instan-
taneous access to timeless knowledge promises the opportunity of transforma-
tion for individuals and for the globe as a whole. On the other (equally woolly)
hand, information is widely thought to mark a historical divide, for example,
in the urban- legend- like claim that people today are exposed to more infor-
mation in some small unit of time than their indeterminate ancestors were
in their lifetime.13 What remains unclear in these popular claims is whether
information itself is new in the sense of a recent historical invention (akin to
nuclear fi ssion, for example) or, rather, whether its pervasiveness is new.

Even if we limit ourselves to more sober usages, we are still left with a
category that variously includes assertions of specifi c fact or belief; some type
of assertion made in a specifi c (for example, technical) context; a statement
or instruction to be acted upon or executed; a kind of knowledge or commu-
nication, maybe vaguely related to “intelligence”; a specifi c communication,
which, additionally, may or may not mean something; an aspect of commu-
nication that specifi cally means nothing; an aspect of specifi c or general com-
munications that can be measured; and, more loosely, archives and catalogs,
facts and factoids, static and streaming data, opinions and ideas, accounts and
explanations, answers to questions; and / or virtually any combination thereof.

As noted, the theory of information has played a pivotal role in systems
 automation and integration, a dominant—maybe the dominant—development
in postindustrial social and technical innovation. Given the dizzying complex-
ity, breadth, and interdependence of these developments, a single category
that provides (if only illusorily) a common reference point for myriad social
actors, from individuals right up to nations, might be useful precisely because

Information

130

it is tautological. The reduction to a single term, which itself might mean any-
thing or literally nothing, offers a sort of lexical symbiosis in which technical
and popular usages inform each other: Technical usages derive implications
of broad social relevance from popular usages, and popular usages derive im-
plications of rigor and effectiveness from technical usages. Yet what’s hardest
to hear through this cacophony is what might be most useful of all: Gregory
Bateson’s enigmatic and epigrammatic defi nition of information as “the differ-
ence that make a difference.”14

Notes

1. R. A. Fisher, “Theory of Statistical Estimation,” Proceedings of the Cambridge Philo-

sophical Society XXII, (1925) 709.

2. For example, Norbert Wiener, widely credited as the father of cybernetics—that

is, the study of feedback systems in living organisms, machines, and organizations—

noted in his 1948 book Cybernetics that “the defi nition [of information] . . . is not the

one given by R. A. Fisher for statistical problems, although it is a statistical defi nition”

(III.76).

3. V. L. Hartley, “Transmission of Information,” Bell System Technical Journal, VII,

(July 1928) 540.

4. Harry Nyquist, “Certain Factors Affecting Telegraph Speed,” Bell System Technical

Journal, Vol. 3 (April 1924), 324–346.

5. Shannon’s PhD dissertation “An Algebra for Theoretical Genetics”—an application

of his “queer algebra,” in the words of Vannevar Bush—was written at MIT in 1940

under the direction of Barbara Burks, an employee of Eugenics Record Offi ce at Cold

Spring Harbor Laboratory; Shannon was recruited by Bell Labs to research “fi re- control

systems”—automated weapon targeting and activation—“data smoothing,” and cryp-

tography during World War II. See Eugene Chiu et al., “The Mathematical Theory of

Claude Shannon: A Study of the Style and Context of His Work up to the Genesis of

Information Theory.”

6. Claude Shannon, “A Mathematical Theory of Communication.”

7. Claude Shannon and Warren Weaver, A Mathematical Theory of Communication.

Information

131

8. Ibid, 379.

9. Ibid, 99.

10. David Ritchie, “Shannon and Weaver: Unraveling the Paradox of Information,” in

Communication Research, Vol. 13 No. 2.

11. As this account suggests (and as one should expect), Shannon’s work was just

one result of many interwoven conceptual and practical threads involving countless

researchers and practitioners working across many fi elds and disciplines. In the two

decades that separated Hartley’s 1928 article and Shannon’s publications, myriad

advances had already had immense practical impact—for example, on the conduct

and outcome of World War II, in fi elds as diverse as telegraphy, radiotelegraphy,

electro mechanical systems automation and synchronization, and cryptography. More

generally, an important aspect and a notable result of that war were the unparalleled

advances in systems integration across government, industry, and academia, from basic

research through procurement, logistics, and application. Shannon’s work, as Voltaire

might have put it, “had to be invented.”

12. “There is always a moment when, the science of certain facts not yet being reduced

to concepts, the facts not even being grouped together organically, these masses of facts

receive that signpost of ignorance: ‘miscellaneous.’” Marcel Mauss, “Techniques of the

Body,” in Zone 6: Incorporations, 454.

13. For example, “[T]oday’s children . . . have access to more information in a day than

their grandparents did in a lifetime” (House of Representatives, Excellence in Teaching:

Hearing Before the Committee on Education and the Workforce, 106th Cong., 2nd Session,

June 1, 2000 [Indianapolis, IN], serial no. 106–110, available at http: // commdocs

.house.gov / committees / edu / hedcew6- 110.000 / hedcew6- 110.htm); “[a] person today is

exposed to more information in one day than a person living in the 1700s was exposed

to in an entire lifetime” (“James” of MIT’s Center for Refl ective Community Practice,

whose “experience” was “captured” by Invent Media [n.d.], available at http: // www

.inventmedia.com / clients / mitfellows / james / soundfellows.html); “[t]oday’s students are

exposed to more information in a day than a person living in the Middle Ages was ex-

posed to in a lifetime” (“Goal 1 Report,” Technology Planning Committee, Howard

County [MD] Public School System [2001], available at http: // www.howard.k12.md

.us / techplan / Goal1.html); “[w]ith the use of satellites, television and computers, you

and I receive more information in one day of our lives than our ancestors of several gener-

ations ago used to receive in 1000 days!” (Barbara Deangelis, Real Moments, quoted—as

Information

132

“credulously regurgitating factoids”—in Kirkus Reviews 1, [August 1994], available at

http: // www.magusbooks.com / catalog / searchxhtml / detail_0440507294 / choice_A /

 category_ / isbook_0 / catlabel_All+Magusbooks+Categories / search_Deangelis

,+Barbara / index.htm); and “a student is exposed to more information in one day than

a person living in the Middle Ages was exposed to in a lifetime” (New Jersey State De-

partment of Education, Division of Educational Programs and Student Services, Plan

for Educational Technology Task Force, “Educational Technology in New Jersey: A

Plan for Action” [Dec. 1992], available at http: // ftp.msstate.edu / archives / nctp / new

.jersey.txt). This “meme” seems to have gained currency among American educational

technologists in the late 1980s through the mid- 1990s.

14. Gregory Bateson, Steps to an Ecology of Mind, xxv–xxvi.

Intelligence
Andrew Goffey

Although Alan Turing’s 1950 paper on “Computing Machinery and Intel-
ligence” was not the fi rst time humans had speculated on the question of
whether or not machines can think—and whether or not that was indeed an
intelligent question to ask—the famous test Turing proposed in this paper
testifi ed to the existence of an enduring problematic within which questions
of machine intelligence have been framed. The Turing Test fi rst proposed in
this paper provided a staged relay of the crucial feature of the Turing machine
as a universal machine—a machine that can simulate all others.

Turing sought to answer the question, “can machines think?” by asking
the question: can a man pretending to be a woman in a three- way “imitation
game” comprising a man, an interlocutor, and a woman (whose role is to help
the interlocutor make the correct identifi cation) be successfully replaced by a
computer? That is to say, can the interlocutor, whose role is to ask the man
questions, be fooled as often by a computer as by a man? Turing’s answer, of
course, was that this would indeed be the case in time and that an interlocu-
tor could be fooled, to the extent that one would eventually be able to talk of
machines thinking “without expecting to be contradicted.”1 It is by virtue of
its programmability that the Turing machine could be made to reasonably ap-
proximate the behavior of all other machines. Turing was perfectly aware that
claiming that in principle a machine could imitate a human was not the end

Intelligence

133

of the story. Indeed, how one might then program a machine to do this was
a much more complicated problem. Turing’s provisional plan was to suggest
that one might initially program the machine to imitate a child, and then
subject it to a course of education, in which it would learn to follow the com-
mands it was given.

Both the Turing test and the Turing machine are indicative of how ma-
chine intelligence has historically been conceptualized as imitation. The ma-
chine is imagined not only having an uncanny ability to mimic other machines
but also to imitate humans. But the nature of the problem of machine intel-
ligence is badly understood if the properly libidinal dimension of phenomena
of imitation is overlooked. Turing’s statement that “we may hope eventually
that machines will compete with men in all purely intellectual fi elds”2 (my em-
phasis) not only initiated a whole generation of research into the development
of machines that could play chess but couldn’t open a packet of crisps, but also
pointed towards the dimension of rivalry which, according to anthropologist
Réné Girard, underlies all phenomena of imitation.3

Before sketching out a defi nition it is useful to acknowledge the libidinal
dimension to the problem of intelligence, because it offers an entry point into
the analysis of the confusion and ambivalence in the relationship between hu-
mans and machines.4 It is not just that computing science has pondered the
question of whether machines might think like humans. The confusion and
ambivalence is highlighted by a commonplace observation that in order to
work well with computers (to program them or to use them) it is necessary to
think like a machine. This, ostensibly, was the virtue of the early female pro-
grammers of computers. It is not clear whether the problem is one of machines
thinking like humans or humans thinking like machines. Little wonder that
Joseph Weizenbaum’s 1965 AI program ELIZA became notorious for the way
that it attempted to imitate a psychotherapist.5

A problematic of imitation is not the only way to approach the question
of machine intelligence, but it does have the merit of encouraging a specula-
tive exploration of the cultural aspects of computing. The rivalry and confl ict
characteristic of the libidinal underpinnings of the ways in which issues of
machine intelligence have been posed tap into a far broader material and con-
ceptual issue. Debates about the deskilling resulting from the use of comput-
ers in the workplace and about the role of information technology in shifting
the composition of the workforce only make sense to the extent that machine
intelligence is understood as a possible substitution for human intelligence.

Intelligence

134

That humans and machines can compete with each other for jobs is indicative
of a rivalry in the purposive, command- driven, goal- oriented activity of the
contemporary economy. But it is entirely debatable whether framing the issue
of machine intelligence in the mirror of the human will allow us to understand
what the real problem is. That machines can replace humans tells us nothing
special about intelligence, particularly if this is as part of an economy that, in
its entropic repetition of the eternally self- same, generally produces stupidity
rather than intelligence. As critic Avital Ronell puts it, “stupidity can body-
 snatch intelligence, disguise itself, or, indeed, participate in the formation of
certain types of intelligence with which it tends to be confused.”6

An example will make the anthropocentric prejudices of this way of under-
standing intelligence more evident. In a chapter of his book, How The Mind
Works, entitled “Thinking Machines,” the psychologist Steven Pinker suggests
that despite the diffi culties we have in defi ning intelligence “we recognize it
when we see it.” He asks what an alien would have to do to “make us think
it was intelligent.”7 We must assume, as Pinker does, that the alien actually
wants to be recognized by us (a debatable assumption but one that is often
made in discussions of self- other, master- slave relationships). Pinker argues
that we recognize an alien as intelligent if it displays “the ability to attain goals
in the face of obstacles by means of decisions based on rational (truth- obeying)
rules.”8 This amounts to saying that we can recognize something as intelligent
to the exact extent that it recognizes, or wants to be recognized by, us. (Pre-
sumably, if the alien didn’t want recognition it wouldn’t bother trying to per-
suade us that it was the same as us . . .). If this sounds a little complicated, it is.
It summarizes the logic of alienation (or of desire in the Lacanian view). Ap-
plied to the problem of intelligence, it amounts to saying that all intelligence
is alienated intelligence.

The question this entry poses, by contrast, is the following: Is it possible
to arrive at an understanding of intelligence without implicitly or explicitly
referring to the human as our model? Is it possible, in other words, to think of
the intelligence that traverses machines and our relations with them as really
alien? Let’s call this conception of intelligence machinic intelligence, to underline
simultaneously its proximity to and distance from the machine intelligence
with which computing science has been preoccupied.9 This idea is grounded
in some simple conceptual observations. The fi rst is that it is diffi cult to grasp
the creative potential of thinking machines while one’s measure of what makes
them intelligent is explicitly or implicitly human. The second is that what

Intelligence

135

makes intelligence interesting is that it marks something in excess of the con-
genitally human. This is why the new is so frequently fi gured in terms of the
monstrous or the inhuman.10

Critical common sense would fi nd the idea of an alien, machinic intelli-
gence not only rebarbative but contradictory. Because humans program ma-
chines, machines must in principle be under the control of humans. The tacit
assumption here is that it is impossible to make something autonomous. To
think otherwise would be fetishism or reifi cation and, in the case of comput-
ing, to subscribe to the dehumanizing effects of instrumental rationality. But
for all its sophistication, a demystifying critique of this sort, although quite
rightly pointing towards the labour of fabrication, fails to make the imagina-
tive leap outside of the sort of human- centred thinking which views all non-
 human reality as purely inert, dumb mechanism until animated by human
labor. And it doesn’t really matter whether we think of the cultural construc-
tion of machine intelligence in a sort of historical materialist way, or in a
 quasi- Foucauldian way as the production of discursive rules, or, indeed, as the
artifact of networks of texts and their traces: it’s often enough to fi gure some-
thing as a cultural / historical / discursive / textual construction for the unstated
inference that it is nothing but . . . to follow on quite readily.

Fortunately a conceptual framework is available to enable us to combat
this false dichotomy. Calling into question the reductive implications of so-
cial construction need not imply falling back on the contrary position (that
intelligence is some unproblematic and self- evidently measurable property of
things—usually people—themselves). The research of actor- network theorist
Bruno Latour and philosopher of science Isabelle Stengers has alerted us to the
ways in which the world gets divided by scientists, technologists, and their
cultural critics into the unproblematically real and the socially or culturally
constructed.

In her book, The Invention of Modern Science, Stengers characterizes the specifi c
event of modern science as “the invention of the power to confer on things the
power of conferring on the experimenter the power to speak in their name.”11
Where we normally see nature “speaking for itself” or see society speaking
through the scientist’s erstwhile facts, Stengers and Latour encourage us to see
instead a complex assemblage in which things (in this instance, scientifi c facts)
become autonomous through a process of fabrication. Simply because there is
immense labor involved in the production of a scientifi c fact does not mean
that that is all there is to it. Andrew Pickering has suggested that the endeavor

Intelligence

136

of science and technology to capture the agency of things themselves is a little
like the sort of disciplinary setup explored by Michel Foucault, involving the
same relationship of power and resistance.12 That the computer scientist op-
erates on symbols and codes or the chip designer on the properties of silicon,
silicon dioxide, and so on is little different from the complex set of processes
characteristic of disciplinary society. In each case the aim is to construct a co-
 functioning ensemble of elements that acts autonomously, in a stable and pre-
dictable fashion. Alan Turing’s biographer, Andrew Hodges, provides a vivid
account of Turing’s attempts at constructing computers and the experimental
processes of tinkering with the properties of various machinic “phyla” in order
to produce a relatively stable synthesis of machine components.13 An overheat-
ing battery on a laptop is a reminder of the fragile equilibrium, the machinic
ecology, within which software operates: beyond a certain latitude of tempera-
ture variation, the machine will start to act up. This is because a computer,
like pretty much anything else, is made up of a series of agents that through a
process of interactive stabilization have been tamed enough to work together
on their own. Most of the time, at least.

A speculative hypothesis, derived from Gilles Deleuze and Alfred North
Whitehead, holding that reality is a network of events caught up in divergent
and convergent series, an ensemble of contingent processes, will clarify this
more general point. The autonomous agents that have been the province of
Artifi cial Intelligence and subsequently Artifi cial Life research, the bots and
spiders that daily scuttle around the internet, and the Java code that controls
a toaster or washing machine are perfectly autonomous—both despite and
because of the logic and control provided by algorithms—because they are
networks of events as are we.14 The autonomous reality of software, however,
is a contingent achievement: not just because a programmer may leave bugs
in code or because component elements may be faulty but because the reality
within which software and hardware operates and of which it is a part is itself
inherently buggy. But, of course, the issue is whether or not the reality of soft-
ware is itself intelligent.

(It is worth recalling here Avital Ronell’s observation that stupidity and in-
telligence can get mistaken for one another. A convenient myth in the world of
software development holds that machines, are really just dumb and inert un-
til they are told what to do. This is a myth, not because computers don’t need
to be plugged in or programmed, but because intelligence isn’t something
that simply comes to inform dumb matter: the programmer works within a

Intelligence

137

highly complex balance of forces and a material infrastructure that is no simple
tabula rasa.)

Much early AI research conceptualized intelligence in terms of the ma-
nipulation of abstract symbol systems. Robots (such as the delightful Shakey
discussed by Daniel Dennett) essentially attempted to accomplish real world
actions by retaining an encoded representation of the things it might fi nd in
its environment. A series of rules that followed from a set of initial axioms
could then be used to build up a logical schema for an action to accomplish,
given sensory input parsed in a pre- defi ned way. In this respect the concept of
intelligence operative in AI was effectively prefi gured in the research of Tur-
ing, since the purpose of the Turing machine was to mechanize the intelligent
activity of a mathematician. As Robert Rosen put it, “If this aspect of human
mental activity can be ‘mechanized,’ why not others? Why not all?”15 To put it
differently: The concept of intelligence operative in AI is closely related to the
intelligence of computing, as both rely on the formal possibilities of symbol
systems (and such systems have the engineering advantage of being relatively
easy to implement physically).16 It is perhaps not that surprising then that
cognitive science subsequently found itself arguing, as a consequence of the
success of the abstractions of symbol manipulation, that human intelligence
itself was computation. But as Ed Hutchins has pointed out, “the physical
 symbol- system architecture [exemplifi ed in many good old fashioned AI proj-
ects] is not a model of individual cognition. It is a model of the operation of a
 social- cultural system from which the human actor has been removed.”17

Translated into the chains of formal- logical implication that symbol- system
architectures cater for, it is easy to mistake the contingencies of intelligence
for the epistemological problem of truth and falsity, keeping the logical form
of reasoning (call it “overcoding”) intact and ignoring the surplus, the excess
over itself that projects the intelligent agent into futurity. Reducing that ex-
cess by attempting to make an action and its consequences deducible from
an initial set of axioms, early AI quickly found that on the margins of its
“microworlds”18 the creative possibilities of programmed intelligence quickly
produced machinic catatonia, the complete inability to act. The “frame prob-
lem,” recurrent in AI, is a telling reminder of some of the problems inherent
in a formalist, symbolic conception of intelligence. The frame problem can be
glossed as concerning the knowledge needed to accomplish some task: given
some identifi able sensory input (“this is a block of wood”), what part of that
input gives rise to relevant logical implications (“do I need to know what type

Intelligence

138

of wood it is to move it?” for example)? It is typically understood as an epis-
temological issue; for AI researchers part of the problem is fi nding criteria to
determine what information is pertinent in any situation. The very fact that
the matter is considered an epistemological problem is itself indicative of the
assumption that intelligent activity necessarily follows some kind of formal-
 logical set of rules or law.

One response to this problem has been to claim that computers can’t be
intelligent because they are unable to recover the kind of meaning that would
allow them to do what humans, with all the tacit knowledge their culture sup-
plies, do with little diffi culty. However, that, rather obviously, is to use the
failings of AI and the prejudices of anthropocentric pragmatism to resolve the
problem.19

Research in the areas of artifi cial life, complexity theory, and connection-
ism has developed a conception of intelligence supposedly capable of coun-
tering the problems that arise from unduly subsuming intelligence under a
model of formal symbol manipulation. Such work follows the lead of War-
ren McCulloch and Walter Pitts, whose 1943 paper, “A Logical Calculus of
the Ideas Immanent in Nervous Activity,” thematically explored a concep-
tion of intelligence based on the idea that certain logical functions could be
proved calculable by fairly simple networks of neurons.20 In place of a brittle
axiomatic / theorematic intelligence that must code in advance the territory
within which it operates (by specifying what is signifi cant and what not) these
more recent kinds of research do not defi ne in advance the salient features of
the environment within which their agents operate. Repeated contact with an
environment for an agent with a “plastic” cognitive system (one which is not
rigidly hard- coded and is thus susceptible to modifi cation over time) allows
that agent to learn inductively about relevant features of its environment and
thus to evolve appropriate responses. Neural networks, for example, will use
known patterns within data to set the weights on nodes in an artifi cial network
of software neurons in order to develop probabilistic correlations between sets
of input data and likely output data. The programmer will typically random-
ize the weightings to all the neurons at the outset, leaving the fi nal confi gura-
tion of the network to be generated by the patterns or resonances existing in
the data itself. The ability of a neural network to converge on a solution to a
problem is not a formal certainty, only a likelihood deriving from a series of
heuristic measures that researchers have developed.2l

Intelligence

139

But the newer research paradigms, for all their interest in ethology, in evo-
lutionary processes, and in intelligence as an emergent phenomenon, remain
resolutely territorial: retina- scanning, handwriting recognition, or the sim-
ulation of predator- prey relationships are conspicuously bounded processes.
One trains a neural network on specifi c, fi nite datasets. The ability to pattern-
 match more generally presupposes the existence of redundancy in the data and
thus self- similarity. So, one could argue that the ability to discern redundancy
in data is the ability to learn about how things imitate or repeat themselves
(like the data- mining software that tells us which books we want to buy).

Both artifi cial intelligence and artifi cial life research provide us with some
interesting insights into the kind of intelligence that is operative within soft-
ware, but neither are well equipped to help us understand the exteriority of
a kind of intelligence that exceeds both software and its human users. Our
contention is that such intelligence must be understood in terms of a logic of
events: It is the process- fl ux of events of which software is a part that bears the
intelligence, not the relatively closed systems that we program and over which
believe we have control.

The concept of the natal proposed by Gilles Deleuze and Félix Guattari in
A Thousand Plateaus provides a helpful way to work through this argument.
The natal “consists in a decoding of innateness and a territorialisation of learn-
ing”22 and as such overcomes the innate- acquired dichotomy that has dogged
theories of learning. Behavior or activity specifi ed in advance (maybe in the
form of specifi c sets of axioms or rules of inference) ceases to be entirely innate
(preprogrammed), to the extent that the code that specifi es it has a margin
of indeterminacy—an obvious point if it is accepted that formal systems are
inherently incomplete. Likewise, the learning of behavior is not a completely
random process of empirical induction because it takes place within territories
that constrain it in certain ways. Rodney Brooks’s concept of a “subsumption
architecture” (in which the order and combination of behaviors in a robot
are not specifi ed in advance but prescribed by the constraints presented by
the environment) confi rms this,23 while the failings of good old- fashioned AI
might be traced to its unwillingness to concede that learning only takes place
because all systems are open systems (in effect, this is what the concept of the
natal shows us). However, AI’s emphasis on abstract symbol systems itself pro-
duces a disjunction between code and territory with its own deterritorializing
effects.24 Computer scientist Robert Rosen’s argument that “there are (a) for-
mal constructions without material counterpart, and conversely, (b) material

Intelligence

140

constructions without formal counterpart” is indicative of both the decoding
and deterritorializing aspects of machinic intelligence which the concept of
the natal points out.25 What this means, very crudely, is that because mate-
rial reality and symbol systems do not “add up,” there is an unformalized ex-
cess that undercuts our understanding of intelligence. This excess continues
to undermine attempts to manage intelligence by means of coded, rationally
deductible properties.

Friedrich Kittler’s amusing view of computers as operating like the Laca-
nian unconscious, expressed best in his statement that all coding operations
are ultimately “signifi ers of voltage differences”26 casts light on why machine
intelligence has been and needs to be seen as a libidinal problem. If Kittler’s
view is followed programmable machines would be, as Turing imagined, like
the child in the proverbial family triangle: in training them to do what we
ask them, they internalize the (formal) law on which the desire for recognition
depends and give us the answers we deserve to the questions we ask. How-
ever as Gilles Deleuze and Félix Guattari have shown, the artifi cial isolation
of a “primal scene” (of programming, in this instance) makes it all too easy to
forget the fl ux of events that gnaws away at the laws of formalism and that
makes intelligence something in excess of the symbols that we might choose
to represent it.27

To summarize then: In the fi elds of computing and cognitive science, the
question of intelligence has been posed historically in terms of imitation. The
reason for understanding intelligence this way, it has been suggested, derives
from how machine intelligence discloses the libidinal dimension of software.
Breaking out of an implicitly or explicitly human- centered understanding of
machine intelligence (while also acknowledging the enormous labor that goes
into constructing that intelligence) requires a theoretical framework which al-
lows us to understand how something can be fabricated as autonomous. With
this framework in place it becomes easier to understand the “intelligence” put
into play by of computers and the creation of software as an alien, machinic
intelligence, a fact partially grasped by AI, artifi cial life, and cognitive science
but without the means to fully project that intelligence into a reality outside
of itself.

Notes

1. Alan M. Turing, “Computing Machinery and Intelligence,” Mind, 260.

Intelligence

141

2. Ibid.

3. See Réné Girard, Mensonge et Vérité Romanesque.

4. Lacan’s formulation of desire as “désir de l’autre” is a way of underlining this confu-

sion. “Désir de l’autre” can be translated as desire for the other or as the other’s desire.

See Jacques Lacan, Écrits: A Selection.

5. Weizenbaum’s ELIZA is discussed in many books on AI. A brief but succinct ac-

count appears in Les Goldschlager and Andrew Lister, Computer Science: A Modern

Introduction.

6. Avital Ronell, Stupidity, 10.

7. Steven Pinker, How The Mind Works, 60.

8. Ibid., 61.

9. Gilles Deleuze and Félix Guattari, A Thousand Plateaus. See also Ray Brassier, “Liq-

uider l’homme une fois pour toutes,” in Gilles Grélet, ed., Théorie – rebellion.

10. In addition to the work of Gilles Deleuze, writers as different as Alain Badiou and

Jean- Francois Lyotard have drawn attention to the “monstrous” or “inhuman” as part

of a philosophy of escaping the all too human tenets of modern nihilism. The possibil-

ity and desirability of escaping the anthropocentric prejudices of a human- centered

way of thinking have been explored, in different ways, in Graham Harman, Tool- Being

and Quentin Meillassoux, Aprés la fi nitude.

11. Isabelle Stengers, The Invention of Modern Science, 89.

12. Andrew Pickering, The Mangle of Practice.

13. See, for example, the discussion of the problems associated with using cathode ray

tubes in Andrew Hodges and Alan Turing, Alan Turing: The Enigma of Intelligence.

14. See, for example, Gilles Deleuze, The Fold and Alfred North Whitehead, Process

and Reality.

15. See Robert Rosen, “Effective Processes and Natural Law,” in Rolf Herken, ed., The

Universal Turing Machine, a Half- Century Survey, 524.

Intelligence

142

16. In addressing the problem of the limits of formalism Rosen cites Martin Davis’s

musings about extraterrestrial intelligence. See Rosen, “Effective Processes and Natu-

ral Law,” Ibid. 524.

17. Ed Hutchins, Cognition In The Wild, 363.

18. See Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold

War America.

19. Daniel Dennett, Consciousness Explained.

20. Warren S. McCulloch and Walter H. Pitts, “A Logical Calculus of the Ideas

Immanent in Nervous Activity,” in Deirdre Boden, ed., The Philosophy of Artifi cial

Intelligence.

21. Simon Haykin, Neural Networks: A Comprehensive Foundation.

22. Gilles Deleuze and Félix Guattari, A Thousand Plateaus, 367.

23. Rodney Brooks, “Intelligence Without Representation,” 139–159.

24. This point has been made, albeit in a slightly different way, by Andy Clark in his

useful overview of recent trends in cognitive science research, Being There, in which he

describes language as the “ultimate artifact” and draws attention to the ways that as an

artifact it introduces a qualitative difference into the cognitive systems of humans. See

Andy Clark, Being There: Putting Brain, Body, and World Together Again, 193–218.

25. Robert Rosen, “Effective Processes and Natural Law,” 535. A formal process with

no material counterpart has a deterritorializing effect, while a material process with no

formal counterpart has a decoding effect.

26. Friedrich Kittler, Literature, Media, Information Systems, 150.

27. Gilles Deleuze and Félix Guattari, Anti- Oedipus.

Intelligence

143

Interaction
Michael Murtaugh

Types of interaction can be categorized in a variety of ways. One popular sort
of interaction consists of the user making choices, either textual or via a graph-
ical user interface: selecting items from a menu; typing bits of information
into a form; moving a mouse; clicking; double- clicking. The popularity of the
web and hypertext has bound the idea of interaction to branching link struc-
tures. The word “interactive” has become so overused in relation to computing
and new media that, for instance, Lev Manovich describes its use in relation to
computing as “tautological” and takes care to qualify any employment of the
word when unable to avoid it altogether.1

Interaction is also linked to a tradition of engineers, mathematicians, and
software hackers looking for a way to break out of the rigidity and the strict-
ness of their systems—out, as it were, of the black box. Interaction in the
1960s represented reaction against, and liberation from, the mainframe batch-
 processing computer center. It proposed a radical usage of computers: giving
(untrained) groups of users “live” contact with the machine.

Input Tape

An early proponent of this new approach to computation was J. C. R. Licklider,
a researcher with a background in psychoacoustics. In the 1950s Licklider had
access to the TX- 2, an experimental computer developed at MIT that, along
with having a Cathode Ray Tube display, speaker, control knobs, and a light
pen, was fully transistor- based. The TX- 2 could be readily reprogrammed from
its keyboard instead of requiring physical rewiring or the use of punchcards.2

It was on the TX- 2 that Ivan Sutherland would later develop his Sketchpad
program, cited by many, including Licklider, as a groundbreaking demonstra-
tion of the potential for truly interactive software.3 Licklider describes the then
“state of the art”:

Present- day computers are designed primarily to solve preformulated problems or

to process data according to predetermined procedures. The course of the computa-

tion may be conditional upon results obtained during the computation, but all the

alternatives must be foreseen in advance. If an unforeseen alternative arises, the whole

Interaction

144

process comes to a halt and awaits the necessary extension of the program. . . . If the

user can think his problem through in advance, symbiotic association with a comput-

ing machine is not necessary. . . One of the main aims of man- computer symbiosis

is to bring the computing machine effectively into the formulative parts of technical

problems.4

Licklider links interaction to a crucial shift from computer as problem- solver
to computer as problem- fi nder or problem- explorer in a space of necessarily
unforeseen possibilities.

Writing in the 1980s, cybernetician Stafford Beer describes an algorithm
as “a technique, or mechanism, which prescribes how to reach a fully specifi ed
goal.” He contrasts this with the idea of a heuristic (method), a word derived
from the adjective meaning “to fi nd out”:

An heuristic specifi es a method of behaving which will tend towards a goal which

cannot be precisely specifi ed because we know what it is but not where it is. . . . The

strange thing is that we tend to live our lives by heuristics, and try and control them

by algorithms. Our general endeavour is to survive, yet we specify in detail (“catch the

8.45 train,” “ask for a raise”) how to get to this unspecifi ed and unspecifi able goal. We

certainly need these algorithms, in order to live coherently; but we also need heuris-

tics—and we are rarely conscious of them.5

Writing in the 1990s, computer science theorists Peter Wegner and Dina
Goldin provide another description of an algorithm: “A systematic procedure
that produces—in a fi nite number of steps—the answer to a question or the
solution to a problem.6

Wegner and Goldin propose an alternative to the Turing Machine based
around a unifying concept of interaction. In the classic formulation, a Tur-
ing machine is an idealized computer that reads and writes symbols from an
endless tape and has a notion of “state,” allowing a program written in these
symbols to control the operation of the machine. The rules for this particular
model dictate that once the machine begins operation, no new input may be
received, and it must be guaranteed to reach a fi nal state in a fi xed amount of
time. In addition, the starting state for the machine is precisely specifi ed and
must be identical each time the machine is started.

In contrast, Wegner and Goldin propose “interactive computation” based
on “interaction with an external world, or the environment of the computa-

Interaction

145

tion, during the computation—rather than before and after it, as in algorith-
mic computation.7

In one alternative model called a Persistent Turing Machine, Wegner and
Goldin describe a variation on the classic Turing machine, now with tapes.
The crucial differences in this model are: (1) the use of an input and an output
tape to interface with the dynamic environment of the machine, (2) the provi-
sion for a work tape that remembers results from previous operation, and (3)
the allowance for the machine to run continuously (no requirement to reach a
fi nal state). By writing to and subsequently reading from the environment, the
potential for feedback occurs. It is, however, a noisy channel, as the environ-
ment is explicitly allowed to be unpredictable, and potentially acted upon by
other processes. Allowing past operation to infl uence the starting state also in-
troduces a greater degree of uncertainty. Allowing indefi nite operation refl ects
a more heuristic- driven approach as a result may be “tended towards” without
necessarily being defi nitively reached.

By explicitly representing a place “outside” of the machine, Wegner and
Goldin show that the resulting model is more expressive, able to describe ma-
chines that are not possible to fully represent as traditional Turing machines.
In addition, they show how such a model fi ts much more readily with the
realities of contemporary computation such as operating systems, networked
software, and portable devices.8

Wegner and Goldin point out that Turing himself acknowledged other
potential models that might include human interaction (choice- machines) or
other external inputs (oracle- machines).9

Talking to to Stuart Brand in the 1980s, Andy Lippmann, director of an early
experimental videodisc called the Aspen Movie Map, provided the following work-
ing defi nition of interactivity: “Mutual and simultaneous activity on the part of
both participants usually working toward some goal, but not necessarily.”10

The Aspen Movie Map was an attempt to recreate the experience of exploring
a city by virtually driving through the city’s streets, selecting points of inter-
est along the way to view in depth. The challenge for Lippman and the other
designers of the project was to realize that goal within the extreme limitations
of a static and limited storage medium.

Lippman describes fi ve “corollaries” or properties he felt were necessary to
add to this to attain true interactivity: interruptibility; graceful degradation;
limited look- ahead (not pre- computed); no default pathway, and; the “impres-
sion of an infi nite database.”11

Interaction

146

Work Tape

Surveying these different perspectives, some themes seem to emerge as central
to interaction in relation to computation: liveness, plasticity and accretion, in-
terruption and incompleteness.

Liveness
A key recurrent theme in interactivity is liveness. Licklider states that a cen-
tral aim for human- computer symbiosis is “to bring computing machines ef-
fectively into processes of thinking that must go on in ‘real time.’” Lippman’s
“limited look ahead,” the importance of computational decisions happening
“on the fl y” is paralleled by Wegner and Goldin’s notion of noncomputability,
the idea that not all possible pathways can be precomputed.

The idea of the “infi nite database” is the subjective counterpoint to this
noncomputability and liveness of the system: the feeling that there are infi nite
possibilities to explore. A result of this liveness is that an interactive system is
one that supports a sense of playing or performing with the system.

An important consequence of liveness is that interaction always occurs over
time. In black box computation, time is neglible—the only requirement is
that computation completes in a fi nite time. There is no sense of the “mutual”
or simultaneous in algorithmic computation, all computation is completed
before any results are passed on to the next process.

Interaction always involves simultaneity, as computation occurs iteratively
through feedback to a shared and changing environment. Designing with in-
teraction requires a sensitivity to the timing of the processes involved.

Plasticity and Accretion
Licklider, formulating the idea of the computer as a communication device uses
the term “cooperative modeling,” writing, “Creative, interactive communica-
tion requires a plastic or moldable medium that can be modeled, a dynamic me-
dium in which premises will fl ow into consequences, and above all a common
medium that can be contributed to and experimented with by all.”12

Lippmann’s notions of interruptibility and graceful degradation express the
desire for a kind of plasticity to the experience; the participant can push with-
out breaking the system.

The idea of malleability and plasticity connects back to the central role of
persistence in Wegner and Goldin’s interactive computation. The fact that

Interaction

147

the computation “holds its shape” in some sense requires that the interaction
have some lasting effect (if only short- term). Interaction includes the poten-
tial for processes to improve or evolve with accretion. The lack of a fi xed start-
ing state or default pathway underscores the importance of accretion to the
computation.

Interruption and Incompleteness
For Lippman, it is the potential for interruption that keeps a conversation from
becoming merely a lecture. In Wegner and Goldin’s interactive computation, it
is in the noisy channel of the environment that interuption potentially occurs.
The environment of the computation serves as the interface between the various
processes, be they purely computational or the result of human intervention.

The desire for graceful degradation relates to the idea that the computation
must not only be open to unpredictable input, but should use it well.

Models of the real world and even of integers sacrifi ce completeness in or-
der to express autonomous (external) meanings. Incompleteness is a necessary
price to pay for modeling independent domains of discourse whose semantic
properties are richer than the syntactic notation by which they are modeled.13

The components of an interactive system are inherently incomplete. Inter-
action always involves a tension between autonomous operation and cross-
 infl uence of a system’s parts. The challenge for authors is to design processes
that tend to steer the system toward desirable states rather than hard coding
those states. An interactive process exploits its environment in order to fully
realize its own functionality.

Output Tape

For the software designer, programming with interaction involves seeking a
kind of magical moment of transformation, a moment when one begins to get
back more than what was put in; an unexpected moment when the system
seems not only just to work, but to almost come to life; a moment when what
had previously been a noisy mess of buggy half- working mechanisms seems to
fl ow together and become a kind of organic whole.

The elusive chase for this kind of transformative moment is the essential
reason why geeks keep banging away at their keyboards, deep into the night,
deprived of sleep and propped up by caffeine and sugar and the adrenaline of
the experience of feeling in contact with something larger than oneself.

Interaction

148

Interaction rips computation out of the clean room of the algorithm and
thrusts it into the tainted and unpredictable space of dynamic and shared
environment.

Interaction forces a rethinking of algorithmic approaches toward those that
perform a kind of dance alternating between active computation and respon-
sive strategies to a changing environment.

Embracing interaction requires the programmer or designer to break open
the black boxes of algorithmic processes and acknowledge the incompleteness
of what they create in the pursuit of experiences that are playful, insightful,
and potentially surprising.

Notes

1. Lev Manovich, The Language of New Media, 55.

2. M. Mitchell Waldrop, The Dream Machine: J. C. R. Licklider and the Revolution that

Made Computing Personal, 142–147.

3. Ibid, 255.

4. J. C. R. Licklider, “Man- Computer Symbiosis,” IRE Transactions on Human Factors

in Electronics, vol. HFE- 1, 4–11.

5. Stafford Beer, Brain of the Firm, 52–53.

6. Eugene Eberbach, Dina Goldin, and Peter Wegner, “Turing’s Ideas and Models of

Computation” 1 online version, available at http: // www.cis.umassd.edu / ~eeberbach /

papers / eberbach_12092003.pdf.

7. Ibid, 16.

8. Peter Wegner, “The Paradigm Shift from Algorithms to Interaction: Why Interac-

tion is More Powerful than Algorithms,” Communications of the ACM.

9. Eberbach, Goldin, and Wegner, “Turing’s Ideas and Models of Computation.”

10. Stuart Brand, The Media Lab, 46–50.

11. Ibid.

Interaction

149

12. J. C. R. Licklider, “The Computer as a Communications Device,” Science and Tech-

nology (April 1968), 22.

13. Wegner, The Paradigm Shift, 10.

Interface
Florian Cramer and Matthew Fuller

The term “interface” appears to have been borrowed from chemistry, where it
means “a surface forming a common boundary of two bodies, spaces, phases.”1
In computing, interfaces link software and hardware to each other and to their
human users or other sources of data. A typology of interfaces thus reads:

1. hardware that connects users to hardware; typically input / output devices such
as keyboards or sensors, and feedback devices such as screens or loudspeakers;
2. hardware that connects hardware to hardware; such as network interconnec-
tion points and bus systems;
3. software, or hardware- embedded logic, that connects hardware to software;
the instruction set of a processor or device drivers, for example;
4. specifi cations and protocols that determine relations between software and
software, that is, application programming interfaces (APIs);
5. symbolic handles, which, in conjunction with (a), make software accessible to
users; that is, “user interfaces,” often mistaken in media studies for “interface” as
a whole.

While all of these categories of interface are signifi cant in relation to comput-
ing as a whole, only the last three, (3), (4), and (5), are discussed here.

Regarding (3), software typically functions as an interface to hardware. Com-
puter programs can be seen as tactical constraints of the total possible uses of
hardware. They constrain, for example, the combination of a CPU, RAM, hard
disk, mainboard, video card, mouse, keyboard, and screen with its abundant
possible system states to the function of a word processor, a calculator, a video
editor, etc. In other words, they interface to the universal machine by behaving
as a specialized machine, breaking the former down to a subset of itself. This
operation is linguistic because it reformulates the totality of available machine

Interface

150

instructions into a new control language. This language acts as an “abstraction
layer.” It is either a subset of the total available instructions when it is Turing
incomplete, or a redressing of them with different symbolic handles when it is
Turing complete.

“User interface” and “programming interface” have not always differed.
They had been identical in many operating systems and including the 8- bit
home computers in the 1980s that booted into a BASIC programming lan-
guage prompt, or MIT’s Lisp machines, which had a Lisp programming envi-
ronment as their user interface. Character- based shells such as DOS and Unix
are used both as programming and user interfaces. The same is true, to a lesser
degree, for graphical user interfaces when they are scriptable. But even if they
are not scriptable, they still effectively act as specialized symbolic computer
control languages. The distinction between a “user interface,” an “Application
Program Interface” (API), and a computer control language is purely arbitrary.
That more complex interfaces to computer functions tend to be called “pro-
gramming languages” and less complex, more specialized ones are known as
“user interfaces” is simply a nomenclature arising out of convention. Since the
user interface to a computer program is always symbolic, and involves syntacti-
cal and symbolic mappings for operations, it always boils down to being a for-
mal language. To the extent that they are understood symbolically, everything
that can be said about software interfaces falls under the entry on language.

Similar to both its meaning in chemistry and to the meaning of “language,”
“interfaces” are the point of juncture between different bodies, hardware, soft-
ware, users, and what they connect to or are part of. Interfaces describe, hide,
and condition the asymmetry between the elements conjoined. The asymme-
try of the powers of these bodies is what draws the elements together. Un-
less they are savants, human users cannot quickly calculate Pi to the 100th
place, or generate a model world in which the dimensions and trajectory of
its every element are mapped, as a computer is able to do. In this sense the
term interface emphasizes the representation or the re- articulation of a pro-
cess occurring at another scalar layer, while the term language, in a computer
context, emphasizes control. The condensations of computational power that
computers embody and that are differently articulated by individual pieces of
software. Such condensations of power are of intense fascination and generate
such productivity, and, at the same time, are radically alien to most human
experiences of the world. It is this alienness that allows software, particularly
at moments when one is attempting to understand its workings or to pro-

Interface

151

gram it, that engenders the delicious moments of feedback between the styles
of perception and ordering, logic and calculation, between the user and the
computer to be so seductive and compelling. At the same time, this initially
rich engagement with an interface tends to lose its luster once users realize the
limitations of the programmed system. Equally, as when software is used to
monitor, queue, and structure the fl ow of work, the compulsion provided by
an interface can be of a different kind. The asymmetric powers conjoined by
means of human- machine interfaces, also fi nd themselves arranged in other re-
lations which themselves articulate, fi lter, and organize the activities modeled
and modulated by the interface.

This asymmetry, while fundamental to the differences between human and
machine operations, can further materialize in other levels of machine control
granted to the user. While any user interface, including every programming
language, mediates machine functions, the mediation can be deliberately
(Turing-)incomplete or (Turing-)complete. But even the latter usage and pro-
gramming interface—Unix shells or the turtle of the Logo programming lan-
guage for example—like any language or instrument still impose and enhance
particular workfl ows, thought modes, and modes of interaction upon or in
combination with human users.

Asymmetry of powers is also mapped and sieved through interfaces in other
ways. A search engine operates as an interface of many layers, ostensibly that
between the user and the data being sought. Crucially, it also establishes an
interface whereby the database can read the user, by means of records of pat-
terns of search terms and choices. And asymmetry is not simply a means of
recognizing the associations made between computers and humans. APIs, as
well as protocols that operate as interfaces between computers linked over a
network, also establish descriptions of operations that are allowed and assigned
a priority or blocked. APIs are increasingly important to the development of
networks that rely on data and software working without being constrained
by hardware platform, and the formulation of the algorithms that govern their
operation has become of particular interest.

Within the paradigm of “user- friendliness,” that which is most easily rec-
ognizable and visible, software has been traditionally understood to place the
user as its subject, and the computational patterns and elements initiated, used,
and manipulated by the user as the corresponding grammatical objects. As soft-
ware is diffused through urban, social, and institutional contexts, the design
of interfaces and even the basic level of awareness about what does or does not

Interface

152

constitute part of an interface, or that triggers a computational event, becomes
increasingly important. Learning to recognize a human functioning as an in-
terface to a spreadsheet, or, as in much of generic electronic art, being able to
read the sensors and interaction grammars deployed in a constructed space, are
increasingly useful skills as interfaces not only spread out from the screen and
the keyboard, but are also designed to dissimulate their function as interfaces.

Addressing item 5 in our initial list, the user interface articulates asym-
metry via different means: by the use of text; visual- spatial structuring devices
such as a window and its subcomponents, timeline or button; sounds, such as
system event sounds; animated representations of running data- processes such
as a “loading” bar, “throbbers” (used in web browsers), spinning cursors; wid-
gets; menus, which describe available functions; and other elements. Because
such interface elements provide a mode of access to data and data structures,
the ordering and occurrence of such elements are usually describable by and
at a lower level designed using formalisms, context- free grammars that at-
tempt to describe a metasyntax comprising every possible use of the computer
or within a language or application. If the universal machine describes every
possible rational computation, such systems set out the syntax for all possible
interactions within the domain they describe. While the syntax of an interac-
tion is logically describable, no such constraint is necessary for visual or audio
elements of interface within item 5. Such interfaces, and especially the “skin-
ning” systems that provide users with the opportunity to personalize the visual
appearance of interface elements in applications or operating systems, conjoin,
even if only at the representational level, formal grammars with assemblages of
visual codes drawn from domains as diverse as heavy metal and manga graph-
ics. Low- level formalisms articulated through the representational matrices of
high- trash genre conventions provide a refreshing break from the pretensions
of computing to objectivity.

The meshing of poetic and formal language in the area of writing known
as “codeworks” explores the rich experimental and speculative potential of
alphanumerical computer control languages. Other net and software artists
have demonstrated how audiovisual computer control languages (user inter-
faces) can be a playground for subjective, ironical, and epistemological dis-
ruptions, experiments, and critique. These interventions become all the more
important the more the deliberate separation between “user” and “program-
ming” interfaces and languages is maintained.

Interface

153

Notes

1. According to Webster’s Ninth Collegiate Dictionary, which dates the term to 1882.

Internationalization
Adrian Mackenzie

Enumerated entities are historical objects.
—helen verran1

The questions of “otherness” is rarely posed in relation to software. This is be-
cause universality fi gures so large in software. Software makes historically and
materially specifi c claims to universality (think of Java’s “Write once, run any-
where” promise). This tends to push questions of otherness in software aside.
By virtue of the notions of universality attached to numbering systems (such as
decimal and binary), to computation (Universal Turing Machine), and to global
technoculture itself, software seems virulently universal. When fi gures of oth-
erness appear around software, they tend to be pathological. Pathological soft-
ware forms such as viruses, worms, trojan horses, or even bugs are one facet of
otherness marked in software. Much of the architecture and design, as well as
much everyday work, pivots on security measures meant to regulate the entry
and presence of these others, and at the same time to permit software to translate
smoothly between institutional, political, linguistic and economic contexts.

“Greetings,” “Inquiry,” “Farewell”: Technical Universality

Within the design and architecture of much contemporary software, differ-
ent strategies of coping with otherness have developed. In the software in-
dustry, one of the main strategies for fi guring others is a process known as
“internationalization” or “i18n” (for the 18 letters between i and n in “in-
ternationalization”). Techniques of internationalization allow software to be
readily adapted to different local conventions, customs, and languages. Take
an industry standard programming language of the late 1990s, Java a product
of Sun Microsystems Corporation. As a programming language and software
platform, Java’s claims to technical universality include cross- platform exe-
cution, numerous network programming constructs and code portability. As
Sun’s Java documentation states,

Internationalization

154

Internationalization is the process of designing software so that it can be adapted

(localized) to various languages and regions easily, cost- effectively, and in particular

without engineering changes to the software. Localization is performed by simply add-

ing locale- specifi c components, such as translated text, data describing locale- specifi c

behavior, fonts, and input methods.2

“Internationalized” Java software makes use of classes from the java.util pack-
age to separate universal components from local components. Local compo-
nents may have linguistic, symbolic, cultural, and geographic specifi cities. In
the tutorial on Sun’s Java Tutorial site, the following code demonstrates this
elementary separation:

import java.util.*;3

This sample code declares variables that hold values for “language,” and
“country,” and it invokes classes (bundles of methods, functions, and data)
that represent combinations of language and country called Locales. A Locale
is used to choose appropriate resources from the ResourceBundle, a collection
of language- specifi c property fi les distributed with the program. For instance,
a German resource bundle might contain the following entries:

greetings = Hallo.

farewell = Tschüß.

inquiry = Wie geht’s?

Java supports a standard set of locales that correlate with well- developed, af-
fl uent countries.4 These include messages, writing systems, and symbols such
as currency displayed to users, as well as more basic algorithmic processes such
as counting, searching, and sorting, which often need to be internationalized.
For instance, dates are formatted differently in different locales, and need to be
sorted according to their format. The concept of the locale points to another
key aspect of internationalization: As software is distributed globally, it has to
take into account where and when it is running. Time zones form key parts of
the infrastructural relations that situate software geographically. Most software
needs to be able to represent where and when it is running. Time zones form
part of the cross- hatched texture of actions in other spaces and times articulated

Internationalization

155

in software. Additionally, practices of sorting (a key consideration in any soft-
ware) shift radically between writing systems. For instance, sorting alphabeti-
cally, a straightforward task in European writing systems, cannot be taken for
granted in Asian writing systems. In Java, all text characters are encoded in
Unicode, a character set that represents all characters in all written languages
by unique numbers (in fact, Unicode itself constitutes a primary component of
present day software internationalization processes; it merits discussion in its
own right5). In the character series for European languages, the order of Uni-
code characters corresponds to alphabetical order. This is not guaranteed for all
languages. Sorting strings in non- European languages requires different tech-
niques. Assumptions about order, sequence, and sorting go to the heart of the
design of software. Interestingly, the closer one moves to the core of the Java
programming environment, the more restricted the set of supported locales be-
comes. For instance, whereas Java graphic user interface components display
messages in roughly a dozen different languages, the messages displayed by the
Java Software Development Kit (the bundle of tools used to develop Java soft-
ware) only display messages in English and Japanese.

Software for “Human Beings”: Fictitious Universality

Technically universal yet abstractly local, commercial internationalization fo-
cuses on consumption and use of software, not its distribution or production.
Wider distribution may be the purpose of internationalization, but the nature
of distribution and production themselves does not change through techniques
of internationalization, no matter how thoroughly carried through into different
aspects of software. Yet distribution is perhaps the key issue in software today
because changes in the nature of distribution of software change what can be
done with and through software. Software is becoming social. Ubuntu, “Linux
for Human Beings,” a project supported heavily by Mark Shuttleworth, a South
African entrepreneur,6 is a Linux / GNU distribution in which internationaliza-
tion of distribution itself fi gures centrally as part of the project. Ubuntu repre-
sents a politically progressive open source or FLOSS alternative to commercial
strategies of internationalization represented by Sun’s Java or various equiva-
lents found in Microsoft’s .NET, etc. The Ubuntu Manifesto states that “Soft-
ware should be available free of charge, that software tools should be usable by
people in their local language, and that people should have the freedom to cus-
tomize and alter their software in whatever way they need.”7

Internationalization

156

Whereas the techniques of internationalization are concerned with the cost-
 effective entry of products into different markets, the Ubuntu distribution
makes use of the “very best in translations and accessibility infrastructure that the
Free Software community has to offer, to make Ubuntu usable for as many
people as possible.” (my emphasis) The “translation and accessibility infrastruc-
ture” that the manifesto has in mind are none other than Rosetta (a web- based
system for translating open source software into any language)8 and LaunchPad
(a collection of services built by Shuttleworth).9 These software services coor-
dinate the localization of software by allowing volunteers and other partici-
pants to supply the translation of menu items, dialogs, and other text- based
elements of the user interface and help fi les. The distribution of Ubuntu is
predicated partly on the redistribution of the work of translating to cohorts of
volunteer translators who are explicitly assured that “Ubuntu will always be
free of charge.”10

Like i18n, Ubuntu assumes a great deal about the universal relevance of
its code. This is a point that Soenhke Zehle has recently highlighted.11 Code
is produced for Ubuntu (and many other software projects) in technically ad-
vanced contexts in Europe, North America, India, and East Asia, and then lo-
calized for execution in less developed countries by volunteers (who themselves
may or may not be local). Ubuntu introduces a multinational dimension to the
internationalization of software, but the software itself remains universal in its
aims and expectations because code and software themselves are presumed to
be universal as text and as a practice. In this respect, no matter how distributed
its production might become, and how many eyes and hands contribute to it,
there is no Other fi gured in software because software itself now garners uni-
versality from that other universal, “human beings,” free individuals who are
normalized in important ways. Despite the reorganization of distribution and
production to include collective modes of localization, and the corresponding
overcoming of institutional, national, and economic discrimination against cer-
tain ethnic groups, the code itself makes assumptions about computing plat-
forms, network infrastructures, information environments, and people that
may not be universally relevant.

Tropically Relevant Code and Ideal Universality

Could i18n be done differently? This question touches on political struggles
over the value of universals that have been at the heart of much theoretical

Internationalization

157

debate in the last decade. It is diffi cult to articulate any viable alternative to
technical universality (software that runs anywhere, as Java claims) or to fi cti-
tious universality (Ubuntu’s software for human beings) because universality
itself is a deeply ambiguous concept.12 To highlight this ambiguity, I want to
point out some of the underpinnings of all software: reliance on practices of
numbering, enumerating, and sorting.

In volume 1 of The Art of Computer Programming, Donald Knuth wrote:
“Computer programs usually operate on tables of information. In most cases
these tables are not simply amorphous masses of numerical values; they in-
volve important structural relationships between the data elements.”13 The keys
terms are already highlighted by Knuth. Software never deals with amorphous
masses of value, but structural relationships. The properties of these relation-
ships, and the value accorded to different relations are not universal. They ex-
ist in particular places, histories, and contexts. The panoply of data structures,
algorithms, database designs, protocols, and network topologies developed by
programmers over the last fi fty years attest to the singularity of these relation-
ships. Software concatenates every single value, no matter how trivial, in re-
lationships that are essentially social, communicative, and corporeal or living.

These relationships afford some kinds of universality and not others. To
understand this, we need only turn to recent anthropological studies of math-
ematics. Ethnomathematics is motivated by the problem of universality and,
in particular, how to make sense of different ways of dealing with unity and
plurality without bogging down in relativism. It offers leads on how we might
begin to think about universality more concretely and thereby begin to radi-
calize software internationalization. Such analysis points to forms of univer-
sality that ultimately call into question existing fi gures of consumer, user or
human. In Science and an African Logic, Helen Verran writes, “numbers are lo-
cated in the embodied doing of rituals with hands, eyes, and words, but if this
is so, how is it that they seem to have the capacity to be defi nitive even in the
absence of any bodily doings?”14 Her answer to this question is highly germane
to software. It pivots on the idea that certain practices transform written forms
of numerals (Knuth’s “numerical values”) into numbers (Knuth’s “structural
relationships”): “Enumeration ‘transforms’ all numerals to numbered bodies
by the very precise operation of interpellating, and likewise transforms non-
enumerated bodies to enumerated.”15 That is, numerals are elements in a writ-
ing system, but numbers are things that marshal, order, and defi ne bodies in
the most general sense. The translation from inscribed numeral to embodied

Internationalization

158

number occurs through practices of enumeration that are lived, singular, and
specifi c.

For instance, the Yoruba numbering practices described by Verran are multi-
 base (base 5, base 10, and base 20). This affords highly fl exible and rapid mental
calculation far surpassing what can be done in base 10 mental calculation that
appeared in European cultures sometime around 1300.16 This implications of
this go far: Yoruba numbers are different to European numbers in the way they
deal with unity and plurality. Rather than projecting outwards in long series
or sets of numbers as European practices of enumeration tend to, they incor-
porate inwards, in numbers nested in each other.17 That is, numbers are gener-
ated by differing forms of number- naming that themselves stem from different
bodily and linguistic practices. Distinctions between hands and feet, left and
right fi gure directly in Yoruba multibase numbering, whereas ten fi ngers “are
treated as a set of homogeneous elements taken as linearly related.”18

In a less radical difference, programming languages could be analyzed in
terms of their enumeration strategies and the ways they generate unities and
pluralities. Lisp differs from Python by virtue of the emphasis it puts on recur-
sion as a way of enumerating, but recursion is sometimes diffi cult to invoke.
Python and Java make enumeration a readily available function, invoked count-
less times by programmers and programs. For instance, the elementary “dic-
tionary” datatype in Python defi nes one- to- one relationships between keys and
values19 that allow mental operations of ordering to be merged with physical
operations. Most of the fundamental data structures learned by programmers
permit entities to be numbered in some way. Tables, lists, queues, arrays, and
trees all offer ways of enumerating, as well as sorting, ordering, searching, and
accessing. It is easy to forget that these structural relationships also interpel-
late bodies as subjects, citizens, inhabitants, patients, users, clients, workers,
events, others, things, parts, animals, organisms, stock, sets, lives, etc. The very
same construction and manipulation that transform numerals (graphic forms)
into numbers (things in relations of plurality), constitute bodies in structural
relationships. Interpellation is one way of theorizing the ritual hailing that
brings bodies of all kinds into forms of subjecthood in relation to number.
This singularizing effect is deeply embedded in the graphical writing systems
on which software so heavily draws. The very existence of a numeral zero has
intense cultural specifi city that passes from India through Arabic to medieval
Italian calculation techniques. It need only be invented in numbering systems
that ill- afford mental calculation such as the base 10 systems Western cultures

Internationalization

159

have long used (“Zero seems to emerge with the pressures of the graphic record-
ing of a clumsy calculating system”20).

Enumeration has specifi cities that relate to rituals of interpellation embed-
ded in language, gesture, and writing. This point has deep implications for
what software does, and how “others” are designated and predicated in soft-
ware. If these rituals differ between times and places (Verran discusses Yoruba
tallying and counting practices in detail), then relations of unity and plu-
rality differ. The general logic constantly re- enacted in elementary software
constructs defi ned at the level of programming languages and at the level
of software architectures makes particular ways of enumeration (and sorting,
searching, etc.) continue to work. Although enumeration practices are usually
“naturalized” (that is, taken for granted), making particular enumerations work
is political: it concerns how people belong together. “In any practical going- on
with numbers,” writes Verran, “what matters is that they can be made to work,
and making them work is a politics. Yet is a politics that completely evades
conventional foundationist [that is, based on necessarily uniform ideals] analy-
sis.”21 The universality that might be at stake here could be called “ideal”
in the sense that it is “always already beyond any simple or ‘absolute’ unity,
therefore a source of confl icts forever.”22

Problems of Actual Internationalization

In analyzing how software moves from technical to fi ctitious to ideal univer-
sality, internationalization becomes increasingly problematic. The fi guring of
otherness becomes steadily more deeply embodied. In i18n, the local adapta-
tions of technical universality weave software into the techno- economic re-
alities of globalization. More recent alterations in software distribution and
certain aspects of production broaden the spectrum of actors involved and be-
gin to change the way software moves globally. Yet this occurs at a cost: It
requires individuals to fi t a norm of being human beings. However in ideal
universality, the construct that animates internationalization is transindi-
vidual by nature. That is, it questions the given and seemingly natural rules
that constitute software as a convoluted set of practices of tallying, number-
ing, sorting, and searching. This questioning directly concerns embodiment,
power, and language. It is not easy to point to any practical instance of this
questioning. The notion of an ideal universality of software might, however,
frame the problem of software internationalization at a different level.

Internationalization

160

Notes

1. Helen Verran, Science and An African Logic.

2. Java internationalization.

3. Sun Microsystems, After Internationalization: The Java Tutorial.

4. See http: // java.sun.com / j2se / 1.5.0 / docs / guide / intl / locale.doc.html.

5. Unicode Consortium, “What is Unicode?”

6. Soenhke Zehle, “FLOSS Redux: Notes on African Software Politics.”

7. Canonical Ltd, The Ubuntu Manifesto.

8. Mark Shuttleworth, Rosetta.

9. Mark Shuttleworth, The LauchPad Homepage. http://www.launchpad.net/.

10. From the Ubuntu About Screen.

11. Zehle, “Floss Redux.”

12. Etienne Balibar, “Ambiguous Universality.”

13. Donald Knuth, The Art of Computer Programming, 232.

14. Verran, Science and An African Logic, 101.

15. Ibid, 103.

16. Brian Rotman, Signifying Nothing: the Semiotics of Zero.

17. Verran, Science and An African Logic, 65.

18. Ibid, 66.

19. Guido van Rossum, 2.3.8 Mapping Types—classdict, Python Library Reference.

Internationalization

161

20. Verran, Science and An African Logic, 64; on this point, also see Rotman, Signifying

Nothing, 60.

21. Verran, Science and An African Logic, 88.

22. Balibar, Universality, Ambiguous Universality, 72.

Interrupt
Simon Yuill

In the early days of modern computing, the computer would execute a single
program at a time, from start to fi nish. This is known as “batch processing”;
programs would be collected in a batch and then run one after another. By the
late 1950s a new paradigm had emerged, that of interactive computing, in
which the computer operator could stop and start programs and edit them on
the computer itself. This required the computer processor to receive external
signals while it was running. Two methods emerged for handling this: “poll-
ing” and “interrupts.” In polling, the computer periodically checks to see if
any external signals have arrived but the processor retains control over when
they are handled. In interrupts, the signals are handled whenever they arrive,
“interrupting” the processor in whatever it is doing, and giving some control
over its activities to an external agent. While polling continues to be used on
some simple processor devices, the interrupt enabled more sophisticated forms
of interaction between a computer and the external world. It has become the
basis of most operating system designs and is hardwired into many processor
chips and computer boards, such as the IRQ (Interrupt ReQuest) lines, which
provide the link between the central processing unit (CPU) and all kinds of ex-
ternal devices such as keyboards, mice, and network cards. Interrupts can also
be used for handling interaction between different programs on one operat-
ing system, signalling, for example, when a program has completed. It is also
used for handling errors that arise in the execution of a program, such as buffer
overfl ows, errors in allocating memory, or attempting to divide a number by
zero. The interrupt is the main mechanism through which an operating sys-
tem seeks to maintain a coherent environment for programs to run within, co-
ordinating everything external to the central processor, whether that be events
in the outside world, such as a user typing on a keyboard or moving a mouse,

Interrupt

162

or things outside the system’s internal coherence, such as a buffer overfl ow or
an operational error in a piece of software.1

The interrupt fundamentally changed the nature of computer operation, and
therefore also the nature of the software that runs on it. The interrupt not only
creates a break in the temporal step- by- step processing of an algorithm, but also
creates an opening in its “operational space.” It breaks the solipsism of the com-
puter as a Turing Machine, enabling the outside world to “touch” and engage
with an algorithm.2 The interrupt acknowledges that software is not suffi cient
unto itself, but must include actions outside of its coded instructions. In a very
basic sense, it makes software “social,” making its performance dependent upon
associations with “others”—processes and performances elsewhere. These may
be human users, other pieces of software, or numerous forms of phenomena
traced by physical sensors such as weather monitors and security alarms. The
interrupt connects the dataspace of software to the sensorium of the world.

Within an operating system, the various kinds of interrupt signals are dif-
ferentiated by an identifi er, which is mapped to a short handler program by
an “interrupt vector.” In this way, typing on a keyboard can be handled dif-
ferently from a packet arriving over the network. The notion of an interrupt
vector, however, can be rethought, not only in terms of how particular external
events extend into actions within the operating system, but also in terms of
how the actions of a particular piece of software are themselves extended into,
and are extensions of, various sorts of social actions. The interrupt vector, then,
becomes a carrier through which different elements of a social assemblage are
associated. The social aspect of software unfolds in the very process of mak-
ing these associations. Latour describes the “social” as being the associations
that link different “actors” in time and space.3 These actors can be humans, or
non- human objects. An actor is any entity that plays a signifi cant part in the
formation of associations from which the social is formed. The interrupt is
one principle through which such associations can be constructed and broken.
During a lecture by the philosopher Jacques Derrida, a member of the audi-
ence, the cultural theorist Avital Ronell, interjected with the question: “How
do you recognize that you are speaking to a living person?” to which Derrida
responded: “By the fact that they interrupt you.”4 In this sense, we could say
that software’s “cognition” of the social is comparable to Derrida’s. Indeed, the
action of interruption, of the break, is fundamental to the notion of the “gram,”
the mark that differentiates, upon which Derrida’s grammatology, the study
of the role of inscription in the construction of human social and cultural

Interrupt

163

systems, is based.5 The interrupt, therefore, is the mechanism through which
the social, as a process of making and breaking associations with others, is in-
scribed into a piece of running software.

If software is understood as an actor in such assemblages, then the opera-
tional space in which it performs is potentially the space of an entire assemblage,
one which grows and contracts as circumstances change. The combinations in
which software operates are often more complex than might fi rst be assumed. A
typical piece of desktop software, such as a text editor program, operates within
an assemblage that includes not only the software itself and the user but also the
operating system on which the program runs, and the devices through which
the user interacts with it: the mouse, keyboard, and screen. If the keyboard is re-
moved, the text editor program becomes inoperative, even though the program
itself has not been altered. Elements such as the keyboard also provide a form of
liminal boundary. When we press the keyboard we are literally and consciously
entering into the operational space of the software. The situation becomes more
complex, however, as we start to consider the kinds of assemblage that are con-
stituted by other forms of software, such as those in embedded devices, and the
“actors” with which they operate, such as radio frequency identifi cation tags
(RFID). Whereas we might describe the operational space of software in the
context of a user at a desktop system as having a liminal boundary, these other,
far more distributed, forms of software operate in a much more porous situa-
tion. Liminal boundaries are those that draw a distinct line, that one can have a
defi nite sense of crossing, of being inside and outside of. Porous boundaries are
less distinct; it is harder to tell when one is inside or outside, and they may have
qualities of absorbency and leakage. Some assemblages may consist of multiple
operational spaces, either nested or overlapping. The interrupt can therefore be
thought of, on an extended level, as the vector that not only constructs associa-
tions between actors, but also traverses varying operational spaces.

Transport systems has been one of the main fi elds of deployment of such
porous software systems. A combination of road surface sensor systems and
networked CCTV cameras, linking in various analysis tools, have brought road-
ways into the operational space of software such as Automated Number Plate
Recognition Systems (ANPRS) and Intelligent Transportation Systems (ITS).
These systems monitor traffi c fl ow for irregular incidents such as speed viola-
tion and breakdowns, or track vehicles in Congestion Charging Zones such as
that in central London.6 The roadway itself becomes a software interface, and
road- markings and traffi c signs all become actors within the assemblage of the

Interrupt

164

roadway’s operational space. The cars traveling on the roads may contribute
their own software actors, in employing intelligent braking systems, or GPS
navigation consoles. Within the process of airline travel, numerous software ac-
tors enter in and out of a variety of assemblages that travelers, pilots, and other
staff all, similarly, enter and exit. These include the software that manages the
transport of luggage and tourists through the airport terminal, the software
that analyzes x- ray scans of luggage, the passport systems that log traveler IDs,
which, in turn, are often connected to automated photographic devices or bio-
metric scanners. The interoperability of runway markings, air corridors, and
control tower navigation systems, and the on- board fl ight controllers also play
a part. On an average day, an individual in a city may connect and disconnect
from numerous assemblages involving different software actors. Frequently,
they are unaware of the various operational spaces that they have interrupted:
using mobile phones, “smart” cards on public transport systems (such as Lon-
don’s Oyster card), bank autoteller machines, RFID tagged goods, or a key-
code to access a building. The CCTV system of a bank, offi ce, or housing estate
may be linked up to movement analysis tools, seeking to detect a possible
hold- up scenario, or irregular movement patterns among the building’s oc-
cupants. The introduction of chip- carrying biometric identity cards, as is
currently planned in the United Kingdom, may bring with it the ability to
 cross- reference these cards and the readings of CCTV facial analysis systems,
linking the interruptions of human activity in urban space to singular iden-
tities, just as logging onto a computer links the interrupts of keyboard and
mouse to a particular username.7 The operational space of software extends
over large physical areas in which algorithms become the arbiters of norma-
tive behavior and of inclusion and exclusion. The “Cartografi ando el Territorio
Madiaq” is an ongoing project to map the complex of surveillance systems,
military bases, and communication infrastructures that are in place across the
Strait of Gibraltar between Spain and Morocco.8 It demonstrates the complex
assemblages of actors (technological, military, and legal) that are involved in
policing the Spanish borders. The play of the liminal and porous in evidence
here is not only one of boundaries along the operational spaces of various soft-
ware systems, but also the construction of the European Union’s own political
and economic boundaries which, through such surveillance, become confl ated
with software processes.

Porous is not the same as open. A porous surface acts as a regulatory mecha-
nism, as the porosity of skin regulates the fl ow of moisture and air between

Interrupt

165

the body and its environment. The systems described above create porosity in
otherwise open spaces. The regulatory trajectory, however, is not exclusively
one- way. In a memoir, one of the inventors of the interrupt mechanism, Eds-
ger Dijkstra, wrote:

It was a great invention, but also a Box of Pandora. Because the exact moments of

the interrupts were unpredictable and outside our control, the interrupt mechanism

turned the computer into a nondeterministic machine with a non- reproducible behav-

ior, and could we control such a beast?9

The interrupt increases the contingency of the environment in which a piece
of software runs. In constructing associations with an “outside” it makes the
operation of software more situated in that outside and, therefore, prone to
the contingencies of that outside environment.10 The interrupt transfers gov-
ernance back and forth between computer and user, or other outside actors.
Around every piece of software, a set of shadow practices develop that are not
inscribed in the code itself, but on which its ability to act depends. Christian
Heath and Paul Luff’s studies of the use of software in businesses and orga-
nizations demonstrates that the software is often only effective when nested
within larger structures of governance that guide the gestures of those who
interact with it.11 This combined governance of software and user environ-
ments is sharply evident in call centers, in which a hybrid software and mana-
gerial infrastructure maintains the overall mechanism.12 What might be called
“counter- interruptive” practices also develop, such as maps of CCTV and traf-
fi c cameras enabling people to plan routes that avoid them, or call center em-
ployees who trigger fake systems crashes to buy a bit of unlogged free time.13
The transfer of governance can also be an opportunity to interrupt its initial
vector and claim other possibilities.

If the interrupt teaches us anything about software, it is that software is in
many cases only as effective as the people who use it, those nondeterministic
machines with their complex, non- reproducible behaviors, those “others” on
whom it relies—can it really control such beasts? To understand software in
terms of the interrupt is to understand it in terms of its place within larger
structures of social formation and governance. Software engineering is simulta-
neously social engineering. Software criticism, therefore, must also be simul-
taneously social. In critically engaging with software, we must not only map
the vectors of the interrupt, but also seek to make our own interruptions, to

Interrupt

166

pose questions and insert alternative vectors and practices within the assem-
blages it connects to.

Notes

1. The specifi c forms and namings of interrupts can vary on different operating sys-

tems and hardware platforms, for a detailed account of interrupt handling in Linux see

Daniel P. Bovet and Marco Cesati, Understanding the Linux Kernel. For a comparison of

interrupt systems on different processors, including those used in embedded systems,

see William Bolton, Microprocessor Systems, and Myke Predko, Programming and Custom-

izing PICmicro MCU Microcontrollers. For information on the historical development of

the interrupt and comparisons to polling, see Mark Smotherman, “Interrupts”; Nor-

man Hardy, “History of Interrupts”; Randall Hyde, “Interrupts and Polled I / O,” in

The Art of Assembly Language Programming; David A. Rusling, “Interrupts and Interrupt

Handling.”

2. Peter Wegner and Dana Goldin have argued that this introduces a different level of

capability into computers that the Turing Machine does not allow, therefore changing

the ways in which computations can be processed and assessed; see Peter Wegner and

Dana Goldin, “Computation Beyond Turing Machines” and the entry on Interaction.

3. Bruno Latour, Reassembling the Social: An Introduction to Actor- Network Theory. Latour

originally used the term “network,” as in his Actor- Network Theory, but has recently

shifted to “assemblage.” The latter carries stronger connotations of something that is

put together and taken apart and possibly quite contingent, which “network” does

not convey. As it also helps keep a clearer conceptual distinction between a computer

network and a social assemblage, I have used it here.

4. The event is described in Avital Ronell, Finitude’s Score: Essays for the End of the

 Millennium, 3.

5. Jacques Derrida, Of Grammatology.

6. For an overview of such systems, see Stephen Graham and Simon Marvin, Telecommu-

nications and the City: Electronic Spaces, Urban Places. One of the key algorithms used in

traffi c analysis is the McMaster algorithm developed at McMaster University, Toronto;

see Fred L. Hall, “McMaster Algorithm.”

7. Computer vision and video analysis is currently a major area in computer sciences

research; example projects include: Jaime Dever, Niels da Vitoria Lobo, and Mubarak

Interrupt

167

Shah, “Automatic Visual Recognition of Armed Robbery,” and Douglas Ayers and

Mubarak Shah, “Monitoring Human Behavior from Video Taken in an Offi ce Environ-

ment.” Proponents of algorithmic- based facial recognition often state that it does not

suffer from problems of social and cultural prejudice that human surveillance staff of-

ten bring with them. Studies of such algorithms, however, have shown that due either

to the data sets on which they are trained, or empirical factors in how they operate,

they may still demonstrate aspects of differential treatment for different ethnic groups,

which result in racially- weighted responses; see Lucas D. Introna and David Wood,

“Picturing Algorithmic Surveillance: The Politics of Facial Recognition Systems.”

8. Hackitectura, MAPA: Cartografi ando el territorio madiaq.

9. Edsger W. Dijkstra, “My Recollections of Operating System Design,” 13–14. In

this document, Dijkstra also discusses some of the limitations of the polling method.

10. Lucy Suchman has analyzed this aspect of computer use in detail through the

concept of “situatedness” in Lucy Suchman, Plans and Situated Actions: The Problems of

Human- Machine Communication.

11. Christian Heath and Paul Luff, Technology in Action.

12. A detailed account of various employees’ experiences of working in call centers is

provided in Kolinko, Hotlines - Call Centre Inquiry Communism.

13. The Institute for Applied Autonomy’s iSee is an interactive online map of CCTV

systems in central New York; it enables users to plot a path of least surveillance be-

tween two locations in the city: http: // www.appliedautonomy.com / isee.html / . http: //

www.controleradar.org is a French website providing listings of computer- controlled

road cameras across France. Kolinko, Hotlines - Call Centre, provides several accounts

of ways in which call center employees have tried to counteract the conditions under

which they work.

Interrupt

168

Language
Florian Cramer

Software and language are intrinsically related, since software may process lan-
guage, and is constructed in language. Yet language means different things in
the context of computing: formal languages in which algorithms are expressed
and software is implemented, and in so- called “natural” spoken languages.
There are at least two layers of formal language in software: programming lan-
guage in which the software is written, and the language implemented within
the software as its symbolic controls. In the case of compilers, shells, and macro
languages, for example, these layers can overlap. “Natural” language is what
can be processed as data by software; since this processing is formal, however,
it is restricted to syntactical operations.

While differentiation of computer programming languages as “artifi cial
languages” from languages like English as “natural languages” is conceptually
important and undisputed, it remains problematic in its pure terminology:
There is nothing “natural” about spoken language; it is a cultural construct
and thus just as “artifi cial” as any formal machine control language. To call pro-
gramming languages “machine languages” doesn’t solve the problem either,
as it obscures that “machine languages” are human creations.

High- level machine- independent programming languages such as Fortran,
C, Java, and Basic are not even direct mappings of machine logic. If pro-
gramming languages are human languages for machine control, they could
be called cybernetic languages. But these languages can also be used outside
machines—in programming handbooks, for example, in programmer’s dinner
table jokes, or as abstract formal languages for expressing logical constructs,
such as in Hugh Kenner’s use of the Pascal programming language to explain
aspects of the structure of Samuel Beckett’s writing.1

In this sense, computer control languages could be more broadly defi ned
as syntactical languages as opposed to semantic languages. But this terminol-
ogy is not without its problems either. Common languages like English are
both formal and semantic; although their scope extends beyond the formal,
anything that can be expressed in a computer control language can also be ex-
pressed in common language. It follows that computer control languages are a
formal (and as such rather primitive) subset of common human languages.

Language

169

To complicate things even further, computer science has its own under-
standing of “operational semantics” in programming languages, for example
in the construction of a programming language interpreter or compiler. Just
as this interpreter doesn’t perform “interpretations” in a hermeneutic sense of
semantic text explication, the computer science notion of “semantics” defi es
linguistic and common sense understanding of the word, since compiler con-
struction is purely syntactical, and programming languages denote nothing
but syntactical manipulations of symbols.

What might more suitably be called the semantics of computer control lan-
guages resides in the symbols with which those operations are denoted in most
programming languages: English words like “if,” “then,” “else,” “for,” “while,”
“goto,” and “print,” in conjunction with arithmetical and punctuation sym-
bols; in alphabetic software controls, words like “list,” “move,” “copy,” and
“paste”; in graphical software controls, such as symbols like the trash can.

Ferdinand de Saussure states that the signs of common human language are
arbitrary2 because it’s purely a cultural- social convention that assigns phonemes
to concepts. Likewise, it’s purely a cultural convention to assign symbols to ma-
chine operations. But just as the cultural choice of phonemes in spoken language
is restrained by what the human voice can pronounce, the assignment of sym-
bols to machine operations is limited to what can be effi ciently processed by the
machine and of good use to humans.3 This compromise between operability and
usability is obvious in, for example, Unix commands. Originally used on tele-
type terminals, the operation “copy” was abbreviated to the command “cp,”
“move” to “mv,” “list” to “ls,” etc., in order to cut down machine memory use,
teletype paper consumption, and human typing effort at the same time. Any
computer control language is thus a cultural compromise between the con-
straints of machine design—which is far from objective, but based on human
choices, culture, and thinking style itself 4—and the equally subjective user pref-
erences, involving fuzzy factors like readability, elegance, and usage effi ciency.

The symbols of computer control languages inevitably do have semantic
connotations simply because there exist no symbols with which humans would
not associate some meaning. But symbols can’t denote any semantic state-
ments, that is, they do not express meaning in their own terms; humans meta-
phorically read meaning into them through associations they make. Languages
without semantic denotation are not historically new phenomena; mathemati-
cal formulas are their oldest example.

Language

170

In comparison to common human languages, the multitude of program-
ming languages is of lesser signifi cance. The criterion of Turing completeness
of a programming language, that is, that any computation can be expressed in
it, means that every programming language is, formally speaking, just a riff
on every other programming language. Nothing can be expressed in a Turing-
 complete language such as C that couldn’t also be expressed in another Turing-
 complete language such as Lisp (or Fortran, Smalltalk, Java . . .) and vice versa.
This ultimately proves the importance of human and cultural factors in pro-
gramming languages: while they are interchangeable in regard to their control
of machine functions, their different structures—semantic descriptors, gram-
mar and style in which algorithms can be expressed—lend themselves not
only to different problem sets, but also to different styles of thinking.

Just as programming languages are a subset of common languages, Turing-
 incomplete computer control languages are a constrained subset of Turing-
 complete languages. This prominently includes markup languages (such as
HTML), fi le formats, network protocols, and most user controls (see the entry
“Interface”) of computer programs. In most cases, languages of this type are
restrained from denoting algorithmic operations for computer security rea-
sons—to prevent virus infection and remote takeover. This shows how the
very design of a formal language is a design for machine control. Access to
hardware functions is limited not only through the software application, but
through the syntax the software application may use for storing and transmit-
ting the information it processes. To name one computer control language a
“programming language,” another a “protocol,” and yet another a “fi le format”
is merely a convention, a nomenclature indicating different degrees of syntac-
tic restraint built into the very design of a computer control language.

In its most powerful Turing- complete superset, computer control language
is language that executes. As with magical and speculative concepts of lan-
guage, the word automatically performs the operation. Yet this is not to be
confused with what linguistics calls a “performative” or “illocutionary” speech
act, for example, the words of a judge who pronounces a verdict, a leader giving
a command, or a legislator passing a law. The execution of computer control
languages is purely formal; it is the manipulation of a machine, not a social
performance based on human conventions such as accepting a verdict. Com-
puter languages become performative only through the social impact of the
processes they trigger, especially when their outputs aren’t critically checked.
Joseph Weizenbaum’s software psychotherapist Eliza, a simple program that

Language

171

syntactically transforms input phrases, is a classical example,5 as is the 1987
New York Stock Exchange crash that involved a chain reaction of “sell” recom-
mendations by day trading software.6

Writing in a computer programming language is phrasing instructions for
an utter idiot. The project of Artifi cial Intelligence is to prove that intelligence
is just a matter of a suffi ciently massive layering of foolproof recipes—in lin-
guistic terms, that semantics is nothing else but (more elaborate) syntax. As
long as A.I. fails to deliver this proof, the difference between common lan-
guages and computer control languages continues to exist, and language pro-
cessing through computers remains restrained to formal string manipulations,
a fact that after initial enthusiasm has made many experimental poets since the
1950s abandon their experiments with computer- generated texts.7

The history of computing is rich with confusions of formal with common
human languages, and false hopes and promises that formal languages would
become more like common human languages. Among the unrealized hopes are
artifi cial intelligence, graphical user interface design with its promise of an “in-
tuitive” or, to use Jef Raskin’s term, “humane interface,”8 and major currents
of digital art. Digital installation art typically misperceives its programmed
behaviorist black boxes as “interactive,” and some digital artists are caught in
the misconception that they can overcome what they see as the Western male
binarism of computer languages by reshaping them after romanticized images
of indigenous human languages.

The digital computer is a symbolic machine that computes syntactical lan-
guage and processes alphanumerical symbols; it treats all data—including
images and sounds—as textual, that is, as chunks of coded symbols. Nelson
Goodman’s criteria of writing as “disjunct” and “discrete,” or consisting of sep-
arate single entities that differ from other separate single entities, also applies
to digital fi les.9 The very meaning of “digitization” is to structure analog data as
numbers and store them as numerical texts composed of discrete parts.

All computer software controls are linguistic regardless of their perceiv-
able shape, alphanumerical writing, graphics, sound signals, or whatever else.
The Unix command “rm fi le” is operationally identical to dragging the fi le
into the trashcan on a desktop. Both are just different encodings for the same
operation, just as alphabetic language and morse beeps are different encodings
for the same characters. As a symbolic handle, this encoding may enable or
restrain certain uses of the language. In this respect, the differences between
 ideographic- pictorial and abstract- symbolic common languages also apply

Language

172

to computer control languages. Pictorial symbols simplify control languages
through predefi ned objects and operations, but make it more diffi cult to link
them through a grammar and thus express custom operations. Just as a picto-
gram of a house is easier to understand than the letters h- o- u- s- e, the same is
true for the trashcan icon in comparison to the “rm” command. But it is diffi cult
to precisely express the operation “If I am home tomorrow at six, I will clean
up every second room in the house” through a series of pictograms. Abstract,
grammatical alphanumeric languages are more suitable for complex compu-
tational instructions.10 The utopia of a universal pictorial computer control
language (with icons, windows, and pointer operations) is a reenactment of
the rise and eventual fall of universal pictorial language utopias in the Renais-
sance, from Tommaso Campanella’s “Città del sole” to Comenius’ “Orbis pic-
tus”—although the modern project of expressing only machine operations in
pictograms was less ambitious.

The converse to utopian language designs occurs when computer control lan-
guages get appropriated and used informally in everyday culture. Jonathan Swift
tells how scientists on the fl ying island of Lagado “would, for example, praise
the beauty of a woman, or any other animal . . . by rhombs, circles, parallelograms,
ellipses, and other “geometrical terms.”11 Likewise, there is programming lan-
guage poetry which, unlike most algorithmic poetry, writes its program source
as the poetical work, or crossbreeds cybernetic with common human languages.
These “code poems” or “codeworks” often play with the interference between
human agency and programmed processes in computer networks.

In computer programming and computer science, “code” is often under-
stood either as a synonym of computer programming language or as a text
written in such a language. This modern usage of the term “code” differs from
the traditional mathematical and cryptographic notion of code as a set of for-
mal transformation rules that transcribe one group of symbols to another group
of symbols, for example, written letters into morse beeps. The translation that
occurs when a text in a programming language gets compiled into machine
instructions is not an encoding in this sense because the process is not one-
 to- one reversible. This is why proprietary software companies can keep their
source “code” secret. It is likely that the computer cultural understanding of
“code” is historically derived from the name of the fi rst high- level computer
programming language, “Short Code” from 1950.12 The only programming
language that is a code in the original sense is assembly language, the human-

Language

173

 readable mnemonic one- to- one representation of processor instructions. Con-
versely, those instructions can be coded back, or “disassembled,” into assembly
language.

Software as a whole is not only “code” but a symbolic form involving cul-
tural practices of its employment and appropriation. But since writing in
a computer control language is what materially makes up software, critical
thinking about computers is not possible without an informed understanding
of the structural formalism of its control languages. Artists and activists since
the French Oulipo poets and the MIT hackers in the 1960s have shown how
their limitations can be embraced as creative challenges. Likewise, it is incum-
bent upon critics to refl ect the sometimes more and sometimes less amusing
constraints and game rules computer control languages write into culture.

Notes
1. Hugh Kenner, “Beckett Thinking,” in Hugh Kenner, The Mechanic Muse, 83–107.

2. Ferdinand de Saussure, Course in General Linguistics, ”Chapter I: Nature of the Linguistic

Sign.”

3. See the section, “Saussurean Signs and Material Matters,” in N. Katherine Hayles,

My Mother Was a Computer, 42–45.

4. For example, Steve Wozniak’s design of the Apple I mainboard was considered “a

beautiful work of art” in its time according to Steven Levy, Insanely Great: The Life and

Times of Macintosh, 81.

5. Joseph Weizenbaum, “ELIZA—A Computer Program for the Study of Natural

Language Communication between Man and Machine.”

6. Marsha Pascual, “Black Monday, Causes and Effects.”

7. Among them concrete poetry writers, French Oulipo poets, the German poet Hans

Magnus Enzensberger, and the Austrian poets Ferdinand Schmatz and Franz Josef

Czernin.

8. Jef Raskin, The Humane Interface: New Directions for Designing Interactive Systems.

9. According to Nelson Goodman’s defi nition of writing in The Languages of Art, 143.

Language

174

10. Alan Kay, an inventor of the graphical user interface, conceded in 1990 that “it

would not be surprising if the visual system were less able in this area than the mecha-

nism that solve noun phrases for natural language. Although it is not fair to say that

‘iconic languages can’t work’ just because no one has been able to design a good one, it

is likely that the above explanation is close to truth.” This status quo hasn’t changed

since. Alan Kay, “User Interface: A Personal View,” in, Brenda Laurel ed. The Art of

Human- Computer Interface Design, Reading: Addison Wesley, 1989, 203.

11. Swift, Jonathan, Gulliver’s Travels, Project Gutenberg Ebook, available at http: //

www.gutenberg.org / dirs / extext197 / gltrv10.txt / .

12. See Wolfgang Hagen, “The Style of Source Codes.”

Lists
Alison Adam

The list is a fundamental way of classifying and ordering information. In com-
puting, the word refers to a data structure that is an ordered group of enti-
ties, although, as explored below, culturally, its roots are much wider. Arrays,
which are multidimensional, are related to lists in that a list can be considered
as a one dimensional array. Queues and stacks are special types of lists. In a
queue, the element that was added to the queue fi rst is processed fi rst, behav-
ing in much the same way as an orderly queue of people waiting in line for a
bus. This is often described as “fi rst in, fi rst out,” or FIFO, processing. By con-
trast, in a stack, the last element added to the stack is processed fi rst—“last in,
fi rst out,” or LIFO, processing. In most cultures, a stack approach to waiting
in line for a bus would not be acceptable.

Lists can be present in spoken and written language. Arguably, it is the
business of recording lists which marks out literate societies from preliterate
societies, where knowledge was passed orally from older to younger genera-
tions.1 A list is a form of knowledge representation that can free knowledge
from the limitation of having to be passed down, through direct contact, from
one generation to another. Some of the earliest evidence of written language
is in the form of lists. The cuneiform tablets from around the second millen-
nium bc contain accounting lists and lists of objects and vocabularies, lists
for performing religious rituals and types of medical treatment.2 Such lists

Lists

175

can be lists of things, such as data or objects, they can also be lists of instruc-
tions, or we could even regard them as programs of sorts. Recipe lists detail a
list of steps needed to complete a task but contain no generality nor the idea
of proof; rather they contain “hard coded” steps or sequences of instructions.
Lists supply knowledge or information about what exists and how to behave
in the world.

The power of such lists is apparent in the fact that the kings of Mesopota-
mia regarded leaving a list inscribed on a tablet, after death, as insurance for an
everlasting legacy. The Sumerian king list, a chronology of dynasties of Meso-
potamian kings, is just such a document. It indicates a smooth succession of
rulers, a successive rolling out of seamless historical epochs, but leaves out the
bumpy bits of history, when rival Mesopotamian cities vied for control. In this
way, lists can be a way of sanitizing and simplifying knowledge. As Geoffrey
Bowker and Susan Leigh Star3 attest, there is always a tension between attempts
at universal standardization via lists and the local circumstances of their use.

List- making is often seen as a fundamental activity of modern society. In-
deed Michel Foucault4 and Patrick Tort5 claim that the production of lists (e.g.,
classifi cations of geological specimens, languages, races, animals, and so on) is a
defi ning feature of the development of modern science. Latour6 argues that the
main job of the bureaucrat is to construct lists that can then be shuffl ed around
and compared. The bureaucratization of science in the nineteenth century is an
important move away from science as the province of the gentleman amateur to
science as bureaucratic control in the service of empire. We can then see the con-
nection between the nineteenth- century scientifi c taxonomists, collecting and
organizing and measuring and ordering the world, and the ancient cuneiform
lists. Both tell us what the world is and how we are to behave, therefore they tell
us how to order the world and how to organize work and labor. Through lists
we order and control ourselves and the world we inhabit. According to Bowker
and Star in describing the work of imperial taxonomists:

These diverse authors have all looked at the work involved in making these produc-

tions possible. Instead of analysing the dazzling end products of data collection and

analysis—in the various forms of Hammurabi’s code, mythologies, the theory of evolu-

tion, the welfare state—they have instead chosen to dust off the archives and discover

piles and piles of lowly, dull, mechanical lists. The material culture of bureaucracy and

empire is not found in pomp and circumstance, nor even in the fi rst instance at the

point of a gun, but rather at the point of a list.7

Lists

176

If lists are such powerful creatures, not only for representing knowledge about
the world, but also for ordering and controlling the world and ourselves, it is
small wonder that they hold such appeal in the design and use of program-
ming languages.

LISP (whose name derives from “List Processor”) is the prime example of a
programming language that exploits the power of the list.8 The list provides
an elegant data structure for the processing of symbols, rather than numbers,
which is vital for the science of artifi cial intelligence. Considering the require-
ments of a programming language that would reason about the world rather
than purely crunch numbers, McCarthy, the founding father of LISP, argues:
“This involved representing information about the world by sentences in a suit-
able formal language and a reasoning program that would decide what to do by
making logical inferences. Representing sentences by list structure seemed ap-
propriate—it still is—and a list processing language also seemed appropriate
for programming the operations involved in deduction—and still is.”9

Lists are versatile. They may order and constrain but they may also surprise.
Note Jorge Luis Borges’s incredible taxonomic list from an ancient Chinese en-
cyclopaedia. This is a list of animals that is divided into “(a) belonging to the
Emperor, (b) embalmed, (c), tame, (d) sucking pigs, (e) sirens, (f) fabulous, (g),
stray dogs, (h) included in the present classifi cation [an early example of recur-
sion?], (i) frenzied, (j) innumerable [potential for an infi nite loop with no terminating
condition?], (k) drawn with a very fi ne camelhair brush, (1) et cetera, (m) having
just broken the water pitcher, (n) that from a long way off look like fl ies.”10

John Law and Annemarie Mol explain the virtues of such a list: “A list
doesn’t have to impose a single mode of ordering on what is included in it.
Items in the list aren’t necessarily responses to the same questions but may
hang together in other ways . . . a list differs from a classifi cation in that it rec-
ognizes its incompleteness. It doesn’t even need to seek completeness. If some-
one comes along with something to add to the list, something that emerges as
important, this may indeed be added to it.”11

This applies to LISP lists. Note the example of a list of heterogeneous ele-
ments in a LISP primer:

(3 FRENCH HENS 2 TURTLE DOVES 1 PARTRIDGE 1 PEAR TREE)12

Note also that the list is complete—hence the parentheses—but it can be
amended. We can use the CAR and CDR functions to obtain the fi rst element

Lists

177

of the list or the remainder of the list, respectively. (This, simply, is what these
functions do.)

Lists may contain other lists.

((PENNSYLVANIA (THE KEYSTONE STATE))

(NEW- JERSEY (THE GARDEN STATE))

(MASSACHUSETTS (THE BAY STATE))

(FLORIDA (THE SUNSHINE STATE))

(NEW- YORK (THE EMPIRE STATE))

(INDIANA (THE HOOSIER STATE)))13

or may even be empty (). Lists are special. AARDVARK is not the same as
(AARDVARK).14

LISP is the second oldest programming language (after FORTRAN) still in
use. McCarthy15 attributes its longevity, in part, to its representation of sym-
bolic information, externally by lists, and internally by list structure; LISP’s
programs, not just its data structures, are lists. Perhaps some of the reason for
LISP’s survival, through the various phases of our relationship with comput-
ers, is because, through its emphasis on the list, it captures something about
the human condition and our need to make and manipulate lists to make sense
of the world. The elasticity of the list, its capacity to surprise, means that LISP
resists the obvious Taylorization that one might expect with such a powerful
ordering and processing tool.16 Compare the cuneiform tablets of old, and an
“ancient” programming language of the modern world. LISP offers a promise
of the power of both the old lists, the nineteenth- century scientifi c lists, and
something beyond. In modern terms, this is a goal of artifi cial intelligence lan-
guages, of which LISP is the lingua franca. Lists, whether inscibed in clay, or in
silico, represent knowledge and how we reason about knowledge.

LISP resists. Lists persist.

Notes

1. William McGaughey, “On the Cutting Edge of Knowledge: A Short History of the

Most Advanced Techniques of Establishing Truth in Each Age.”

2. Marc Van De Mieroop, Cuneiform Texts and the Writing of History.

Lists

178

3. Geoffrey Bowker and Susan Leigh Star, Sorting Things Out: Classifi cation and its

Consequences, 139.

4. Michel Foucault, The Order of Things.

5. Patrick Tort, La Raison Classifi catoire: Les Complexes Discursifs- Quinze Etudes.

6. Bruno Latour, Science in Action: How to Follow Scientists and Engineers Through Society.

7. Bowker and Star, Sorting Things Out, 137.

8. John McCarthy, LISP Prehistory—Summer 1956 through Summer 1958.

9. Ibid.

10. Cited in Foucault, The Order of Things, xvi.

11. John Law and Annemarie Mol, Complexities: Social Studies of Knowledge Practices, 14.

12. David S. Touretzky, COMMON LISP: A Gentle Introduction to Symbolic Computation, 32.

13. Ibid, 49.

14. Ibid, 33.

15. McCarthy, LISP Prehistory.

16. Richard Hull, “Governing the Conduct of Computing: Computer Science, the

Social Sciences and Frameworks of Computing,” Accounting, Management & Informa-

tion Technology 7 (1997): 213–40.

Lists

179

Loop
Wilfried Hou Je Bek

The symbol of the snake nibbling away at its own tail, that mythological
archetype of paradoxical repetition, is only partly suitable as a metaphor for
the LOOP, that gargoyle of cyclical imagination in computation. The LOOP,
a “reusable pattern where the language executes part of the pattern auto-
matically, and you supply the parts that are different”1 is one of the ways in
which programming has gusto.2 But it is not a single minded concept; the
LOOP denotes a vast chain of beings (iterators, GO TO statements with pass-
ing arguments, count- controlled loops, condition- controlled loops, collection
controlled loops, tail- end recursion, enumerators, continuations, generators,
Lambda forms . . .) that crowd computer science and cloud the circumstances
of its miracles.

Programming is an art3 but we talk of computer science; this army of en-
gineers has, however, failed to deliver us something like a looposcope, an in-
strument of vision that would augment our understanding of the manmade
world we are trying to manipulate into constructs of unearthly beauty. This
hypothetical apparatus would, in another medium, recreate with mnemogenic
rhythm the striking experience of circularity produced by the straight- line
forwardism of a discrete state machine.

The LOOP is an uphill continuum of abstractions. Some key moments
stand out:

1. The humble origins of the LOOP when it leaks aboveground from the pat-
terns carved on the stone that is the hardware.
2. The LOOP logically engineered for elegance on the slab of the program-
ming language designer.
3. The release of the LOOP in the wild where typos, logical fl aws, undecid-
ability, and sloppy implementation haunt it. The LOOP needs only one op-
portunity in a run- time to become infi nite.

In between these inauspicious moments, in the elephantiasis of abstraction
and invention, in the syntactic sugar- coated manifestations of its form, the
looposcope would be an invaluable aid to call its tail from its head and track

Loop

180

the movement of the LOOP through memory, its state permutations and its
maneuvres in search space.

A read- write head lives along the infi nite tape of a Turing Machine. Its
behavior (the head moving back and forth, reading, writing, and erasing sym-
bols after having been instructed to do so by symbols written on that tape) is
the sum of all patterns created by the minimal instruction set that guides it.
Imagine the following scenario: the head is instructed to JUMP to a certain
position on the tape only to fi nd when there another JUMP instruction telling
the head to return to whence it came. There it will be instructed to go where
it is now and so on and so on and so on, unconditionally and infi nitely switch-
ing between states. Mostly a LOOP is merely a loop inside another. Traversing
this control fl ow hierarchy the programmer climbs up and down, interrupting
from above the loop that has become immortal below. The LOOP is a subset of
all possible behavior made possible by JUMP (or BRANCH), the infi nite loop
is a special class within this set defi ned by the absence of interruption. The
central position of the halting problem (the question of whether a computer
given a certain input will halt, or run infi nitely) in formal computation suffi ces
to show that the LOOP is the foremost poetic entity in programming.

It is the goal of the programming language designer to provide powerful
abstractions. For Alan Kay, designer of Smalltalk, these are “special ways of
thinking about situations that in contrast with other knowledge and other ways
of thinking critically boost our abilities to understand the world.”4 Such a state-
ment succinctly aligns programming with the agenda of poetic theorists like
Coleridge and Yeats. If we regard the loop as a species of tool for thinking
about and dealing with problems of a certain nature, the sheer light- footedness
of looping allows you to run away with the problem with more ease. Indeed,
the debate over what constitutes the most elegant way to organize LOOPs from
JUMPs is responsible for some of the most classic texts in computer science.

If you look carefully you will fi nd that surprisingly often a GO TO statement which

looks back really is a concealed FOR statement. And you will be pleased to fi nd how the

clarity of the algorithm improves when you insert the FOR clause where it belongs

writes Peter Naur of the programming language Algol- 60 in 1963, a com-
ment quoted by Donald Knuth in his partly contemplative, mostly technical
“Structured Programming with GO TO Statements.”5 Here Knuth traces the
accumulation of resentment against GO TO statements that created the con-

Loop

181

ceptual agar on which Edsger Dijkstra’s polemical “Go To Statement Consid-
ered Harmful,”6 that grand diatribe against “spaghetti code,” could proliferate
with the success it did:

For a number of years I have been familiar with the observation that the quality of

programmers is a decreasing function of the density of GO TO statements in the pro-

grams they produce. More recently I discovered why the use of the GO TO statement

has such disastrous effects, and I became convinced that the GO TO statement should

be abolished from all “higher level” programming languages (i.e., everything except,

perhaps, plain machine code).7

The hesitant Knuth, declaring his goal to be to help bring about the mytho-
poetic entity “Utopia 84,” the fi rst “really good programming language,” fabu-
lates moments of problem- solving agony when his mind, directed by the habit
to use GO TO, was tied behind his back without it. Then he goes on to show
how in certain cases a WHILE clause causes wasted cycles on the machine: the
convenience of abstraction versus the responsibility of power. How do you fi nd
out if Element Y is present in Array X? The computer scientist has various ways
to fi nd out, throwing a zoo of loops at it and see what sticks best, but the ordi-
nary webscripter just asks the interpreter “Is Y in X?” and the answer will roll
out. Yet it is the LOOP that drives Miss Algorithm, the LOOP that sustains
those creatures that live out in the sun. On the other hand, “Language is Fossil
Poetry”8 and who denies the schoolboy his moment of love made sedimental.

In every programming language higher than the hardware mimetic as-
sembly language, the LOOP haphazardly diverges into two branches: itera-
tion, in which “a collection of instructions [is] repeated in a looping manner”;
and recursion, which has “each stage of the repetition executed as a subtask of
the previous stage.” Even though the two are often thought of as being “equiv-
alent in terms of computer power”9 they are radically different in the way they
“feel” to programmers. In iteration, “shape is superinduced,” while recursion
is “form as proceeding” as Herbert Read said (about classical vs. romantic po-
etry).10 Perhaps even Coleridge’s famous distinction between fancy and imagi-
nation applies here (after all, Read was only paraphrasing Coleridge). In the
Coleridgian view iteration would be “the imprisonment of the thing” and
recursion the “self- affected sphere of agency.”

The glossary in Programming PERL11 offers defi nitions for both recursion
and iteration. The length of each entry is telling. Iteration is merely, “Doing

Loop

182

something repeatedly.” The entry for recursion begins: “The art of defi ning
something in terms of itself,” and ends: “[Recursion] often works out okay
in computer programs if you’re careful not to recurse forever, which is like an
infi nite loop with more spectacular failure modes.” Recursion is surrounded
in the programmer’s mind with a nimbus of warm light captured in an oft-
 quoted bit of programmers’ wisdom, variously attributed to L. Peter Deutsch
and Robert Heller: “To iterate is human, to recurse, divine.”12

Iteration branches off into two niche- driven subspecies canonized in most
current programming languages as the primitives FOR and WHILE. Al-
though often interchangeable, FOR is like a tourist that knows when it will
be home (but with the power to RETURN earlier), WHILE is like a traveller
away for as long as there is no hard reason to come back, potentially forever. It-
eration requires special syntax, whereas recursion is the production of looping
behavior generated by functions calling themselves. Iterations exist in a special
time; recursion is behavior made up from the daily routines of life. Style, “that
purifi cation from insincerity, vanity, malignity, arrogance,”13 is one reason for
preferring one kind of LOOP, one instance of peripatetic know- how, above
another. The nature of the memory to be manipulated, the way the magic car-
pet is folded14 is another factor when deciding which LOOP to apply, which
way to walk. Hash tables call for measures other than a one- dimensional list
(Fibonacci numbers or a manifesto) or the nocturnal wandering through bi-
 directional structures (the world wide web or a city). Thinking in general and
poetry in particular has forever been closely linked with iteration,15 and was it
not Coleridge who said that poetry is always a circuitous experience?

One aspect of the LOOP, and in many ways its defi ning quality, is the min-
imal means that result in automated infi nite production. Is it when writing
a simple FOR statement for the fi rst time, counting to, say, 10 and printing
to the screen at each iteration, that the novice programmer “Beheld the living
traces and the sky- pointing proportions of the mighty Pan”?16 This insight,
its magic worn off in the mind of the experienced programmer as a mere fact
of life, is that two simple lines of code can produce an “incantation” in which
an effort as small as changing the upper limit increases the output to a “fairy-
 fountain” needing more time to be enacted than the computer it runs on will
survive. Is it indeed not this raw force that allows permutation- sects to believe
that the answer to the fi nal riddles of the universe can be unwound by rephras-
ing them in a computational LOOP?

Loop

183

The LOOP is the powerhouse of worlds imagined in silico: the sweat- free
producer of matter and time. It takes a Coleridge to do it justice.

Notes

1. Shriram Krishnamurti, Programming Languages: Application and Interpretation.

2. William Hazlitt, The Spirit of the Age.

3. Donald Knuth, The Art of Computer Programming.

4. Donald Knuth, Structured Programming with GO TO Statements.

5. A. C. Kay, “The Early History of SmallTalk,” ACM SIGPLAN notices, Vol. 8, No. 3

(1993); available at http: // gagne.homedns.org / ~tgagne / contrib / EarlyHistoryST.html.

6. Edsger Dijkstra, “Go To Statement Considered Harmful.”

7. Dijkstra, ibid.

8. Emerson, ‘The Poet,’ in Essays: Second Series, 1844.

9. J. Glenn Brookshear, Computer Science.

10. Herbert Read, The True Voice of Feeling.

11. Larry Wall, Tom Christiansen, Jon Orwant. Programming Perl.

12. James O. Coplien, “To Iterate is Human, to Recurse, Devine” in, C++ Report

10(7).

13. William Butler Yeats. Synge and the Ireland of His Time.

14. Vladimir Nabokov, Speak Memory.

15. See for instance, Rebecca Solnit, Wanderlust: A History of Walking.

16. Hazlitt, The Spirit of the Age.

Loop

184

Memory
Warren Sack

The following examination of computer memory closely scrutinizes the words,
rhetoric, and discourse of computer science and several associated disciplines.
Presupposed by this methodology of rhetorical analysis is the idea that the
words employed in the design and evaluation of new technologies shape the
form and function of those technologies. Of course, designers’ vocabularies do
not completely determine what a technology can do or how it works. After all,
designers are not magicians and the activity of software design is not a form of
incantation! But, many technologies were written and spoken about long be-
fore they were developed into practical, everyday things: fl ying machines and
long distance communication are two technologies that were dreamt about
long before they were implemented. Here we review a short history of the
metaphors and analogies employed by philosophers, scientists, and technolo-
gists to understand memory. We will see how previous metaphors are some-
times later taken for literal truth. When metaphors become scientifi c models,
alternative ways of thinking about the object of study become diffi cult. The
purpose of this entry is to question the metaphors of memory taken as models
and, thereby, begin to explore new ways to think about computer memory.

The act of perception stamps in, as it were, a sort of impression of the percept, just as

persons do who make an impression with a seal. This explains why, in those who are

strongly moved owing to passion, or time of life, no mnemonic impression is formed;

just as no impression would be formed if the movement of the seal were to impinge on

running water; while there are others in whom, owing to the receiving surface being

frayed, as happens to the stucco on old chamber walls, or owing to the hardness of the

receiving surface, the requisite impression is not implanted at all.1

Aristotle’s image of memory is constructed from a seal that is known to work
on soft wax or clay. His presupposition is that when our memories are in work-
ing order they are akin to a pliant solid, like wax, that can record the impres-
sion of a seal.

Aristotle’s trope does not begin or end with him. Plato wrote of the anal-
ogy before Aristotle; and, Cicero, Quinitilian, Sigmund Freud, and Jacques
Derrida explored the trope of memory- as- wax- tablet after him. Each new gen-

Memory

185

eration of memory theorists tends to incorporate the latest media technology
to explore its similarities with human memory. Or, to phrase this point po-
lemically, as media theorist Friedrich Kittler and his followers have done for
the past couple of decades, “Media, then, are [at] the end of theory because in
practice they were already there to begin with.”2

Historically, theorists have not always been clear about when their refer-
ences to media technology are metaphorical and when they are literal. Derrida,
for example, closely scrutinizes Freud’s mixed and unstated metaphors about
memory.3 But, many of today’s memory theorists quite clearly state that what
others might take to be a metaphor, they take to be a literal truth. Contem-
porary theorists compare human memory and computer memory. Cognitive
scientists who explore this analogy believe that humans and machines are two
species of the same genus; in the words of computer scientist and economist
Herbert Simon, humans and computers are “symbol systems.”4 Thus, cogni-
tive scientists hypothesize that human memory is not akin to computer mem-
ory, it is virtually the same thing as computer memory. Or, to put it a different
way, the hypothesis is that computer memory is not just one possible model of
human memory, it is the best model of memory.

This belief, that the computer is the best model of the object of study, is not
unique to cognitive science. It is an operating principle in molecular biology,
operations research, neuro- psychology, immunology, game theory, economics,
and many other sciences. Historian of science Philip Mirowski calls this literal
belief in computation one of the defi ning characteristics of a “cyborg science,”
a science that does not use the computer as an analogy but which uses it as a
simulacrum of the object of study.5 For example, Howard Gardner, in his over-
view and introduction to cognitive science, states that one of the paramount
features of cognitive science is this belief:

There is the faith that central to any understanding of the human mind is the elec-

tronic computer. Not only are computers indispensable for carrying out studies of

various sorts, but, more crucially, the computer also serves as the most viable model

of how the human mind functions.6

The fi rst set of models devised by cognitive psychologists to explain the struc-
ture and dynamics of human memory recapitulated many architectural as-
pects of then- contemporary computational hardware. For example, the model
of Richard Atkinson and Richard Shiffrin7 included a “short- term store,” a

Memory

186

“long- term store,” “buffers,” “slots,” and a hypothesis that information process-
ing for storing and retrieving items from memory was a sequential (rather than
a parallel) operation. These are architectural details that one can also identify
with the computers of that time (i.e., the 1960s). As work in this area devel-
oped, the memory models began to look less and less like then- contemporary
computer hardware, but they are still frequently phrased in terms that would
allow one to implement them in software.

What makes this tight coupling between human memory and computer
memory seem plausible? Why might computer memory be seen as “the most
viable” model of human memory? To untangle this belief of cognitive scien-
tists it is necessary to remember that before computers were machines they
were people, usually women. For over two hundred years, these women—these
computers—worked together in groups compiling tables of statistics, tables of
trigonometric functions, tables of logarithms. For example, computers worked
together in 1757 to calculate the return trajectory of Halley’s comet.8

When the machines we now call computers were fi rst designed, they were
designed to do the work of a human computer. In 1936, Alan Turing designed
a machine that could do the work of a human computer. In his paper he writes
of “computers” but when he does he is referring to those people who held the
job of computer. Turing himself did not go so far as to say that his machine has
memory, but he almost does. His mathematical paper is based on an extended
analogy between a machine and a person, that is, a human computer. Turing
explains how his machine might remember what it is doing and what it is to
do next by extending the analogy like this:

It is always possible for the computer to break off from his work, to go away and forget

all about it, and later to come back and go on with it. If he does this he must leave a

note of instructions . . . explaining how the work is to be continued. . . . We will sup-

pose that the computer works by such a desultory manner that he never does more than

one step at a sitting. The note of instructions must enable him to carry out one step

and write the next note. Thus the state of progress of the computation at any stage is

completely determined by the note of instructions and the symbols on the tape.9

Part of Turing’s accomplishment was to show that these so- called “notes,” the
mnemonics for remembering what to do next, could, in general, always consist
of a series of integers written on a paper tape. So from Aristotle’s seals we have
moved to a newer technology of bureaucracy, namely numbered paper forms.

Memory

187

During the World War II Turing’s mathematical, theoretical machines be-
came practical. The fi rst computers had to be “set up” for each new problem
of calculation. “Set up” entailed plugging and unplugging cables and setting
hardware switches. By the end of the war, it became clear to J. Presper Eckert,
John Mauchly, and John von Neumann that the memory of the computer
could be used to store a program as well as data and that the program could be
specifi ed to automatically set up the computer to solve a new problem. Once
the so- called “stored- program” memory was implemented computers could be
programmed rather than “set up.”10

These fi rst computers were implemented in vacuum tubes and electronics
and, from then on, the term “computer” meant a machine, not a human being.
Ten years after Turing’s publication there existed machines that were called
“computers” and these computers were said to have memories.11 Since many of
the designers and builders of these fi rst computers were engineers; and, since
engineers had been writing, at least since the end of the a nineteenth century
of the “magnetic memory” of iron;12 and, since the physical substrate of early
computer’s “memories” was ferromagnetic,13 this usage of the term “memory”
to refer to the storage capacity of the computer is perhaps not so surprising.
What is surprising is what happened next in the scientifi c world. Remember
that social science, especially psychology, in the United States was dominated
by behaviorism for most of the fi rst half of the twentieth century. As Sherry
Turkle puts it,

As recently as the 1950s behaviorism dominated American academic psychology, its

spirit captured by saying that it was permissible to study remembering but considered

a violation of scientifi c rigor to talk about “the memory.” One could study behavior

but not inner states.

Turkle argues that

The computer’s role in the demise of behaviorism was not technical. It was the very

existence of the computer that provided legitimation for a radically different way of

seeing mind. Computer scientists had, of necessity, developed a vocabulary for talk-

ing about what was happening inside their machines, the “internal states” of general

systems. If the new machine “minds” had inner states, surely people had them too. The

psychologist George Miller, who was at Harvard during the heyday of behaviorism,

has described how psychologists began to feel embarrassed about not being allowed to

Memory

188

discuss memory now that computers had one . . . The computer presence relegitimated

the study of memory and inner states within scientifi c psychology.14

What Turkle leaves out of her short history is that in 1956, when George
Miller and his colleagues were founding the discipline of cognitive psychology,
it had only been a few years since computers were not machines, but people.
In other words, contemporary, cognitive science work on memory is based—
ironically enough—on a willful amnesia of recent history and thus on a circu-
larity: computer memory seems to be a good model of human memory because
computer memory was modeled on human memory!

Here is the best analogy to the current situation that exists in many aca-
demic disciplines, many “cyborg sciences,” that human thinking, memory,
and decision making can be “modeled” by computer programs. This situation
would be like discovering a painted portrait of a specifi c man and then spend-
ing the rest of one’s professional life commenting on how uncanny it was that
the portrait seemed to look like a human being.

The human that serves as the model for these cyborg sciences is culturally
coded in a very specifi c manner. The human is, as Turing’s analogy makes
clear, not just any human. He—for, despite the fact than many human com-
puters were women, it is usually a “he” in this technical literature—is a book-
keeper, accountant, or bureaucrat:

We may compare a man in the process of computing a real number to a machine

which is only capable of a fi nite number of conditions . . . The machine is supplied

with a “tape” (the analogue of paper) running through it, and divided into sections

(called “squares”) each capable of bearing a “symbol.” At any moment there is just one

square . . . which is “in the machine.” We may call this square the “scanned square.”

The symbol on the scanned square may be called the “scanned symbol.” The “scanned

symbol” is the only one of which the machine is, so to speak, “directly aware.” How-

ever, by altering its m- confi guration the machine can effectively remember some of the

symbols which it has “seen” (scanned) previously.15

Here then is the true picture of the “human” that is the model for computer
memory: he is a bureaucrat squirreling around in the back offi ce, shuffl ing
through stacks of gridded paper, reading, writing, and erasing numbers in
little boxes. This Bartleby- the- Scrivener is the man so many cyborg scien-

Memory

189

tists would like to portray or recreate as an assemblage of computational
machinery.

Equipped with a clear picture of whose memory computer memory is de-
signed to resemble, it becomes possible to parse the technical literature on
computer memory. The technical literature is completely preoccupied with
the management and allocation of memory. Memory in the technical litera-
ture is not Marcel Proust’s lost aristocratic memories of, for instance, eating
 scallop- shell- shaped, lemon- and- butter- fl avored cakes (madeleines) as a child.
No, this technical literature is fi lled with the memories of bureaucrats: num-
bers, lists, tables, cells, and segments. Even the computer science literature on
narrative memories boils down to a set of techniques for fi tting stereotypical
stories into preconceived grids.16

Memory, of this bureaucratic, gridded kind, is a major area of work in hard-
ware and software research and development. It is easy to see the grid when
examining hardware. For example, contemporary, dynamic random access
memory (DRAM) consists of a matrix of capacitors—which either hold (1) or
do not hold (0) a charge—wired together in rows and columns. At the lower
levels of software (i.e., in the memory management routines of operating sys-
tems, programming languages, etc.) memory is represented as a vector (i.e., a
fi xed length sequence of integers) or a matrix (i.e., a vector of vectors) that can
be indexed by row and column.

If one reads the canonical texts of undergraduate, computer science educa-
tion one fi nds passages like this are ubiquitous to the writings about computer
memory:

Memory is an important resource that must be carefully managed. . . . The part of

the operating system that manages memory is called [outrageous as it may seem!] the

memory manager. Its job is to keep track of which parts of memory are in use and

which parts are not in use, to allocate memory to processes when they need it and de-

allocate it when they are done, and to manage swapping between main memory and

disk when main memory is not big enough to hold all of the processes.17

The function of a memory manager is akin to an accountant preparing taxes on
his desk. If we understand his desk to be analogous to main memory and his
fi le drawers to be like the computer’s disk, then “memory allocation” is akin
to assembling together the fi les and folders for a given account and fi nding

Memory

190

space for them on the desk; “swapping” is like moving fi les and folders onto
the desk from the fi le cabinets or, vice versa. The “resource” to be “managed” is
the working space on the desk. Files and folders can be stacked, heaped, moved
off the desk into fi le cabinets (i.e., onto disk), etc.

Undergraduate computer science students learn in their fi rst or second year
of studies the exact defi nitions and typical implementations of software analogs
of “fi les,” “folders,” or “directories”; “stacks,” “heaps,” and “lists”; and the “re-
cycling” or “garbage collection” of memory. Any adequate, introductory text-
book on data structures and algorithms can provide the exact defi nitions of
these “memory structures” and their associated operations.18

That these operations correlate almost exactly with what the bureaucrat
does with his fi le cabinets, desk, and trash can is no coincidence. Neither is it
a coincidence that these same operations are the ones available to today’s com-
puter users, whose graphical user interfaces are based on the so- called “desktop
metaphor.” The metaphors of the desk, the trash can, and the mind- numbing
operations of offi ce work and bureaucracy are built right into the foundations
of the computer and its user interface. Even a quick skim through the semi-
nal, foundational texts of graphical user interface design, especially those of
 Douglas Engelbart, make it clear that shuffl ing through, stacking, listing, and
fi ling were the ideals of “memory” and “thought” admired and implemented
by the founders of computer science and interface design.19

Of course, not all computing can be understood as offi ce work. Rather, all
computing is deeply rooted in the metaphors and pragmatics of bureaucracy;
just as it is also intertwined with a genealogy of military thinking and mate-
riel.20 When these genealogies of software are forgotten, one loses sight of the
highly particular and ultimately idiosyncratic images of memory and reason-
ing that are reifi ed in the design and design principles of software.

Computer science’s notion of “memory,” that is, the “memory” of software
and hardware, is not necessarily “worse” than that of other fi elds that investi-
gate the issue of memory. But, computer science’s working theories of memory
are very specifi c and idiosyncractic to the concerns of bureaucracy, business
and the military. This is largely because funding for computer science has
come from these sources.

Juxtaposition with very different images of memory help one to imagine al-
ternatives to the “closed world”21 conditions that contemporary computational
models circumscribe. For example, Marcel Proust’s image of memory does not
provide a better model of memory than the computer model, but it does pro-

Memory

191

vide a different model: a contrasting image that can be seen to highlight issues,
ideas, and materialities uncommon to the military- (post)industrial technolo-
gies of memory:

And suddenly the memory revealed itself. The taste was that of the little piece of mad-

eleine which on Sunday mornings at Combray . . . when I went to say good morning

to her in her bedroom, my aunt Léonie used to give me, dipping it fi rst in her own cup

of tea or tisane. . . . when from a long- distant past nothing subsists, after the people

are dead, after the things are broken and scattered, taste and smell alone, more fragile

but more enduring, more unsubstantial, more persistent, more faithful, remain poised

a long time, like souls, remembering, waiting, hoping, amid the ruins of all the rest;

and bear unfl inchingly, in the tiny and almost impalpable drop of their essence, the

vast structure of recollection.22

Notes

1. Aristotle, On Memory and Reminiscence.

2. Geoffrey Winthrop- Young and Michael Wutz, “Translator’s Introduction: Fried-

rich Kittler and Media Discourse Analysis,” in Friedrich Kittler, Gramophone, Film,

Typewriter, xx.

3. Jacques Derrida, “Freud and the Scene of Writing,” in Writing and Difference, trans-

lated by Alan Bass.

4. Herbert A. Simon, The Sciences of the Artifi cial.

5. Philip Mirowski, Machine Dreams: Economics Becomes a Cyborg Science, 14.

6. Howard Gardner, The Mind’s New Science: A History of the Cognitive Revolution, 6.

7. Richard Atkinson and Richard Shiffrin, “Human Memory: A Proposed System and

Its Control Processes,” in K. W. Spence and J. T. Spence, eds., The Psychology of Learn-

ing and Motivation: Advances in Research and Theory, Volume 2.

8. David Grier, When Computers Were Human, 19.

9. Alan Turing, “On Computable Numbers with an Application to the

Entscheidungsproblem.”

Memory

192

10. Paul E. Ceruzzi, A History of Modern Computing, 20–21.

11. Oxford English Dictionary, example from entry for “memory”: “1945 J. P. ECK-

ERT et al. Descr. ENIAC (PB 86242) (Moore School of Electr. Engin., Univ. Pennsyl-

vania) iii. 1 The memory elements of the machine may be divided into two groups the

‘internal memory’ and the ‘external memory.’”

12. Oxford English Dictionary, examples from entry for “memory”: “1887 Jrnl. Soc.

Telegr. Engin. 16 523 No matter how treated, a piece of soft iron has a ‘magnetic

memory.’ 1935 Proc. Royal Soc. A. 149 72 The [magnetic] fi eld..is to be regarded

as ‘frozen in’ and represents a permanent memory of the fi eld which existed when the

metal was last cooled below the transition temperature.”

13. The ENIAC used core memory: “Magnetic core memory, or ferrite- core memory,

is an early form of computer memory. It uses small magnetic ceramic rings, the cores,

to store information via the polarity of the magnetic fi eld they contain. Such memory

is often just called core memory, or, informally, core.” Wikipedia: http: // en.wikipedia

.org / wiki / Core_memory; see also, Ceruzzi, A History of Modern Computing, 49–50.

14. Sherry Turkle, “Artifi cial Intelligence and Psychoanalysis: A New Alliance,” Dae-

dalus 17, 1 (Winter 1988).

15. Turing, “On Computable Numbers,” 231.

16. Message Understanding Conference Proceedings (MUC- 7), available at http: //

www.nlpir.nist.gov / related_projects / muc / proceedings / muc_7_toc.htm / (last accessed

April 9, 2006).

17. Andrew S. Tanenbaum, Operating Systems: Design and Implementation, 191.

18. For example, Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft, Data Struc-

tures and Algorithms.

19. Douglas Engelbart, “Augmenting Human Intellect: A Conceptual Framework,”

Summary Report for SRI Project No. 3578; see, especially, p. 56. Also, available online

at http: // www.bootstrap.org / augdocs / friedewald030402 / augmentinghumanintellect /

3examples.html#A.3 (consulted on April 9, 2006).

20. Manuel De Landa, War in the Age of Intelligent Machines.

Memory

193

21. Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War

America.

22. Marcel Proust, Remembrance of Things Past. Volume 1: Swann’s Way: Within a Bud-

ding Grove, translated by C. K. Scott Moncrieff and Terence Kilmartin, 50.

Obfuscated Code1

Nick Montfort

Although conventional wisdom holds that computer programs must be ele-
gant and clear in order to be admirable, there are unusual counterexamples
to this principle. In the practice of obfuscated programming, the most pleas-
ing programs are held to be those that are concise but which are also dense
and indecipherable, programs that run in some sort of surprising way.2 Ob-
fuscated code demonstrates that there are other aesthetic principles at play
besides those “classical” ones that have been most prominent in discussions of
programming aesthetics by programmers3 and critics.4

A popular form of programming related to obfuscation was already in evi-
dence by the beginning of the 1980s. This was the practice of writing one- line
BASIC programs, undertaken by people who, for the most part, were not pro-
fessional programmers, but who had started programming during the home
computing boom. These recreational one- liners work in some amusing way,
sometimes even implementing a simple interactive game. The following pro-
gram, for instance, when run on a Commodore 64, displays random mazes:

10 PRINT CHR$(109+RND(1)*2); : GOTO 10

This is accomplished by simply printing one of two graphic characters at ran-
dom, “ \” or “ / ”, and then, without printing a linebreak, jumping back to the
start of the line. The idea of the one- liner is not original to the home com-
puter era and BASIC; in a 1974 talk, Donald Knuth pointed out a precedent
in APL programming and noted he enjoyed writing programs that fi t on a
single punched card.5 But the one- liner became widespread as BASIC gained
popularity, and some one- line BASIC programs (on systems that permit lines
longer than eighty characters) became quite intricate and elaborate. A small
but reasonably complete implementation of Tetris was done in one line of BBC

Obfuscated Code

194

Micro BASIC in 1992,6 and a one- line BASIC spreadsheet program has been
posted on Usenet.7 One- line BASIC programs were often printed in magazines
and keyed in by users. Code compression, rather than obfuscation for its own
sake, was emphasized, but presentations of these programs sometimes asked
the reader to fi gure out what they did, indicating that these programs were
puzzling and challenging to decipher.

This puzzle aspect highlights the two main “readers” for a computer pro-
gram: on the one hand, the human reader who examines the code to under-
stand how it works, and how to debug, improve, or expand it; on the other,
the computer, which executes its statements or evaluates its functions by run-
ning the corresponding machine code on its processor. A program may be clear
enough to a human reader but may have a bug in it that causes it not to run,
or a program may work perfectly well but be hard to understand. Writers of
obfuscated code strive to achieve the latter, crafting programs so that the gap
between human meaning and program semantics gives aesthetic pleasure.

Obfuscated programming is institutionalized today not in microcomputer
magazines but online, where programs are exchanged and contests are hosted.
The International Obfuscated C Code Contest has been held eighteen times
since the fi rst contest ran in 1984, back when one- line BASIC programs were
still in vogue. Only small, complete C programs can be entered in the IOCCC.
The contest’s stated goals include demonstrating the importance of program-
ming style “in an ironic way” and illustrating “some of the subtleties of the C
language.”8 There is also an obfuscated Perl contest, run annually by The Perl
Journal since 1996, but the most visible tradition of Perl obfuscation is seen in
short programs that print “Just another Perl hacker,” which are called JAPHs.
In early 1990, Randal Schwartz began the tradition of writing these programs
by including them in his signature when posting on comp.lang.perl.

Some sorts of obfuscation techniques are common to IOCCC entries and
JAPHs and may be used in just about any programming language. Even as-
sembly language allows the free naming of variables and labeling of particular
instructions, so that these names can be used meaningfully and can help people
better understand programs. Wherever such names can be freely chosen, they
can be selected in a meaningless or even a deceptive way, as when num or
count is used to store something other than a number, or when x and y appear
together in a program to mislead the reader into thinking they are Cartesian
coordinates. Since variable names are usually case- sensitive, there are addi-

Obfuscated Code

195

tional possibilities for confusion. In C, where no special character is used to in-
dicate a variable, programs take advantage of this and of the case- sensitivity of
variable names to name some variables o and O, inviting additional confusion
with the number zero. This play, which can be called naming obfuscation, shows
one very wide range of choices that programmers have. By calling attention to
this, naming obfuscation demonstrates that everything about a programmer’s
task is not automatic, value- neutral, and disconnected from the meanings of
words in the world.

Another obfuscation technique takes advantage of curiosities in syntax to
make it seem that some piece of data—for instance, a string that is being as-
signed to a variable—is actually part of the program’s code. Alternatively, some-
thing that appears to be a comment, and thus to have no effect on the program’s
workings, may actually be part of the code, or vice- versa. This data / code / comment
confusion is invited by fl aws or curiosities in a language’s specifi cation, but can
be accomplished in several different languages, including C and Perl.

There are also obfuscations that appear more prominently in one language
than in another. In C, a[b] and b[a] have the same meaning, which is not the
case when accessing array elements in other languages. An obfuscator working
in C, however, can choose the more confusing of the two. Other languages do
not defi ne the addition of strings and numbers, or they defi ne it in a way that
seems more intuitive, at least to beginning programmers. But C, by giving the
programmer the power to use pointers into memory as numbers and to per-
form arithmetic with them, particularly enables pointer confusion. By showing
how much room there is to program in perplexing ways—and yet accomplish-
ing astounding results at the same time—obfuscated C programs comment on
particular aspects of that language, especially its fl exible and dangerous facili-
ties for pointer arithmetic.

Perl does not invite this sort of obfuscation, but does allow for several others.
There are a dazzling variety of extremely useful special variables in Perl, which
are represented with pairs of punctuation marks; this feature of the language
merits an obfuscation category of its own. Perl’s powerful pattern- matching
abilities also allow for cryptic and deft string manipulations. The name Perl is
sometimes said to stand for “Practical Extraction and Report Language,” but
“Pathologically Eclectic Rubbish Lister” is sometimes mentioned as another
possible expansion. The language is ideal for text processing, which means
that short messages (such as “Just another Perl hacker,”) can be printed out in

Obfuscated Code

196

many interesting ways, sometimes using little- known sorts of pattern- matching
obfuscation.

This JAPH, posted by Randal Schwartz on April 18, 1990, provides a short
example that can be explicated in some depth:

$_=”,rekcah lreP rehtona tsuJ”;s / .$ / eval ‘print $&’,”” / e while

length

Like most such programs, this one prints “Just another Perl hacker,”—the
comma at the end is traditional—and does so in a curious way. There are only
two statements in this one- line program, separated by a semicolon. The fi rst
statement puts a string with the reverse of this message into $_, the Perl spe-
cial variable for the current line. The second command is the interesting one;
it is a substitution operation of the form s / FIND / REPLACE / e which is called
implicitly on $_. The e after the fi nal slash means that the result will be evalu-
ated as a Perl expression. The “while length” at the very end results in this
substitution being repeatedly called, iteratively, as long as there is something
left in $_. Since one character is removed from the string on each pass, the fol-
lowing substitution operation is called once for each character in the string:

s / .$ / eval ‘print $&’,”” / e

The effect of this is to take the last character in the current line—“J” will
therefore be selected fi rst—and prepare a string to contain it. The fi rst such
string that is built is “eval ‘print_,””’”. This string is evaluated as a Perl ex-
pression, which results in “eval” executing its own Perl program to print the
character “J”. Since this mini- program returns no value, the letter selected is
replaced with nothing, and the string is diminished in length.

There would be nothing very interesting about simply reversing a string
and then printing it out, or about starting at the end of a string and printing
it back- to- front one character at a time, although it might be interesting to
see one of these processes coded up in a single, short statement. Here, a single
statement does all of this and more. The statement creates a string that, when
evaluated as an expression, executes a very short program to print a character.
This statement also removes that last character from the current line and then
continues processing the shorter line.

Obfuscated Code

197

A repository of JAPHs is available online9 and explications of several have
been provided.10 An explication of an introductory obfuscated C program11 is
also available.

Recent IOCCC programs include a racing game in the style of Pole Position,
a CGI- enabled web server, and a program to display mazes whose code is itself
in the shape of a maze. Obfuscated code in Perl as well as C often spells out a
name in large letters or assumes the form of some other ASCII art picture. This
is a type of double coding; more generally, multiple coding can be seen in “bilingual”
programs, which are valid computer programs in two different programming
languages. Double coding in natural languages is exemplifi ed by the sentence
“Jean put dire comment on tape,” which is grammatical English and gram-
matical French (“Jean [male name] is able to say how one types”), although each
word has a different meaning in each language. Harry Mathews contributed to
further French / English double coding by assembling the Mathews Corpus, a
list of words which exist in both languages but have different meanings.12 In
programming, an important fi rst step was the 1968 Algol by Noël Arnaud, a
book of poems composed from keywords in the Algol programming language.13
Perl poetry is a prominent modern- day form of double- coding, distinguished
from obfuscated programming as a practice mainly because it is not as impor-
tant in Perl poetry that the program function in an interesting way; the essen-
tial requirement is that the poem be valid Perl.

Interestingly, it is not the case that languages typically despised by hack-
ers—for instance, COBOL and Visual Basic—are the main ones used in ob-
fuscation. Many Perl hackers and C coders who write obfuscated programs
also use those languages professionally and fi nd it enjoyable to code in those
languages. They generally do not fi nd it fun to program in COBOL or Visual
Basic, however, even to comment negatively on these languages. In addition
to making fun of some “misfeatures” or at least abusable features of languages,
obfuscated code shows how powerful, fl exible programming languages allow
for creative coding, not only in terms of the output but in terms of the legibil-
ity and appearance of the source code.

All obfuscations—including naming obfuscations as well as language-
 specifi c ones, such as choosing the least well- known language construct to ac-
complish something—explore the play in programming, the free space that is
available to programmers. If something can only be done one way, it cannot be
obfuscated. It is this play that can be exploited to make the program signify on
different levels in unusual ways.

Obfuscated Code

198

The practice of obfuscated programming, like the kindred practice of de-
veloping weird programming languages, is connected to certain literary and
artistic traditions. The practice suggests that coding can resist clarity and
 elegance to strive instead for complexity, can make the familiar unfamiliar,
and can wrestle with the language in which it is written, just as much con-
temporary literature does. Another heritage is the tradition of overcompli-
cated machinery that has manifested itself in art in several ways. Alfred Jarry’s
 ’Pataphysics, “the science of imaginary solutions,” which involves the design
of complicated physical machinery and also the obfuscation of information and
standards, is one predecessor for obfuscated programming. There are also the
kinetic installations of Peter Fischli and David Weiss and the elaborate appa-
ratus seen in their fi lm The Way Things Go (1987–1988), as well as the earlier
visual art of Robert Storm Petersen, Heath Robinson, and Rube Goldberg.
These depictions and realizations of mechanical ecstasy comment on engineer-
ing practice and physical possibility, much as obfuscated coding and weird
languages comment on programming and computation. Such “art machines”
anticipate obfuscated programs by doing something in a very complex way,
but also by actually doing something and causing a machine to work.

Obfuscated code is intentionally diffi cult to understand, but the practice of
obfuscated programming does not oppose the human understanding of code.
It darkens the usually “clear box” of source code into something that is dif-
fi cult to trace through and puzzle out, but by doing this, it makes code more
enticing, inviting the attention and close reading of programmers. There is
enjoyment in fi guring out what an obfuscated program does that would not
be found in longer, perfectly clear code that does the same thing. While ob-
fuscation shows that clarity in programming is not the only possible virtue, it
also shows, quite strikingly, that programs both cause computers to function
and are texts interpreted by human readers. In this way it throws light on the
nature of all source code, which is human- read and machine- interpreted, and
can remind critics to look for different dimensions of meaning and multiple
codings in all sorts of programs.

Notes

1. Parts of this article are based on a paper entitled “A Box Darkly” that Michael

Mateas and I presented at Digital Arts and Culture 2005.

Obfuscated Code

199

2. There is also a practice of making one’s code diffi cult to understand or reverse-

 engineer for commercial purposes, to keep competitors or clients from understanding

one’s proprietary programs. Despite some similarities in what is done in this case, this

practice seems to have no aesthetic principle behind it and no important relationship

to obfuscated programming as described here.

3. For example, Donald E. Knuth, “Computer Programming as an Art,” in Literate

Programming, 1–16.

4. For example, Maurice J. Black, “The Art of Code,” Ph.D. Dissertation, University

of Pennsylvania (2002).

5. Knuth, “Computer Programming as an Art.”

6. David Moore, “Rheolism: One Line Tetromino Game,” available at http: // www

.survex.com / ~olly / dsm_rheolism / (accessed July 1, 2001).

7. Mark Owen, “BASIC Spreadsheet.” Quoted in C. D. Wright, “One Line Spreadsheet

in BASIC,” post to comp.lang.functional. Message- ID: <D01s7J.LK3@cix.compulink

.co.uk> (November 29, 1994).

8. Landon Curt Noll, Simon Cooper, Peter Seebach, and Leonid A. Broukhis. “The Inter-

national Obfuscated C Code Contest,” available at http: // www.ioccc.org / main.html / .

9. JAPHs, available at http: // www.cpan.org / misc / japh / .

10. See Teodor Zlatanov, “Cultured Perl: The Elegance of JAPH”; Abigail, “JAPHs

and Other Obscure Signatures”; and, Mark- Jason Dominus, “Explanation of japh.pl”

11. Michael Mateas and Nick Montfort, “A Box Darkly: Obfuscation, Weird Lan-

guages and Code Aesthetics.”

12. Harry Mathews and Alistair Brotchie, Oulipo Compendium.

13. Ibid.

Obfuscated Code

200

Object Orientation
Cecile Crutzen and Erna Kotkamp

Data and Data Processing

In the twentieth century, data and the processing of data formed the basis
of the computer science discipline. The syntax and physical form of the pre-
sentation of information was the primary focus of the fi eld. The semantics of
information was and should be coupled in an unambiguous manner to the
syntax of the information. Computer science was seen as responsible not for
the content of information but only for its processing.1 Consequently, great
efforts went into developing the architectures of logic- based subsystems in
information systems. In these subsystems the data structure, processing struc-
ture, and medial presentation of information are inscribed. Information and
the processing of information are transformed into mathematical expressions
and procedures constructed in such a manner that they can be translated into
the physical structures of machinery, which can, in turn, process and save this
translated information. Interactions between software and hardware are mod-
eled as causal procedures linking senders to receivers where the actions (mes-
sages) of the sender are the impulses for the (re)actions of the receivers, the
point being that there should be a univocal connection between impulse and
action. (Inter)action in these subsystems is always structured and planned.

Ready- Made Action

At the end of the last century a shift took place from the processing of infor-
mation to ready- made (inter)actions offered to humans. These actions were to
replace or enhance human actions, such as calculating, text and image editing,
and playing. Within the computer science discipline the conception continues
that the handling of information by people and the way people interact can
only concern the discipline in as far as it concerns theories, methods, and tech-
niques that have a generically formalizable character.

However, this exclusion of the ambiguity of human acting did not prevent
computer scientists from interfering in human activity. On the contrary, the
modeling and construction of many complex interaction patterns between hu-

Object Orientation

201

mans is still based on the same transmission model used for the representation
of data- exchange between artifi cial senders and receivers.

This focus on generalizing information, communication, and interaction
in computer science pushes the multiform character of individuality and the
specifi city of human interaction into the background. The exploration of the
 object- oriented approach is a signifi cant example of this. With this example
we analyze the approach as a specifi c methodology rather than the program-
ming practice itself.

Object- Oriented Programming

Object- oriented programming (OOP) started out in the 1960s with the pro-
gramming language Simula developed by Ole- Johan Dahl and Kristen Ny-
gaard.2 In OOP, objects are the basic elements of its ontology. Software is
structured as a collection of objects that work together. These objects relate to
and act upon each other and the interaction between these objects, the sending
of messages (message passing), is the core of this programming paradigm.

The difference between OOP and other programming paradigms is that
within OOP, data and the operations that can manipulate this data are placed
in one object instead of being separated. This created a break with the para-
digm of procedural programming, which was at that time heavily used. Within
procedural programming software behavior is defi ned by procedures, functions,
and subroutines. In OOP these behaviors are contained in the methods of the
objects. A method is a basic property of an object class. It is hidden in the ob-
ject itself.3 Methods can only invoked by sending an appropriate message to
the object.4

Object- Oriented Approach

Nowadays, object- oriented programming is not only used for developing and
producing software and hardware; object orientation (OO) has also become
a methodology and theory for interpretation, representation, and analysis of
worlds of human interaction with which the computer interfaces: the object-
 oriented approach.5 OO is used for the representation of the dynamics of in-
teraction worlds, leading us beyond the data- oriented approach and making
room for the opportunity to discuss the character of human behavior. (OO is
often used, for instance, in Graphic User Interfaces.) Because human behavior

Object Orientation

202

is not predictable and is itself situated in the interaction, OO only discloses
planned action. Within the ontology of OO, the real world can be described as
an interaction world. In this world, humans or other entities can only act if a
predefi ned plan exists and its execution conditions are satisfi ed.

Because data and manipulation are contained within the object, changes in
interaction are only possible if preprogrammed within the object. Interaction
and the representation of interaction are located within the objects instead of
on a procedural level. The “change of change” is impossible. Within the ontol-
ogy of OO the behavior of humans can only be represented as frozen in routine
acting. With abstraction tools in OO such as classifi cation, separation, and
inheritance, the process of real world analysis is colonized.

Colonization of Analysis

This colonization from ICT- system realization into world analysis is dictated
by analyzing subjects’ focus on the avoidance of complexity and ambiguity,
by selecting the documents, texts, tables, and schemes in the analyzed domain
that are the most formalized and hence closest to the syntactical level of object-
 oriented programming languages. Natural language in the domain is trans-
formed into a set of elementary propositions. As a result hierarchical structures
and planned behaviors are highlighted, and ad hoc (inter)actions are obscured.

This use of OO as a methodology in informatics is exemplary for the onto-
logical and epistemological assumptions in the discipline: Not only is it pos-
sible to “handle the facts” but also to handle and therefore control real behavior
itself. The expert users of the object- oriented approach strongly suggest that
with OO the total dynamics of reality can be represented objectively in arti-
fi cial objects.

Feminist theories provide arguments for doubting the assumptions within
the OO approach. They question how these approaches are always based on
the same illusions of objectivity and neutrality of representation: the veiling
of power and domination by its translation into something “natural and obvi-
ous.” Retaining OO as a methodology means to only use it again for the pur-
pose for which it was originally meant: the programming and production of
software. Software production based on the OO approach (not to be confused
with OO Programming) results in the predictable and planned interaction of
artifi cial actors; it cannot be the foundation for the analysis and representation
of human behavior.

Object Orientation

203

However, a total rejection of OO cannot be the answer to these doubts. The
presence of OO- based products enforces the disclosure of some unwanted con-
sequences of OO. In the OO methodology ambiguity and doubt are invisible
but not absent.

Fear

In software and hardware products constructed through the OO approach,
the fear of doubt is embedded and transferred into the interaction worlds of
which they are part. The goal of software engineering is to produce unambigu-
ous software that masters complexity. Based on the principles of controlling
complexity and reducing ambiguity within software, software engineers try to
tame the complexity and ambiguity of the real world. Abstraction activities,
a fundament of most modeling methods such as generalization, classifi cation,
specialization, division, and separation, are seen as unavoidable for the projec-
tion of dynamic real world processes into ready- to- hand modeling structures
and for the production of ready- made acting. Abstractions are simplifi ed de-
scriptions with a limited number of accepted properties. They rely on the sup-
pression of a lot of other aspects of the world. Hoare suggests: “Abstraction
arises from recognition of similarities between certain objects, situations or
processes in the real world and the decision to concentrate upon these similari-
ties and to ignore for the time being the differences.”6 These structures and
modeling methods necessitated a search for the similarities of human actors,
situations, processes, and events, ignoring their differences.

According to Coyne, the academic world:

expects that once we get beneath the surface, we can fi nd out what things have in com-

mon and thereby understand them better. Phenomena are abstracted so that they are

describable in the same way. . . . This interest in similarity is evident in the quest for

the structures underlying language and social practices (as in structuralism). It is also

evident in the concern in design fi elds, such as architecture, with identifying typolo-

gies, generic forms and ordering principles.7

Invisibility

OO representations create prefabricated and generic ready- made actions.
Ready- made actions are designed on base of searches for similarity. Differences,

Object Orientation

204

which are not easy to handle, or may not be relevant in the view of the ob-
server and modeler, will be neglected and suppressed. Within the OO ap-
proach a real world phenomenon can only have a representation within the
world of artifi cial objects when it fi ts into an object class. The sequence in the
modeling process—fi rst classifi cation and then instantiation—renders some
phenomena incomplete or not represented at all. They are made invisible for
the users of the ready- made action of the implemented objects. This concept
of classes has the same effect as the concept of laws, about which Evelyn Fox
Keller noted: “Such laws imply an a priori hierarchy between structuring prin-
ciple and structured matter that suggests a striking resemblance to laws of au-
thoritarian states.”8 The class structure will suppress “listening to the material
itself.”9 According to Susan Leigh Star, in the making and modeling process
of our technological environment, there will be a “tempering of the clutter of
the visible” by the creation of invisibles: “Abstractions that will stand quietly,
cleanly and docilely for the noisome, messy actions and materials.”10

Ambiguity

 The models produced by computer scientists using the OO approach as meth-
odology for interpreting and analyzing human behavior leave no room for ne-
gotiation or doubt. Models translated into ready- made products, interaction,
and communication are only defi ned on a technical and syntactical level. But
the same models are also used on a semantic and pragmatic level to construct
the planned and closed interaction of humans. The semantic and pragmatic
ambiguities, which occur in “being- in- interaction,” are ignored. Ambiguity is
seen as troublesome and inconvenient and thus has to be prevented and “dis-
solved” at the technical and syntactical level.11 In the making process, these
views on (inter-)action are embedded in the artifi cial product. But they are also
frozen into the routines of computer scientists and into their products, which
they use themselves and which they apply and feed back into the computer
science domain. In the main, computing professionals do not design but use
established methods and theories. They focus on security and non- ambiguity
and are afraid of the complex and the unpredictable.12 The methodical invis-
ibility of the representation of ready- made interaction is based on the planned
cooperation between software and hardware. It could close the design options
of users resulting in design activities that are locked into the frame of pre-
 established understanding.

Object Orientation

205

Doubt

In spite of the OO approach the pre- established meanings established by the
software designers are not the fi nal meanings of a system. On the contrary, these
methodical invisibilities have the potential to create doubt, and this could be
a starting point for the process of changing the meaning of ready- made in-
teraction. Users are experts at escaping from rigidly planned interaction; they
determine usability in their own interaction world. In this way, methodical in-
visibility can lead to “playful exploration and engagement.”13 Systems, which
are in this sense actable, can be successful, because they can “be perceived and
enacted in very different ways by different people in different situations, if the
users can fi nd the keys for this disclosure.”14 Doubt leading to exploration and
change is, according to Heidegger, the essence of technology; it is not simply a
means to an end, it is a way of revealing the world we live in.15

However, is this change of meaning still possible? It requires the blowing up
of the pre- established conditions for change embedded in OO- products. Users
slide unnoticed into a state of fearfulness about changing their habits because
this might disturb the surrounding pre- planned acting. Our society is forcing
us into using specifi c tools, because a lot of other tools have disappeared; they
did not fi t into the digital lifestyle of our society.

Are we still allowed to have doubt and is doubt not becoming the unwel-
come intruder, which hinders us in exploiting the unintended opportunities of
 ready- made action? Is it still true that tools challenge us to interact with our
environments? Are we still in the position to create an interactive environment
if we are not skilled computer scientists?

Notes

1. There have been serious moves toward modeling the semantics of natural language

in artifi cial intelligence, cognitive science, and computational linguistics, translating

meaning into a logical structure and relating that to syntax.

2. Ole- Johan Dahl, The Birth of Object Orientation: The Simula Languages.

3. A class is a set of objects that share a common structure and a common behavior. The

covering up of data types and methods is called encapsulation. This is the enclosing of

programming elements inside larger, more abstract entities; the classes.

4. Matt Weisfeld, “Moving from Procedural to Object- Oriented Development.”

Object Orientation

206

5. For the OO (Object Orientation) approach see: Grady Booch, Object- Oriented Analysis

and Design, with Applications; Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and

Gunnar Övergaard, Object- Oriented Software Engineering: A Use Case Driven Approach;

James R. Rumbaugh, Michael R. Blaha, William Lorensen, Frederick Eddy, and Wil-

liam Premerlani, Object- Oriented Modeling and Design.

6. O. Dahl and E. Dijkstra, C. A. R. Hoare, Structured Programming. Cited in Grady

Booch, Object Oriented Design, with Applications, 39.

7. Richard Coyne, “Heidegger and Virtual Reality: The Implications of Heidegger’s

Thinking for Computer Representations.”

8. Evelyn Fox Keller, Refl ections on Gender and Science.

9. Ibid.

10. Susan Leigh Star, “Invisible Work and Silenced Dialogues in Knowledge

Representation.”

11. See Cecile Crutzen, “Giving Room to Femininity in Informatics Education.” Alan

Davis gives an example of this fear of ambiguity: “As systems become more complex

however, it becomes increasingly diffi cult to explain behavior in an unambiguous man-

ner. . . . one of the reasons for this ambiguity is the inherent ambiguity in any natural

language. . . . A model simply provides us with a richer, higher level, and more se-

mantically precise set of constructs than the underlying natural language. Using such

a model reduces ambiguity, makes it easier to check for incompleteness, and may at

times improve understandability.” Alan M. Davis, Software Requirements: Objects, Func-

tions and States, 213–214.

12. See Cecile Crutzen and Jack F Gerrissen, “Doubting the OBJECT World” and Cecile

Crutzen, Interactie, een wereld van verschillen. Een visie op informatica vanuit genderstudies.

13. Phoebe Sengers and Bill Gaver, “Designing for Interpretation.” In sociological

studies of technology many examples have been generated proving that users escape

from the pregiven meaning of technological products, such as Nelly Oudshoorn and

Trevor Pinch, eds., How Users Matter.

14. P. Béguin and P. Rabardel, in “Designing for Instrument Mediated Activity,”

call this “catacresis.” The term “catacresis” is borrowed from linguistics and rhetoric,

where it refers to the use of a word in place of another, or in a way that goes beyond

Object Orientation

207

its normal meaning. The idea is also employed in the fi eld of instrumentation for the

using of one tool in place of another, or the using of tools to carry out tasks for which

they were not designed.

15. Martin Heidegger, Die Technik und die Kehre.

Perl
Geoff Cox and Adrian Ward

Perl (an acronym for “Practical Extraction and Report Language”) is a pro-
gramming language, fi rst developed for Unix by Larry Wall in 1987 as an open
source project to build on the capabilities of the “awk” utility.1 Wall required
a language that combined the quickness of coding available in “shell” (or awk)
programming, with the power of advanced tools like “grep” (without having
to resort to a language like C, C++ or assembly). Perl therefore lies somewhere
between low- level programming languages and high- level programming lan-
guages. It combines the best of both worlds in being relatively fast and uncon-
strained: “Perl is easy, nearly unlimited, mostly fast, and kind of ugly.”2

Perl uses a highly fl exible syntax that gives programmers greater freedom
of expression than many other languages.3 Its concise regular expressions allow
complex search and modify operations to be encoded into dense operators. This
makes Perl particularly diffi cult to read (or ugly) for those unfamiliar with
its form, however the syntax is really relatively simple, and carries its own par-
ticular aesthetic attractions.

Perl programs are generally stored as text source fi les, which are compiled
into virtual machine code at run- time. There is a distinction between the pro-
gram that interprets, compiles, and executes Perl code (perl) and the language
name (Perl). In reference to other Open Source projects that embrace obfusca-
tion, it should never be an acronym (PERL) despite the documentation clearly
stating it stands for both Pathologically Eclectic Rubbish Lister and Practi-
cal Extraction and Report Language. Perl programs are usually called “Perl
scripts” and, due to the interpreted nature of the language, are ideal for rapid
development and reworking of code. Changes can be made and the code retried
very swiftly, which has led to Perl being favored in diverse scenarios requiring
complex yet quick solutions. In addition, Perl is particularly useful as “glue
code” and for mixed- language script programming. Perhaps this is what the

Perl

208

artist Harwood was thinking about in his “porting” of William Blake’s poem
London (1792) into London.pl (2002). This is more than simply a formal exer-
cise. In both the original Blake version and Harwood’s adaptation, statistics
and the modulation of populations are used for social comment, but in the Perl
version material conditions are registered more overtly as both form and con-
tent. The politics of Blake’s poem describing the social conditions of London
are translated to a contemporary cultural and technical reality in which people are
reduced to data:4

local %DeadChildIndex;

The Data for the DeadChildIndex should be structured as follows:

%{DeadChildIndex} => {

IndexValue => {

Name => “ Child name If known else undefined ”;

Age => “ Must be under 14 or the code will throw an

exception due to $COMPLICITY”;

Height => “Height of the child”

SocialClass => “RentBoy YoungGirl- Syphalitic-Innoculator

CrackKid WarBeatenKid ForcedFoetalAbortion

Chimney- Sweeps UncategorisedVictim ”

}, As many as found

}

In terms of the application of Perl for social comment, Harwood is extending
an established aesthetic practice referred to as “perl poetry” that emphasizes
the point that code is not merely functional but can have expressive or liter-
ary qualities too.5 Take, for example the winner of The Perl Poetry Contest of
2000 by Angie Winterbottom:

if ((light eq dark) && (dark eq light)

 && ($blaze_of_night{moon} == black_hole)

 && ($ravens_wing{bright} == $tin{bright})){

 my $love = $you = $sin{darkness} + 1;

};6

Perl

209

Poetry is analogous to code in that it is both written and spoken or read
and executed.7 There are accepted techniques for reading code, and Winter-
bottom’s poem relies on her choice of spatial arrangement and the syntactic
understanding of the language itself. Only a programmer familiar with hash
tables would understand that “$blaze_of_night{moon} == black_hole” can
be read as “The moon, a black hole in the blaze of night.”

Interpreted scripting languages such as Perl appear to hold more open-
 ended creative possibilities that emphasize process rather than end- product,
if only because access to the source code is so readily available, and because
quite often part of using a Perl script entails reading its source—this is true
regardless of whether dealing with Perl poetry or in a conventional functional
deployment.

Programming with Perl emphasizes material conditions, which evokes
how N. Katherine Hayles, in Writing Machines, stresses materiality in relation
to writing.8 She describes the mixed (semiotic) reality that literature engen-
ders—between the reality literally at hand, the one evoked through imagina-
tion, and the situation to which it applies—as a play of signifi cation in other
terms. In addition to the writer and reader, there are other players involved
in the production of a text or program that include those who participate in
the development of the programming language, other software developers, the
engineers who design the machines on which the program runs, the factory
workers who build these machines, the technicians who maintain them, and
so on.9 All these players are situated in the material world and the social rela-
tions that arise from this.

Materiality expressed in this way follows a critical modernist tradition that
brings into view the technical apparatus or writing machine that produces
it—this is familiar to an analysis focused on cultural production such as liter-
ary criticism. Hayles goes further than this, and to this wider context, adds the
materiality of the text itself to the analysis in a similar way to those who con-
sider code to be material. In this way, it is the materiality of writing itself that
is expressed through the relationship between natural language and code—
one, code, tended towards control and precision, the other, language, tending
toward free form and expression.10 This is particularly evident in “codework”
(such as Harwood’s above) and other examples that combine so- called natural
and artifi cial languages that play with signifi cation. In such examples, mean-
ing and authorship remain in question.11

Perl

210

Working with code goes further than this. The execution of code engages
materiality and imagination through the possible and often unpredictable ac-
tions that result. The materiality therefore requires attention to the technical
apparatus, but also to the program—the activity of programming and the ac-
tivity of the program once executed. Perl is a useful tool in this respect. It re-
mains free and transparent; and because it does not require compiling in order
to run it is impossible to make an opaque binary. If installed and run, it can
always be turned back into source code. Perl is an open source project, emerg-
ing out of a Unix- inspired culture of sharing.12

In the lecture “Perl, the fi rst postmodern computer language,” Larry Wall
is keen to point out that modernist culture was based on “or” rather than
“and,” something he says that postmodern culture reverses.13 But this posi-
tion appears to disregard a critical modernist tradition that would emphasize
issues of materiality, refl exivity, and transparency of production. For instance,
Marshall Berman’s argument, in All That Is Solid Melts into Air, posits that
dialectical thinking asserts “and- both” over “either- or.” Berman is skeptical
of claims about change if they do not embrace contradiction. His position is
informed by a dialectical understanding of modernity representing a transi-
tional state between the old and the new—modernity remains an “incomplete
project.”14 Berman suggests that it is our thinking about modernity that has
stagnated. He says:

Modernity is either embraced with a blind and uncritical enthusiasm, or else con-

demned . . . in either case, it is conceived as a closed monolith, incapable of being

shaped or changed . . . Open visions of modern life have been supplanted by closed

ones, Both / And by Either / Or.15

In claiming “AND has higher precedence than OR does,” Wall is focusing
on the eclecticism of Perl and how algorithms can be expressed in multiple
ways that express the style of the programmer. Both of these operators are fun-
damental to Boolean logic and hence applying precedence to one over another
appears to be contradictory.16 However, Perl embraces this sort of peculiarity,
and this is how it extends the possibilities of coding beyond simply functional
intentions. The extent to which Perl gets (mis)used might point out how con-
temporary software practices focus more on diversity and recapitulation than
innovation and optimisation. This resonates in Wall’s claim that one of Perl’s
features is to focus attention not so much on the problem but on the person

Perl

211

trying to solve the problem, on the creativity of the programmer: “It doesn’t
try to tell the programmer how to program.”17

$wall {modernism } = ‘or’;

$wall {postmodernism} = ‘and’;

$berman{modernism} = ‘both / and’;

$berman{postmodernism} = ‘either / or’;

if ($wall {modernism || $berman {postmodernism}) {

 if ($wall {postmodernism} && $berman {modernism}) {

 $wall {modernism) = &condemn($berman {postmodernism}); #closed

 $wall {postmodernism) = &embrace($berman {modernism}); #open

 }

}

print “Wall: ‘$wall{postmodernism}’\n”;

print “Berman: ‘$berman{modernism}’\n”;

sub embrace {

 return $_[0]; #blind and uncritical enthusiasm

}

sub condemn {

 undef $_[0]; #blind and uncritical condemnation

}

In this way, rather than Perl being condemned as the fi rst postmodern com-
puter language, the preference for the connective “and” as opposed to “or” is in
keeping with critical practices that promote the development of new forms of
expression that preserve contradiction.18 The suggestion is that Perl is not only
useful on a practical level but that it also holds the potential to reveal some of
the contradictions and antagonisms associated with the production of software.

Notes

1. Larry Wall, “Perl, the First Postmodern Computer Language,” available at http: //

www.wall.org / ~larry / pm.html / (interestingly, Wall’s background is in linguistics).

Perl

212

2. Randall L. Schwartz and Tom Phoenix, Learning Perl, 4.

3. For instance, Perl Mongers is a loose association of international Perl User Groups,

http: // www.pm.org, and discussions take place at The Perl Monastery, http: // www

.perlmonks.org; see also The Perl Journal, http: // www.tpj.com /.

4. Florian Cramer has written a feature on Harwood’s London.pl on the Runme software

art repository, http: // www.runme.org / feature / read / +londonpl / +34 /.

5. An early example of literature using the Perl programming language is Sharon Hop-

kins’s 1992 paper, “Camels and Needles: Computer Poetry Meets the Perl Program-

ming Language,” in The Perl Review, Vol. 0, Issue 1 (1991), available at http: // www

.theperlreview.com / Issues / The_Perl_Review_0_1.pdf. It was fi rst presented at the

Usenix Winter Technical Conference in 1992.

6. Kevin Meltzer, “The Perl Poetry Contest,” in The Perl Journal, Vol. 4, Issue 4 (2000),

available at http: // www.tpj.com. The original poem by Edgar Allan Poe reads: “If light

were dark and dark were light / The moon a black hole in the blaze of night / A raven’s

wing as bright as tin / Then you, my love, would be darker than sin.” This example

was previously cited in Geoff Cox, Alex McLean, and Adrian Ward, “The Aesthetics

of Generative Code,” Generative Art 00 conference, Politecnico di Milano, Italy (2001),

available at http: // www.generative.net / papers / aesthetics / index.html.

7. This statement refl ects our previous collaborative essay (with Alex McLean), “The

Aesthetics of Generative Code.”

8. N. Katherine Hayles, Writing Machines.

9. Ibid., 6.

10. See Florian Cramer for more on this relation, in “Ten Theses About Software Art”

(2003), available at http: // cramer.plaintext.cc:70 / all / 10_thesen_zur_softwarekunst / .

11. The materiality of text or code is verifi ed by the property rights exerted on it—

intellectual property would even cast ideas as material objects in this respect.

12. Perl is, by and large, an all- inclusive implementation of Unix and the GNU utili-

ties. See Eric S. Raymond, The Art of UNIX Programming.

13. Wall, “Perl, the First Postmodern Computer Language.”

Perl

213

14. Incompleteness is the character that Jürgen Habermas assigns to modernity, em-

phasizing its transitory, elusive, ephemeral, dynamic qualities, in “Modernity—An

Incomplete Project,” 5.

15. Marshall Berman, All That Is Solid Melts Into Air: the Experience of Modernity, 24.

16. Following Boolean logic, data follows both an arithmetical and logical binary

form, as a set of choices between two conditions. It can also be extended to include

more complex and conditional formations such as “or,” “and,” “not,” as well as rules

about consistency, implication, and contradiction.

17. Wall, “Perl, the First Postmodern Computer Language.”

18. For example, Florian Cramer’s “and.pl”

open(THIS, ‘and’);open

(THAT, “>>and”) ;while (<THIS>) {print$_; print THAT”#$_”};

”#to”; close (THIS);

Pixel
Graham Harwood

Nowadays, all well- fed people are expected to take pictures, in the same way
that everyone is expected to speak. Pixels, bitmaps, digital cameras, phone
cameras, closed circuit television cameras, and scanners litter our homes, of-
fi ces, and landfi ll sites. At the MediaShed, a center for free media at the mouth
of the Thames (Southend- on- Sea, UK) we have been given fi fteen scanners,
four digital cameras and twenty graphics cards in two months as people up-
grade to the next level of seeing machine.

One possible explanation for this glut of constructed seeing and its associ-
ated problems of heavy metal waste, of cheap labor, and environmental dam-
age, might be the continuation of a historical preoccupation with both the
splitting of light into its constituent parts and the moving of light from one
place to another. This can be seen in the historic formulation of perspective by
the artist- technologists Filippo Brunelleschi and Leone Battista Alberti in the
fi fteenth century and with Newton’s use of a prism to split white light into its
constituent colors in the seventeenth century.

Pixel

214

While there are many threads in the story of the quantifi cation of vision
resulting in the pixel, I have chosen to draw a line from perspective as a tech-
nical progenitor.

Creating an enchanting image of a technique at work, the fi fteenth- century
architect Filippo Brunelleschi is said to have demonstrated the principle of
central perspective by depicting the Baptistry as seen through the door of the
Florentine cathedral.1 He placed a net over an entrance, thus forming a grid,
and then drew the intersecting lines he saw. In each cell of this net he con-
structed a sample of the light visible from a central point. Brunelleschi’s net
has evolved into a system in which the light intensities at each point of a far
fi ner grid of photosensitive cells are recorded.

The algorithm to render perspective relies on the fact that light normally
propagates along straight lines. We can therefore work out, for any object in
space, which light rays from its surface will reach a given point. This knowl-
edge allows anyone who learns the method to achieve a repeatable result. In
addition to showing how lines of light radiate from objects, perspective sets up
rules by which they can be shown to converge at a point. In this way it creates
the position of a witness outside the frame of the picture, a position by which
the scene can be interrogated. This position can only be occupied by a mecha-
nism or person endowed with the correct procedures of interpretation. Such
a systematization of sight sets in play a skepticism of non- verifi able personal
perception. It sets up a mechanics of vision relying on self- correction and veri-
fi cation: logical procedures employed in today’s seeing machines.

With the dual—and not entirely uncontradictory—ascents of science and
capitalism as explanatory and organizing principles, picturing, with its in-
heritance from perspective has tended to become synonymous with possession.
This can account for much of the mechanical seeing and picture processing
habits that we see around us. While this understanding is useful, in an age of
binary rationalism we still fi nd ourselves trying to explain the irrational and
mesmerising hold that pictures have over our imagination.

 Pixels fi rst appeared at Princeton’s Institute for Advanced Study in New
Jersey in 1954.2 At that time the word “pixel” simply described the glowing
fi laments of the machine’s vacuum memory registers. The term later gained use
in image processing to describe the raster elements in a screen or image, as “pic-
ture elements,” descendents of the squares of light caught in Brunelleschi’s net.
Alongside the growth in use of the term, we have learned to shape our pixels to

Pixel

215

better refl ect the world, even as we spent the last 50 years re- ordering the world
to more closely approximate those phosphorescent dots. The pixel has become
both a mirror and a lens, refl ecting and shaping the realities of its own making.

It is useful in this inquiry to see the picture element or pixel as the basic
unit of programmable color in our seeing machines. Logical as well as physical,
organized clusters of pixels enable us to dive through our screens and stand
in the position occupied by the lens. Each pixel is formed from a set of three
separate channels of red, green, and blue visual data that overlap on our moni-
tors to form a convincing speck of colored light. The pixel usually consists of
a structure of one to eight bits for each of its red, green, and blue component
values of light. According to its scientifi c fi guration, light is an electromag-
netic wave or signal from a source that is made out of one or more frequencies.
The human eye is sensitive to a very narrow band of frequencies, namely the
frequencies between 429 terahertz (THz) and 750 THz. This is the same sensi-
tivity range as a charge coupled device (CCD) or a complementary metal oxide
semiconductor (CMOS) chip found in our digital cameras.

Digital cameras sample light from a particular position, that of the lens.
This involves converting the signal from the continuous light we see to the dis-
crete quantities of light recorded in bitmaps. The fi neness of the grid by which
a recording is made is the picture resolution. Quantization, converting the am-
plitude of the signal from a continuous and infi nite range of values to a fi nite
set of discrete values, can be thought of as setting the bit- depth of the picture,
establishing subtle or visibly discontinuous gradations of light. Pixels can be
square, hexagonal, rectangular, or irregularly shaped, but given that each pixel
has boundaries they require a process by which the world is chopped up into
chunks that conform to those boundaries and is still visually meaningful. Dis-
cretization is part of the process by which color and light values are allocated
to a pixel. It consists of sorting values, evaluating a cut- point where a value
changes or merges, and setting the intervals between samples and value set-
ting. Each of these stages require algorithms that shape the resulting pictures,
and the speed of their processing. The development of discretization largely
follow the path of a closer fi t between data and its algorithmic processing.

Light discharged by pixels, themselves organized and stored as bitmaps,
falls on the retina of the eye. Agitated by small electrical charges, the moni-
tor pours light at an imagined viewer. At a biological level this is experienced
through electromagnetic waves making contact with the retina, lined with

Pixel

216

two types of photosensitive cells. These photoreceptors are known as rods and
cones. The rods only detect whether or not light is present. They are sensitive
to the whole spectrum at once but only in terms of brightness or “luminence.”
Cones are sensitive only to certain frequencies: red, green, and blue, values of
“chrominance.” In this way, the pixel on a screen models the component light
values held within the cells of the eye.

Bitmaps allow pixels to coagulate into pictures. They can be thought of as
containers for holding discrete values of red, green, and blue light or as sets of
visual data, usually rectangular in form, that refl ect the underlying 2- D mathe-
matical arrays that hold the derived variables of light. Bitmaps hold visual
data in cells based on a Cartesian (x,y) grid that allows individual pixels to be
fi ltered, manipulated, and sent to the framebuffer for display. When you need
to make a print for Nan’s birthday your personal printer reinterprets the bit-
map as a series of commands to use certain inks in a set order. For monitors,
the same set of electrical impulses are interpreted to set specifi ed intensities of
chrominence and luminence.

A seeing machine’s ultimate goal is the natural and effortless sampling of
reality as representation. As an information system, it is a neutral carrier of your
pictures characterized by a very low signal- to- noise ratio. The construction of a
neutral carrier allows for the transmission of pictures as equally neutral numeri-
cal values and helps us enjoy all forms of self- surveillance fun with minimal loss
of quality. The conception of neutrality is transferred from the device and onto
the programmers and engineers who develop the software and hardware, leav-
ing them too as mere vessels for the message, whatever it may be.

As with their ancestor, perspective, today’s binary seeing machines, have
managed to convince us that now we really can possesses an infallible method
of representation: a system for the automatic and mechanical production of
truths about the material world. That is, if we buy the new 15- megapixel cell-
phone with the Adobe plug- ins that will no doubt be available next year. Or
was that last year? Aided by the political and economic ascendance of Western
systems of objectifi cation and piggy- backing on photography’s history, artifi -
cial seeing has conquered the world of representation.

We now have, not two eyes, but as many as we can afford. We enjoy us-
ing our computers to process the pictures and leave them around on our hard
drives or pop them up on the web for mum or aunty to have a look at. Digi-
tal imaging products with feature- lists such as wi- fi LAN support enabling
wireless transfer, shooting and printing, super- bright 2.5- inch LCD monitors,

Pixel

217

D- Lighting improving images recorded with unsatisfactory exposure, and face-
 priority auto focus that can pinpoint a human face in the shot and provide sharp
focus accordingly, make it irresistible!

No matter whether it is a monitor, camera, printer, or the screen of a mo-
bile phone, the output device is always an attempt to refl ect or transmit light
to the retina of a viewer. The viewer in turn, mesmerized by the light, enters
commands that again shine onto the retina. In this way the pixel and its at-
tendant soft and hardware systems can be seen as an element in a net drawn
up by the social, economic and cultural re- ordering of the variables of ambient
light. Such a net is made possible by reducing the spectrum of light to a set
of repeatable tasks, as analyzed by the linguistic tools of code, made possible
by contemporary hardware environments. This is now the natural mode of
representation in most rich countries and through it we enjoy our neutral ap-
propriation of the pixel’s reality.

Nowadays, all well- fed people are expected to take pictures in the same way
that everyone is expected to speak. Over the past twenty years the pixel has
gone from being a blocky grid- like thing to achieving the ever- higher resolu-
tions that we expect. Seen from some future water- table polluting slag- heap
of heavy metals made from last year’s cast- off monitors, printers, and scanners,
the pixel will glint and wink at us, the guiding light in the reordering of our
individual and collective sight, reduced to the soft / hardware systems that are
used to record, judge, display, and manipulate the ambient variables of light.

Notes

1. W. J. T. Mitchell, The Language of Images, 193–196.

2. See Richard F. Lyon, “A Brief History of ‘Pixel’”; and, Andrew Zolli, “Pixelvision:

A Meditation.”

Pixel

218

Preferences / settings / options / control panels
Søren Pold

If, as Umberto Eco pointed out in 1994, the contemporary graphical user
interface (GUI) inherited its icons and user- friendly behavior from counter-
 reformation Catholicism, then the preferences palette is both its most holy
place and a critical corner in the contemporary graphical user interface.1 The
preferences palette presents a peephole into the area behind the scenes, the
backstage area where the representation that is presented to the human user is
produced.2 In the “preferences,” “settings,” “options,” or “control panels,” all
similar places in different software, it is possible to manipulate the very stag-
ing of the interface, its colors, language, interaction menus, fi le handling, auto
functions, warning messages, security levels, passwords, cooperation with other
software, networks, peripherals, and so on. It is here that the software and the
interface are confi gured and increasingly personalized to match with individual
needs and aesthetic taste through skins, sounds, themes, etc. As such, it is here
that the aesthetics and the functionality—together with issues around the con-
struction of user behaviours and the use of software as self- representation—are
negotiated or perhaps clash.

Preferences came out of parameters and confi guration fi les. Parameters are
ways of specifying characteristics when calling certain functions my in, for ex-
ample, command line interfaces such as DOS or Unix.3 A confi guration fi le is
a fi le that contains confi guration instructions for the software. MS- DOS had a
confi guration fi le called “confi g.sys” that describes how the computer is confi g-
ured in respect to devices, drives, memory locations, etc. In the era of MS- DOS,
advanced users could not resist experimenting with the confi g.sys fi le, which
often led to crashing the system if they were not suffi ciently skilled. When soft-
ware became further commodifi ed and marketed to ordinary consumers, the
software interfaces increasingly included preference palettes and menus. Since
then preferences have grown and now often include several sub- screens. Today
GUI systems like Microsoft Windows still have settings and confi guration fi les
kept in a “registry.” It can be edited, but this is often reserved for system ad-
ministrators and advanced users, and it is more or less off limits to the normal
user. The registry stores the confi gurations that the user has made in the various
preferences palettes.4

Preferences

219

In general, the preferences regulate three spheres around the software in-
terface: functionality, power relations, and aesthetics. Functionality concerns
issues such as compatibility, fi le placement, plug- ins and extensions, peripher-
als, and cooperation with other software, whereas management of administra-
tive rights, security and passwords, levels of insight into technical codes, and
confi gurations are more related to the power relations between the software and
the user.5 Seen from the point of view of aesthetics, the preferences often con-
trol skins, themes, and sounds, which are related to a superfi cial aesthetic, the
“look- and- feel” of the software where the user—perhaps aided by themes from
various websites—is free to change the appearance into, for example, some-
thing that relates to sci- fi fantasy worlds, popular icons, games, or the appear-
ance of other operating systems.

But there is more to aesthetics than surface. The preferences set up and ne-
gotiate an equivalent to the contract that a theatre audience or a reader adhere
to when entering a fi ctional representation: a mental, cultural contract negoti-
ating one’s expectations and how one is supposed to act and react in the repre-
sentational space. The relations between the software’s senders6 and receiver(s)
or user(s) are defi ned, most often within very strict limits. Normally, it is only
possible to change certain things and change them the way the senders have
prefi gured, and often one cannot fi nd the setting that controls an annoying fea-
ture one wants to get rid of. As a result one becomes irritatingly aware of the
fact that the interface is structured around principles set up by the sender(s): I
see what I may change and to what other options; and sometimes I can even see
as a dimmed option representing something that I cannot change, something
that can only be changed by higher powers in the hierarchy controlling the soft-
ware, that is, the technical department. Preferences regulate the contract be-
tween the producers, the machine and its software environment, and what I as
a user prefer, thus my preferences are not purely mine, but highly negotiated
in this software hierarchy. Recently one can even see so- called “parental con-
trols” pop up (e.g., in the internally released Windows Longhorn 4015) that
limit the user. In the early 1990s Apple marketed At Ease, a simplifi ed inter-
face with limited possibilities.7 It becomes clear that the preferences control
a power hierarchy, and the user’s fi ddling around with them is a way of both
realizing and compensating for this.

In this sense, the software user as a character with certain rights, abilities,
and limits is constructed here. This construction of the user has become more

Preferences

220

and more dynamic and cybernetic; the software automatically models itself on
(its model of) the user. Software increasingly constructs dynamic models of its
user and customizes itself accordingly; for example, it stores traces of user be-
havior such as last opened documents, commonly used functions, and menus,
cookies, caches, and histories of internet behavior. In this sense, software aims
at automatically changing some settings according to user behavior, such as the
personalized menus in Microsoft software, in which only frequently used menu
items are initially shown, or the way most web browsers remember and sug-
gest URLs and most email clients store and suggest email addresses. Some of
these traces are to some extent open for reconfi guration for the advanced user;
at least the user might be able to delete them. Still it highlights how “my”
preferences on my personal computer become some sort of automated autobi-
ography within the medium of software, on my personal computer becomes a
cybernetic mirror of me.8

Preferences, and the way they negotiate the representational levels of the
software interface, present the software as a functional tool directed toward a
specifi ed task, delimited by the sender of the software and often by traditional
notions of the task from earlier software and pre- digital tools. Most word pro-
cessors such as Microsoft Word (fi gure 12), for example, are directed toward a
specifi c kind of formal, technical, and business- related writing, which is sup-
posed to be printed on pages, and to already look “printed” when you write.
Of course this does not mean it cannot be used for other more creative or
literary kinds of writing, but it does not encourage or suggest it, and some-
times it even tries to direct the writing toward more formal writing styles, for
example, suggesting bullets, numbering, footnotes, and certain spelling and
grammar corrections, while it never advances more creative elements of writ-
ing. This will often drive the user to the preferences in order to reconfi gure the
software toward his or her writing style to avoid disturbing interferences from
the software. Most of these things can be switched off with some fi ddling, but
traditional software is still built to be a relatively neutral tool for a specifi c
domain, and lets the user work on the domain or the content while the tool is
mostly fi xed within the borders delimited by the preferences. Microsoft Word
is not suitable for producing experimental electronic literature that engages
with new digital forms of writing—like hypertext, generative and dynamic
texts—but mainly for producing documents modeled on traditional docu-
ment formats like letters, reports, and (academic) books. Furthermore, Word
is not directed toward writing code, not even HTML code, although it does

Preferences

221

allow its user to save his or her document as web page. One could argue that
Word promotes an offi ce perspective on writing, a typographical writing that
has not taken the various digital developments of writing fully into account.9

Software is generally presented as a tool for use in a specifi c way, often mod-
eled on previous media,10 and notwithstanding the possibilities to change the
superfi cial aesthetics and the autobiographical elements; it is not presented as
a media for expression or for developing new kinds of use. Software thus does
not have meaning but function. As a consequence, most software studies have,
until now, been usability studies.

Meanwhile, as already suggested, a closer look reveals that function and
meaning are closely interwoven. Although there are good functional reasons
for letting the user change various preferences, most of us engage in this also
because of aesthetic reasons or taste and issues of self representation: We do not

Preferences

Figure 12 Microsoft Word 2002 (2001).

222

like the sounds, colors, short- cuts, interruptions, defaults—in general how the
software represents itself and operates—we want to change this in order to
personalize the software and become sophisticated users.11 According to popu-
lar knowledge among system administrators, the preferences are the fi rst thing
to delete when software is corrupted; users’ preferences clog up the functional-
ity of the software—it would be easier if we were all confi ned to the defaults of
Apple or Microsoft. Still, the trend toward letting the user control the super-
fi cial aesthetics can be seen as a symptom users wanting to become more than
plain users. Users want to contribute, change, get more insight, etc.; they get
annoyed by being reduced to default users. In fact we change the defaults in or-
der to see and re- negotiate how the software and its senders have confi ned us.

The preferences palette gives a glimpse of the staging of the software in-
terface. In order to make some defaults changeable, the software has to make
them explicit. The preferences palette is where the common, everyday user—
with no access to or knowledge of code—can make his mark and play around
with the representational machinery of the software. And while this playing
around is often aesthetisized—as in skins, themes, etc., which do not infl u-
ence the workings of the software—or commodifi ed as in third party exten-
sions and plug- ins, it still bears witness to the fact that software is more than a
standard tool with standard uses, and that users are by instinct fi ghting against
being standardized according to typical functionalistic values.

Notes

1. Umberto Eco, “La bustina di Minerva.”

2. Brenda Laurel presented the theatrical perspective on the computer and its interface

in Computers as Theatre.

3. For example, in DOS you can call the copy function with the parameter “ / v” in order

to add a controlling of the copied fi les, along with the source and destination of the

copying as parameters. Thus a typical command to copy a text fi le from the disk drive

to the hard drive and control the copying will be “copy a:\readme.txt c: / v.” This way of

using parameters stems from programming, where subroutines in a program are often

called with some parameters and variables.

4. In Unix environments confi gurations are stored in so- called dot fi les (because they

start with a “.”, which hides the fi le from casual listing), that are editable and exchanged.

Preferences

223

Examples may be found on the web at websites such as “dotfi les” (http: // dotfi les.com /)

(see “Confi guration fi le” from Wikipedia, http: // en.wikipedia.org). Even though Open

Source software builds on an open access to the source code and thus also its confi gu-

rations, much Open Source software imitates the way preferences are implemented in

commercial GUI software.

5. See Matthew Fuller, Behind the Blip: Essays on the Culture of Software.

6. The sender of a piece of software is some combination of the company behind the

software and the local technical department controlling the confi guration of the soft-

ware, for example, in large institutions and companies—that is, all the people and

institutions that produce and control the software. Only rarely is software presented

with a naming of its authors or developers; more often the CEO stands in for the large

group of developers engaged (such as Steve Jobs, Bill Gates. . .).

7. Marcin Wichary, GUIdebook, Graphical User Interface Gallery.

8. The artist group 0100101110101101.org put their personal Linux computer on- line

(from 2000– 2003) in their “real- time digital self- portrait,” “Life Sharing,” so that users

could read their fi les, settings, emails, etc. (archived at http: // www.0100101110101101

.org / home / life_sharing / ; (last accessed March 20, 2006). Their comments on the proj-

ect included: “Whoever works with a computer on a daily basis, at least for a few years,

will soon realise that his own computer resembles more and more to its owner. You

share everything with your computer: your time (often even for 13 hours a day), your

space (desktop), your culture (bookmarks), your personal relationships (e- mails), your

memories (photos archives), your ideas, your projects, etc. To sum up, a computer, with

the passing of time, ends up looking like its owner’s brain. It does it more and bet-

ter than other more traditional media, e.g. diaries, notebooks, or, on a more abstract

level, paintings and novels. If you accept the assumption of a computer being the thing

that gets closer to your brain, you will also assume that sharing your own computer en-

tails way more than sharing a desktop or a book, something we might call life_sharing”

(retrieved March 20, 2006 from http: // 209.32.200.23 / gallery9 / lifesharing /). The obvi-

ous next thing would be to steal somebody’s identity by stealing their preferences (which

of course already happens with cookies, data mining, phishing, etc.) or buy some impor-

tant person’s preferences in order to explore and experience his personality . . .

9. See Olav W. Bertelsen, and Søren Pold, Criticism as an Approach to Interface Aesthetics;

and Matthew Fuller, Behind the Blip.

Preferences

224

10. Another good example of this is Adobe Photoshop, which is directed toward the

old medium of photography, now digitized, and not toward more generative images in

the manner of Adrian Ward’s software art works Auto- Illustrator or Auto- Shop. Available

at http: // www.auto- illustrator.com / , http: // www.signwave.co.uk / go / products / autoshop.

11. When presenting with a computer to an audience, it is striking how many pre-

senters avoid the default design templates, desktop settings, and some even the most

common presentation software packages (such as Microsoft PowerPoint), perhaps in

order to avoid being seen as default standard users. This is evidence of the increasing

role that software plays for self- presentation and appearance.

Programmability
Wendy Hui Kyong Chun

According to the Oxford English Dictionary, programmability is “the property
of being programmable”—that is, capable of being programmed.1 Although
the term “program,” as both noun and verb, predates the modern digital com-
puter, programmability and programmable do not, and the digital computer
has changed the meanings of the word “program.” The defi nition of program,
the noun, not only includes “a descriptive notice, issued beforehand of any for-
mal series of proceedings” and a “broadcast presentation treated as a single item
for scheduling purposes” but also “a series of coded instructions, which when
fed into a computer will automatically direct its operation in carrying out a
specifi c task.”2 Program, the verb, includes “to arrange by or according to a
programme,” and “to broadcast,” as well “to express (a task or operation) in
terms appropriate to its performance by a computer or other automatic device;
to cause (an activity or property) to be automatically regulated in a prescribed
way.”3 Combined with the fact that “stored program” has become synonymous
with von Neumann architecture, these defi nitions make it appear that pro-
grams are native to computers. Programs, however, were not always programs.

As David Alan Grier, among others, has argued, the term program did not
stabilize until the mid- 1950s.4 According to Grier, the verb “to program” is
probably the only surviving legacy of the ENIAC—the fi rst working electronic
digital computer and the immediate precursor to those using stored programs.
Importantly, the ENIAC’s “master programmer” was not a person, but a ma-
chine component, responsible for executing loops and linking sequences to-

Programmability

225

gether.5 That is, the master programmer handled the “program control” signal
that each unit produced after it successfully executed a function. This use of
“program” stems from electronics engineering, where a program signal is any
signal corresponding to speech, or other activity, and stresses program as a
thing that is transmitted, rather than a thing responsible for execution. As
computers became machines, programmers became human and programming
became functionally equivalent to the process of “setting up” the ENIAC—
the physical act of wiring the machine for a particular problem.6 Indeed, this
“setting up” (once considered “operating” the machine) has been retroactively
classifi ed as “direct programming”; Grier argues that the term “program” was
favored over the term “planning” (then in use in numerical methods) in order
to distinguish machine from human computing. Although this process of set-
ting up the machine seems analogous to the same process on contemporaneous
analog machines, there is an important difference between them, for program-
mability marks the difference between digital and analog machines. This is
not to say that analog machines are not programmed, but that what is meant
by programming is signifi cantly different. Programming an analog computer
is descriptive; programming a digital one is prescriptive.

To program an analog machine, one connects the units and sets the values
for amplifi cation and attenuation, as well as the initial conditions. That is, one
assembles the computer into an analog of the problem to be solved or simu-
lated. As Derek Robinson argues: “while a digital computer can simulate feed-
back processes by stepwise iteration . . . analog computers embody dynamic
feedback fundamentally. The “computation” takes place at all points in the
circuit at the same time, in a continuous process. Circuits are systems of circu-
lar dependencies where effects are fed back to become the causes of their own
causes.”7 That is, analog computers perform integration directly and can be
used “generatively.” Digital computers, on the other hand, employ numerical
methods. They break down mathematical operations, such as integration, into a
series of simple arithmetical steps. To do so, they must be programmable; that
is, they must be able to follow precisely and automatically a series of coded in-
structions. Although one would think that the breakdown of mathematical op-
erations into a series of arithmetical ones would induce more errors than direct
integration, this is not usually so. The programmability and accuracy of digital
computers stems from the discretization (or disciplining) of hardware.

Since analog computers produce signals that simulate the desired ones, they
are measured rather than counted. The accuracy of the result is thus affected by

Programmability

226

noise and its precision by the sensitivity of the measuring instrument. In con-
trast, digital computers count rather than measure, and they do so by render-
ing analog hardware (vacuum tubes, transistors, etc.) signal magnitudes into
discrete units. By translating a certain quantity into a value (5V into 1; 0V
into 0), they can greatly reduce the effects of noise, and thus essentially build a
system in which one step can predictably lead to another. As Alan Turing and
von Neumann both acknowledged early on, there are no “discrete” or digital
machines; there are only continuous machines that in Turing’s words can be
“profi tably thought of as being discrete state machines,” machines in which,
“given the initial state of the machine and the input signals it is always pos-
sible to predict all future states.” This, he argues, “is reminiscent of Laplace’s
view that from the complete state of the universe at one moment of time, as
described by the positions and velocities of all particles, it should be possible
to predict all future states.”8 Again, reasonably accurate results depend on the
design of hardware in specifi c ways: on timing gates carefully so that gate de-
lays do not produce signifi cant false positives or negatives; on signal rectifi ca-
tion; and on designs that cut down on cross- talk and voltage spikes. Without
this disciplining of hardware, digital computers—or digital- analog hybrids—
could not be (however inadequately or approximately) universal mimics, or
Turing complete.

This “return to Laplace” and the desire for programmability (and programs
as we now know them) was arguably predated by work in mid- twentieth-
 century genetics. Most famously, Erwin Schrodinger, drawing from the work
of contemporaneous researchers in biology and chemistry, posited the exis-
tence of a genetic code- script in his 1944 What is Life?9 Schrodinger posits this
code- script as the answer to the challenge human genetics presents to statis-
tical physics, namely, given that statistical physics shows that Newtonian
order only exists at large scales, how is it possible that the barely microscopic
chromosomes guarantee the orderly succession of human characteristics? Also,
given the second law of thermodynamics, how does life maintain order in this
sea of disorder? Given how microscopic the chromosomes are, Schrodinger
argues that they must be an aperiodic crystal code- script, a code- script—not
unlike Morse code—that determines the entire pattern of an individual’s fu-
ture development and of its functioning in the mature state. Thus the code-
 script is a seemingly impossible return to Laplace. Schrodinger writes, “in
calling the structure of the chromosome fi bres a code- script we mean that

Programmability

227

the all- penetrating mind, once conceived by Laplace, to which every causal
connection lay immediately open, could tell from their structure whether the
egg would develop, under suitable conditions, into a black cock or into a
speckled hen, into a fl y or a maize plant, a rhododendron, a beetle, a mouse or
a woman.”10 Importantly, software—which was not foreseen by computing
pioneers—and not DNA would come to fulfi ll Schrodinger’s vision of a code-
 script as “architect’s plan and builder’s craft in one.”

Just as Schrodinger links programmability to an all- penetrating mind, pro-
grammability is linked to the feelings of mastery attributed to programming,
its causal pleasure.11 As Edwards has argued, “programming can produce
strong sensations of power and control” because the computer produces an
 internally- consistent if externally incomplete microworld, “a simulated world,
entirely within the machine itself, that does not depend on instrumental effec-
tiveness. That is, where most tools produce effects on a wider world of which
they are only a part, the computer contains its own worlds in miniature. . . In
the microworld, as in children’s make- believe, the power of the programmer
is absolute.”12 This power of the programmer, however, is not absolute and
there is an important difference between the power of the programmer / pro-
gramming and the execution of the program. Alan Turing, in response to the
objection that computers cannot think because they merely follow human in-
structions, wrote, “machines take me by surprise with great frequency.”13 This
is because the consequences of one’s programs cannot be entirely understood in
advance. Also, as Matthew Fuller has argued in his reading of Microsoft Word,
there is an important gap between the program and the experience of using it.
The mad attempt to prescribe and anticipate every desire of the user produces
a massive feature mountain whose potential interaction sequences mean that a
user’s actions cannot be completely determined in advance: the more features a
program provides, the more possibilities for the user to act unpredictably.14

Importantly, programmability is being attacked on all sides: from quan-
tum computers that are set up rather than programmed (in the sense cur-
rently used in software engineering) to “evolutionary” software programs that
use programmable discrete hardware to produce software generatively.15 This
apparent decline in programmability is paralleled in new understandings of
genomics that underscore the importance of RNA (the same portion of DNA
can transcribe more than one protein)—biology and computer technology are
constructed metaphorically as two strands of a constantly unravelling double

Programmability

228

helix. This seeming decline, however, should not be taken as the death knell of
programmability or control, but rather the emergence of new forms of control
that encourage, even thrive on, limited uncertainty.16

Notes

1. Oxford English Dictionary Online (2006). http: // www.oed.com / .

2. Ibid.

3. Ibid.

4. David Grier, “The ENIAC, the Verb ‘to program’ and the Emergence of Digital

Computers,” 51.

5. H. H. Goldstine and A. Goldstine, “The Electronic Numerical Integrator and Com-

puter (ENIAC),” 10–15.

6. For more on this see Wendy Hui Kyong Chun, “On Software, or the Persistence of

Visual Knowledge.”

7. Derek Robinson, presentation at Software Studies Symposium, Piet Zwart Institute,

Rotterdam, 2006.

8. Alan M. Turing, “Computing Machinery and Intelligence.”

9. Erwin Schrodinger, What is Life?

10. Schrodinger, Ibid.

11. Chun, Ibid.

12. Paul Edwards, “The Army and the Microworld: Computers and the Politics of

Gender Identity,” 108–109.

13. Turing, Ibid.

14. Matthew Fuller, “It Looks Like You’re Writing a Letter,” in Behind the Blip, es-

says on the culture of Software.

Programmability

229

15. For more on this see, N. Katherine Hayles, My Mother was a Computer; Julian Dib-

bell, “Viruses Are Good For You”; Jussi Parikka, “The Universal Viral Machine.”

16. See Wendy Hui Kyong Chun, Control and Freedom.

Sonic Algorithm
Steve Goodman

Contemporary sound art has come under the infl uence of digital simulations.
These simulations are based on artifi cial life models, producing generative
compositional systems derived from rules abstracted from actual processes oc-
curring in nature. Yet taking these intersections of algorithms and art, di-
vorced from a wider sonic fi eld can be misleading. With their often arbitrary,
metaphorical transcodings of processes in nature into musical notation, un-
critical transpositions of artifi cial life into the artistic domain often neglect the
qualitative, affective transformations that drive sonic culture. With care, how-
ever, we can learn much about the evolution of musical cultures from concep-
tions (both digital and memetic) of sonic algorithms—on the condition that
we remember that software is never simply an internally closed system, but
a catalytic network of relays connecting one analog domain to another. Here,
the computing concept of the abstract machine attains a wider meaning, cor-
responding to the immanent forms that also pattern non- computational cul-
ture. For this reason, an analysis of the abstract culture of music requires the
contextualization of digital forms within the contagious sonic fi eld of memetic
algorithms as they animate musicians, dancers and listeners.

An algorithm is a sequence of instructions performed in order to attain a
fi nite solution to a problem or complete a task. Algorithms predate digital cul-
ture and are traceable in their origins to ancient mathematics. Whereas a com-
puter program is the concretization or implementation of an assemblage of
algorithms, the algorithm itself can be termed an abstract machine, a diagram-
matic method that is programming language independent. Abstract machines
are “mechanical contraptions [that] reach the level of abstract machines when
they become mechanism- independent, that is, as soon as they can be thought
of independently of their specifi c physical embodiments”1 thereby intensify-
ing the powers of transmission, replication and proliferation. This quality of
algorithms is crucial to software- based music, with key processes distilled to

Sonic Algorithm

230

formalized equations that are generalizable, transferable, reversable, and ap-
plied. “Coupled with software (or mechanism or score or programme or diagram)
that effi ciently exploits these ideas, the abstract machine begins to propagate
across the technological fi eld, affecting the way people think about machines
and eventually the world.”2 The affective power of the sonic algorithm is not
limited to the morphology of music form. Leaking out of the sterile domain of
the digital sound lab and across the audio- social fi eld, these abstract machines
traverse the host bodies of listeners, users, and dancers, producing movements
and sensations, before migrating back to the vibratory substrate.

If, as Gottfried Leibniz proposed, all music is “unconscious counting,”3
then clearly, despite its recent popularity, algorithmic music composition can-
not be considered the exclusive domain of computing. It should instead be
placed in an historical context of experiments with, for example, out of phase
tape recorders, where tape loops already constituted “social software organized
to maximize the emergence of unanticipated musical matter.”4 As Michael
Nyman has outlined, bottom- up approaches to musical composition take into
account the context of composition and production as a system, and are “con-
cerned with actions dependent on unpredictable conditions and on variables
which arise from within the musical continuity.”5 Examples from the history
of experimental music can be found in the oft- cited investigations of rule-
 centered sonic composition processes in the exploration of randomness and
chance, such as John Cage’s use of the I Ching, Terry Riley’s “In C,” Steve
Reich’s “It’s Gonna Rain” and “Come Out,” Cornelius Cardew’s “The Great
Learning,” Christian Wolff’s “Burdocks,” Frederic Rzewski’s “Spacecraft,” and
Alvin Lucier’s “Vespers.”6 In this sense, as Kodwo Eshun argues, the “ideas of
additive synthesis, loop structure, iteration and duplication are pre- digital. Far
from new, the loop as sonic process predates the computer by decades. Synthe-
sis precedes digitality by centuries.”7

Recent developments in software music have extended this earlier research
into bottom- up compositional practice. Examples centering around the digital
domain include software programs such as Supercollider, MaxMsp, Pure Data,
Reactor and Camus,8 which deploy mathematical algorithms to simulate the
conditions and dynamics of growth, complexity, emergence, and mutation of
evolutionary algorithms and transcode them to musical parameters. The analy-
sis of digital algorithms within the cultural domain of music is not limited to
composition and creation. Recent Darwinian evolutionary musicology has at-

Sonic Algorithm

231

tempted to simulate the conditions for the emergence and evolution of music
styles as shifting ecologies of rules or conventions for music- making. These
ecologies, it is claimed, while sustaining their organization, are also subject
to change and constant adaption to the dynamic cultural environment. The
suggestion in such studies is that the simulation of complexity usually found
within biological systems may illuminate some of the more cryptic dynam-
ics of musical systems.9 Here, music is understood as an adaptive system of
sounds used by distributed agents (the members of some kind of collective;
in this type of model, typically, none of the agents would have access to the
others’ knowledge except what they hear) engaged in a sonic group encounter,
whether as producers or listeners. Such a system would have no global supervi-
sion. Typical applications within this musicological context attempt to map
the conditions of emergence for the origin and evolution10 of music cultures
modeled as “artifi cially created worlds inhabited by virtual communities of
musicians and listeners. Origins and evolution are studied here in the context
of the cultural conventions that may emerge under a number of constraints,
for example psychological, physiological and ecological.”11 Eduardo Miranda,
despite issuing a cautionary note on the limitations of using biological models
for the study of cultural phenomena,12 suggests that the results of such simula-
tions may be of interest to composers keen to unearth new creation techniques.
He asserts that artifi cial life should join acoustics, psychoacoustics, and artifi -
cial intelligence in the armory of the scientifi cally upgraded musician. Accord-
ing to Miranda, software models for evolutionary sound generation tend to be
based on engines constructed around cellular automata or genetic algorithms.

Cellular automata were invented in the 1960s by von Neumann and Stan-
is law Ulam as simulations of biological self- reproduction.13 Such models at-
tempted to explain how an abstract machine could construct a copy of itself
automatically. Cellular automata are commonly implemented as an ordered
array or grid of variables termed cells. Each component cell of this matrix can
be assigned values from a limited set of integers, and each value usually corre-
sponds with a color. On screen, the functioning cellular automata is a mutat-
ing matrix of cells that edges forward in time at variable speed. The mutation
of the pattern, while displaying some kind of global organization, is gener-
ated only through the implementation of a very limited system of rules that
govern locally. Heavily infl uential to generative musicians such as Brian Eno,
the most famous instantiation of cellular automata is John Conway’s Game

Sonic Algorithm

232

of Life (1967). Game of Life has recently been implemented in the software
system CAMUS, whereby the emergent behaviors of cellular automata are
developed into a system that transposes the simple algorithmic processes into
musical notation. The rules of the Game of Life are very simple. In the cellu-
lar grid, a square can be either dead or alive. With each generation, or step of
the clock, the squares change status. A square with one or zero neighbors will
die. A square with two neighbors will survive. A square with three neighbors
 becomes alive if not already, and a square with four or more neighbors will die
from overcrowding. The focus of such generative music revolves around the
emergent behavior of sonic lifeforms from their local neighborhood interac-
tions, where no global tendencies are preprogrammed into the system.

As in the case of cellular automata and artifi cial neural networks, models
based around genetic algorithms transpose a number of abstract models from
biology, in particular the basic evolutionary biological processes identifi ed in
particular by Darwin14 and updated by Dawkins.15 These algorithms are often
used to obtain and test optimal design or engineering results out of a wide
range of combinatorial possibilities. Simulations so derived allow evolutionary
systems to be iteratively modeled in the digital domain without the ineffi ciency
and impracticality of more concrete trial and error methods. But, as Miranda
points out, by abstracting from Darwinian processes such as natural selec-
tion based on fi tness, crossover of genes, and mutation, “genetic algorithms
go beyond standard combinatorial processing as they embody powerful mech-
anisms for targeting only potentially fruitful combinations.”16 In practice, ge-
netic algorithms will usually be deployed iteratively (repeated until fi tness
tests are satisfi ed) on a set of binary codes that constitute the individuals in
the population. Often this population of code will be randomly generated and
can stand in for anything, such as musical notes. This presupposes some kind
of codifi cation schema involved in transposing the evolutionary dynamic into
some kind of sonic notation, which, as Miranda points, out will usually seek
to adopt the smallest possible “coding alphabet.” Typically each digit or clus-
ter of digits will be cross- linked to a sonic quality such as pitch, or specifi c
preset instruments as is typical in MIDI. This deployment consists of three
fundamental algorithmic operations, which, in evolutionary terms, are known
as recombination (trading in information between a pair of codes spawning
offspring codes through combining the “parental” codes), mutation (adjust-
ing the numerical values of bits in the code, thereby adding diversity to the

Sonic Algorithm

233

population) and selection (choosing the optimal code based on predetermined
pre- coded fi tness criteria or subjective / aesthetic criteria). One example of the
application of genetic algorithms in music composition is Gary Lee Nelson’s
1995 project Sonomorphs, which used

genetic algorithms to evolve rhythmic patterns. In this case, the binary- string method

is used to represent a series of equally spaced pulses whereby a note is articulated if

the bit is switched on . . . and rests are made if the bit is switched off. The fi tness test

is based on a simple summing test; if the number of bits that are on is higher than a

certain threshold, then the string meets the fi tness test. High threshold values lead to

rhythms with very high density up to the point where nearly all the pulses are switched

on. Conversely, lower threshold settings tend to produce thinner textures, leading to

complete silence.17

In summary, then, the development of artifi cial life techniques within mu-
sic software culture aims to open the precoded possibilities of most applica-
tions to creative contingency.18 The scientifi c paradigm of artifi cial life marks
a shift from a preoccupation with the composition of matter to a focus on the
systemic interactions between the components out of which nature is under
constant construction. Artifi cial life uses computers to simulate the functions
of these actual interactions as patterns of information, investigating the global
behaviors that arise from a multitude of local conjunctions and interactions.
Instead of messy biochemical labs deployed to probe the makeup of chemicals,
cells, etc., these evolutionary sonic algorithms instantiated in digital software
take place in the artifi cial worlds of the CPU, hard disk, the computer screen,
and speakers. However, with an extended defi nition of an abstract machine,
sonic algorithms beyond artifi cial life must also describe the ways in which
 software- based music must always exceed the sterile and often aesthetically
impoverished closed circuit of digital sound design. With non- software mu-
sics, such abstract machines leak out in analog sound waves, sometimes lay-
ing dormant in recorded media awaiting activation, sometimes mobilizing
eardrums and bodies subject to coded numerical rules in the guise of rhythms
and melodies. The broader notion of the abstract machine rewrites the connec-
tion between developments in software and a wider sonic culture via the zone
of transduction between an abstract sonic pattern and its catalytic affects on a
population. By exploring these noncomputational effects and the propagation

Sonic Algorithm

234

of these sonic algorithms outside of digital space, software culture opens to the
outside that was always within.

Notes

1. Manuel De Landa, War in the Age of Intelligent Machines, 142.

2. Kodwo Eshun, “An Unidentifi ed Audio Event Arrives from the Post- Computer

Age,” in Jem Finer, ed., Longplayer, 11.

3. Gottfried W. Leibniz, Epistolae ad diversos, 240.

4. Eshun, “An Unidentifi ed Audio Event Arrives from the Post- Computer Age,” 11.

5. Michael Nyman, Experimental Music: Cage & Beyond.

6. David Toop, “Growth and Complexity,” in Haunted Weather.

7. Eshun, “An Unidentifi ed Audio Event Arrives from the Post- Computer Age,” 11.

8. Supercollider (http: // www.audiosynth.com /), MaxMsp (http: // www.cycling74.com /),

Pure Data (http: // puredata.info /), Reactor (http: // www.native- instruments.com), Camus

(http: // website.lineone.net / ~edandalex / camus.htm).

9. See, for example, Peter Todd, “Simulating the Evolution of Musical Behavior,”

361–389.

10. Eduardo Miranda, Composing Music with Computers, 139–143, points to four mecha-

nism in origins and evolution useful for modeling musical systems:

a. transformation and selection (should preserve the information of the entity): im-

prove components of ecosystem evolution of music subject to psychophysiological con-

straints rather than biological needs (i.e., survival); exceptions are bird song and mate

attraction

b. co- evolution: pushes the whole system (of transformations and selections) toward

greater complexity in a coordinated manner, e.g., musical styles co- evolve with music

instruments / technologies.

c. self- organization: coherence ingredients include (1) a set of possible variations, (2)

random fl uctuations, and (3) a feedback mechanism.

Sonic Algorithm

235

d. level formation: formation of higher level compositional conventions, e.g., abstract

rules of rhythm e.g. metre and a sense of hierarchical functionality.

11. Miranda 2001, 119.

12. Miranda is particularly cautious of linear, progressive models of evolution:

Evolution is generally associated with the idea of the transition from an inferior species

to an superior one and this alleged superiority can often be measured by means of fairly

explicit and objective criteria: we believe, however, that this notion should be treated

with caution . . . with reference to prominently cultural phenomena, such as music, the

notion of evolution surely cannot have exactly the same connotations as it does in natural

history: biological and cultural evolution are therefore quite different domains. Cultural

evolution should be taken here as the transition from one state of affairs to another, not

necessarily associated with the notion of improvement. Cultural transition is normally

accompanied by an increase in the systems’ complexity, but note that “complex” is not a

synonym for “better.” (140)

13. E. F. Cood, Cellular Automata.

14. Charles Darwin, The Origin of Species, 1859.

15. Richard Dawkins, The Blind Watchmaker, 1986.

16. Eduardo Miranda, Composing Music with Computers, 131.

17. Ibid., 136.

18. See Peter Todd, “Simulating the Evolution of Musical Behavior,” and Eleonora

Bilotta, Pietro Pantano, and Valerio Talarico, “Synthetic Harmonies: An Approach to

Musical Semiosis by Means of Cellular Automata.”

Sonic Algorithm

236

Source Code
Joasia Krysa and Grzesiek Sedek

 / Barszcz C recipe

*

* string based cooking

*

* Copyleft (C) 2006 Denis “Jaromil” Rojo

* for the barszcz project (currently unfinished)

#include <stdio.h>

#define ingredient char

#define tool char

#define few 3

#define some 5

#define pinch 1

#define plenty 8

#define one 1

#define soft_cooked 5

ingredient **take(int quantity, ingredient **ingr) {

 int c;

 int len = strlen(ingr) +10;

 ingredient = malloc((quantity+1) * sizeof(*ingredient));

 for(c = 0; c < quantity; c++)

 ingredient[c] = malloc(len * sizeof(ingredient));

 ingredient[c+1] = NULL;

 return ingredient;

}

In The Art of Computer Programming Donald Knuth equates programming and
recipes in a cookbook as a set of instructions to follow. Algorithms, much
like cooking recipes, provide a method, a set of defi ned formal procedures to
be performed in order to accomplish a task in a fi nite number of steps.1 Ex-

Source Code

237

amining the source code of a particular program reveals information about
the software in much the same way as the ingredients and set of instructions
of a recipe reveals information about the dish to be prepared. The analogy is
rather straightforward perhaps but reveals something of the interests involved
in the preparation, execution, and consumption of the work.2 The importance
of source code for the description of software is that, alongside computer com-
mands, it also usually provides programmers’ comments—that is, a documen-
tation of the program including a detailed description of its functionality and
user instructions.3 Furthermore, the importance of source code is that any mod-
ifi cations (improvements, optimizations, customizing, or fi xes) are not carried
out on compiled binary code (object code or machine code) but on the source
code itself. The signifi cance of this is that the source code is where change and
infl uence can be exerted by the programmer. In the example of recipes, further
descriptions are provided in the accompanying narrative. Although recipes are
clearly not reducible to code—and vice versa—the analogy emphasizes that
both programming and cooking can express intentionality and style.

Source code (usually referred to as simply “source” or “code”) is the un-
 compiled, non- executable code of a computer program stored in source fi les.
It is a set of human readable computer commands written in higher level
programming languages. Defi ned by a higher level of abstraction from ma-
chine language they share some of the characteristics of natural language, for
instance, rules of syntax. When compiled, the source code is converted into
machine executable code (binary), a series of simple processor commands that
operate on bits and bytes. The process of compiling is twofold: the source code
is converted into an executable fi le either automatically by a compiler for a par-
ticular computer architecture and then stored on the computer, or executed on
the fl y from the human readable form with the aid of an interpreter. In princi-
ple, any language can be compiled or interpreted and there are many languages
such as Lisp, C, BASIC, Python, or Perl that incorporate elements of both
compilation and interpretation.4 In the history of computation, programs were
fi rst written and circulated on paper before being compiled in the same way
as recipes were written and shared before being compiled in cookbooks. The
fi rst case of an algorithm written for a computer is credited to Ada Lovelace.
It interpreted Charles Babbage’s Analytical Engine (of 1835) not merely as a
calculator but as a logic machine capable of arranging and combining letters
and other symbolic systems.5 The source code of a modern digital computer
derives from the further adaptation (in the 1940s) of Babbage’s ideas.6 What

Source Code

238

came to be known as the “von Neumann architecture” is important as it pre-
sented a single structure to hold both the set of instructions on how to per-
form the computation and the data required or generated by the computation;
it demonstrated the stored- program principle that has led to development of
programming as separate from hardware design. Remington Rand’s UNIVAC
(Universal Automatic Computer, 1951) was one of the fi rst machines to com-
bine electronic computation with a stored program and capable of operating
on its own instructions as data.7 With a stored- program computer, a sequence
of instructions that might be needed more than once could be stored. The
computer could store the sequence in memory and insert the sequence into
the proper place in the program as required. By building up a library of fre-
quently used sequences, a programmer could write a complex program more
effi ciently.8 In A History of Modern Computing, Paul E. Ceruzzi explains this
development, from building up libraries of subroutines, then getting the com-
puter to call them up and link them together to solve a specifi c problem, to
a more general notion of a high- level computer language with the computer
generating fresh machine code from the programmer’s specifi cations.9

The principle of re- using or sharing code relies on storing collections of code
lines, or functions, in “libraries.” The function or subroutine, often collected
into libraries, is a portion of code within a larger program, which performs a
specifi c task and is relatively independent of the remaining code. A subroutine
is often coded so that it can be executed several times or from several places
during a single execution of the program. It can be adapted for writing more
complex code sequences, and is thereby a labor- saving programming tool and
an important mechanism for sharing and re- using code.10 An early example of
a community- based library of subroutines was SHARE (1955), a repository
for shared use developed by a group of IBM users. More recently, the principle
of sharing source code is instantiated in online repositories (such as Source-
Forge, Freshmeat, or Code Snippets.) Other tools including source code search en-
gines that index programming code and documentation are also available from
open- source repositories (for instance, Koders, Krugle, Codefetch, and Codase).11
Online code repositories are often used by multi- developer projects to handle
various versions and to enable developers to submit various patches of code in
an organized fashion. CVS, a version control system commonly used in open
source projects, is an important management mechanism that allows several
developers to work on the same fi les both simultaneously and remotely. It al-

Source Code

239

lows the recording of individual histories of sources fi les and documents while
storing the code on a single central server.12

There are other examples that extend the online repository model to the
cultural realm. For instance, Perlmonks.org is a repository, discussion forum,
and learning resource for the Perl community that also provides an online
platform for presenting Perl poetry and obfuscated code. Another example is
Sweetcode.org, which presents a themed and contextualized (reviewed) system-
atic selection of links to innovative free software.13

In Free Software, Free Society, Richard Stallman suggests that the sharing of
software is as old as computing, just as the sharing of recipes is as old as cook-
ing.14 However, the reverse of this analogy holds too. As much as recipes can
be shared (open) they can also be kept secret (closed) in the same way as soft-
ware licensing reinforces two radically opposite models of production, distribu-
tion, and use of software—“open source” and “closed source.” In general terms,
under open source conditions, source code is included with a particular soft-
ware package to allow its viewing and further modifi cations by the user (i.e.,
source code distributed under the terms of licenses such as BSD, GNU / GPL,
MIT), whereas a proprietary model of closed source prevents its free distri-
bution and modifi cation, and software is released as already compiled binary
code (e.g., software distributed under the Microsoft EULA [End User License
Agreement]).15 However, the politics of open source are much more complex.
A further distinction is made between Open Source Software and Free Software
within the free software community to articulate different ideological positions
in relation to open source—emphasizing respectively either its development
methodology or the ethical and social aspect of the “freedom” of software.16
More currently, the term FLOSS has been used as a more generic term to refer
to Free, Libre, and Open Source Software.

The idea of source code, and indeed the open source model, extends beyond
programming and software. For instance, Knuth points to creative aspects of
programming alongside technical, scientifi c, or economic aspects, and says that
writing a program “can be an aesthetic experience much like composing poetry
or music.”17 Source code can be considered to have aesthetic properties; it can
be displayed and viewed.18 It can be seen as not only as a recipe for an artwork
that is on public display but as the artwork itself—as an expressive artistic
form that can be curated and exhibited or otherwise circulated.19 For example,
the activity of obfuscating code (making source code deliberately hard to read

Source Code

240

and understand), while in more general usage serves the purpose of protecting
software applications from reverse engineering, might also be seen as creative
practice in itself. An executable function is combined with an aesthetic qual-
ity of the source code through “simple keyword substitution, use or non- use of
whitespace to create artistic effects, to clever self- generating or heavily com-
pressed programs.”20 The software art repository Runme.org lists obfuscated
code under the category of “code art” alongside code poetry, programming lan-
guages, quines, and minimal code.21 In the context of programming, the cre-
ative aspects are also registered in competitions such as the International
Obfuscated C Code Contest, in which “The aims of the contest are to present
the most obscure and obfuscated C program, to demonstrate the importance of
ironic programming style, to give prominence to compilers with unusual code
and to illustrate the subtleties of the C language.”22

The excerpt of source code at the beginning of this entry is from a longer
program and part of the Barszcz.net project. An online repository and a plat-
form for presenting and sharing barszcz soup recipes in the form of source code
written in a number of programming languages, the project brings together
cooking recipes and source code in a literal sense.23 In a wider cultural context,
this exemplifi es a general way of thinking about source code as an open model
for creative practice; it can be used to encourage collaboration and further de-
velopment of existing work on the level of contribution, manipulation, and
recombination, and can be released under the same or similar licenses in the
public domain.

 / * reminder about things we can do in the kitchen:

* peel, wash, chop, cook * /

beetroots = wash(beetroots);

cabbage = chop(cabbage);

cooking = 0;

do {

 cook(beetroots);

 cook(cabbage);

 cook(carrots);

 cook(parsnips);

Source Code

241

} while(cooking < soft_cooked);

exit(1);

}

Notes

1. Donald Knuth, The Art of Computer Programming, Vol. 1, “Fundamental Algorithms,” 8.

2. The metaphor is also used by the Belgian artists group Constant in their proj-

ect Cuisine Interne Keuken (2004) to examine the economics of the internal organiza-

tion of the cultural system and the workplace—a system that consists of components

(ingredients), tools (utensils), and work and creation processes (recipes). Available at

http: // www.constantvzw.com / cn_core / cuisine / .

3. Paul E. Ceruzzi, in A History of Modern Computing, 92–93, points to some earlier ex-

amples of programs such as COBOL that had “the ability to use long character names

that made the resulting language look like ordinary English.” Thus the program was

self- documenting—instructions were suffi cient descriptions for both machine and hu-

mans and programmer’s comments were not required.

4. “For instance the ‘compiler’ for a bytecode- based language translates the source

code into a partially compiled intermediate format, which is later run by a fast inter-

preter called a virtual machine. Some ‘interpreters’ actually use a just- in- time com-

piler, which compiles the code to machine language immediately before running it.”

http: // en.wikipedia.org / wiki / Programming_language.

5. J. David Bolter, Turing’s Man, 33.

6. Although the stored- program principle is commonly credited to John von Neu-

mann for his “First Draft of a Report on the EDVAC” (1945), he was not the sole

creator of “von Neumann Architecture.” According to Paul E. Cerruzi in A History of

Modern Computing, 21–22, it was J. Presper Eckert and John Mauchly who fi rst con-

ceived of the idea (in 1944).

7. UNIVAC was designed by Eckert and Mauchly (Ceruzzi, A History of Modern Com-

puting, 20).

8. Ceruzzi, A History of Modern Computing, 84.

Source Code

242

9. Ibid, 108.

10. Knuth, The Art of Computer Programming, 182.

11. Examples cited: SourceForge http: // sourceforge.net / ; Freshmeat http: // freshmeat

.net / ; Code Snippets http: // www.bigbold.com / snippets / ; Koders http: // www.koders.com / ;

Krugle http: // www.krugle.com / ; Codefetch http: // www.codefetch.com / ; Codase http: //

 www.codase.com / .

12. CVS developed from an earlier versioning system, RCS, and is similar to other

packages such as PRCS, and Aegis. See http: // www.nongnu.org / cvs / .

13. Examples cited are PerlMonks.org (http: // perlmonks.org) and Sweetcode.org (http: //

www.sweetcode.org /). One of the developers of the Runme software art repository, Alex

McLean, described Sweetcode.org as “perhaps the closest thing to an art gallery for

the free software community, and indeed one of the inspirations for Runme.org.” See

http: // runme.org / feature / read / +sweetcode / +45 / .

14. Richard Stallman, “GNU Project,” in Joshua Gay, ed., Free Software, Free Society:

Selected Essays of Richard M. Stallman, 31–39.

15. Examples cited: BSD (Berkeley Software Distribution) http: // www.bsd.org / ; GPL

(General Public License) http: // www.gnu.org / ; GNU / Linux project http: // www.kernel

.org / ; MIT OpenCourseWare http: // ocw.mit.edu / ; and Microsoft End User License

Agreement http: // msdnaa.oit.umass.edu / Neula.asp. For an extensive list of licenses see:

http: // www.opensource.org / licenses / or http: // www.fsf.org / licensing / licenses / .

16. Richard Stallman, “Why Free Software is Better than Open Source,” in Joshua

Gay, ed., Free Software, Free Society: Selected Essays of Richard M. Stallman, 55–60. Also

see Free Software Foundation http: // www.fsf.org / and Open Source Initiative http: //

www.opensource.org.

17. Donald Knuth, The Art of Computer Programming, Vol. 1, “Fundamental Algorithms,” v.

18. Describing an example of a music application, Geoff Cox said “In this area of soft-

ware arts practice programmers make music in keeping with the expressive qualities

of live performance, by using interpreted scripting languages (such as perl) and coding

in real- time with the source code on public display.” Geoff Cox, “Software Actions,” in

Joasia Krysa, ed., Curating Immateriality: DATA Browser 03, 76.

Source Code

243

19. The phenomenon of computer viruses demonstrates the aesthetization of code

quite explicitly. For the purpose of art, harmful properties of viruses are typically

removed and viruses are exhibited as aesthetic systems. For example, the notorious

work “biennale.py,” a computer virus programmed in Python by the artist collective

[epidemiC] and net art group 0100101110101101.org, operated with the sole purpose

being “to survive” by acting upon its exhibition context of the 49th Venice Biennale.

It was subsequently included along with other examples in I Love You (2002), a larger

show dedicated to phenomena of computer viruses in artistic context. See Alessandro

Ludovico, “Virus Charms and Self- Creating Codes,” in Franziska Nori, ed., I love you:

computerviren, hacker, kultur, exhibition catalogue 40.

20. See http: // www.wikipedia.org / wiki / Obfuscated_code / .

21. See http: // www.runme.org / categories / +code_art / .

22. See http: // www.digitalcraft.org / iloveyou / c_code.htm / .

23. In culinary terminology “Barszcz” [English: Borscht] refers to a traditional Eastern

European speciality soup of red beetroot that comes in many regional varieties. See

http: // www.barszcz.net / .

System Event Sounds
Morten Breinbjerg

“System event sounds” is the term for unique sounds assigned to program events
such as Windows Logon, Windows Logoff, Close Window, Exit Windows,
New Mail Notifi cation, etc. Every day we expose ourselves to these sounds;
they form the soundscape of our computers. It is reasonable to assume that the
startup tone of Windows XP is the most frequently played musical composition
we have. In nature sounds occur only when different parts of matter interact.1
The sounds in our computer however are not a consequence of such interaction.
No matter interacts, at least not on the level of human perception, since only
small electrical signals are exchanged in electronic circuits. But these patterns
of exchange sometimes call out a designed sound to inform us of the state of our
computer (battery is low), comment on the action performed (print complete),
and / or signify the connection to a larger network outside of our machine (you’ve

System Event Sounds

244

got mail). These designed sounds are supposed to help make the computer and
the actions performed more understandable and thereby contribute to the effi -
ciency of use. I call this way of using sound “semiotic.”

Sounds are also used other ways: to evoke emotions, to signify the quality of
the software or the values characteristic of the companies producing it; or to cre-
ate an ambience, a more ambiguous and subjective space of interpretation, (as
in the music of the Windows startup sound, the soundscapes of internet pages,
and the virtual spaces of computer games). This manner of using sound I call
“aesthetic.”

In this text I will concentrate solely on the aesthetic use of sounds in the
Microsoft Windows operating system. My purpose is to outline how system
event sounds and especially the Windows startup sound are designed to evoke
emotional response and also how system event sounds enter into a broader cul-
tural context, regulating social behavior.

The Semiotic Use of Sound

Talking about the semiotic use of sound in operating systems or individual
programs like Microsoft Word I refer to the intention of unambiguous com-
munication. Sound is applied as yet another layer of semiosis in order to make
the software comprehensible and to reduce the time and energy spent. Its func-
tion is to denote the actions being performed, as direct feedback when pushing
a button, or as information on background processes being initiated or com-
pleted. The way sound is used corresponds to everyday listening, that is, hear-
ing sounds as indexes to events taking place.

One advantage of sound is that, due to the nature of aural perception, sound
information can be processed while other types of events are taking place, as
opposed to the one- at- a- time modus of focused visual perception. Hence the
sound information of incoming mail can be perceived instantaneously with-
out (necessarily) interrupting the typing of a letter or some other task being
performed.

How sounds are used and for what reasons vary in different programs but,
in general, sound occurs when the user acts on the computer, when there is a
change of state in the computer system, or when automated procedures are be-
ing carried out. Sound functions in this way to provide immediate feedback on
actions performed or initiated, or to warn of disallowed actions, critical changes
in the state of the computer, and of actions needed. In short, system event

System Event Sounds

245

sounds indicate actions needed, performed, initiated, or completed, whether
these actions are carried out by the user or the computer.

The system event sounds of Windows XP are mostly symbolic, although
some can be characterized as iconic. The icon is a type of sign that resembles
the object signifi ed, while the symbol is a sign that represents its object purely
by convention.

The sound of a piece of paper being crumpled up following the “empty
recycle bin” command is a well known auditory icon. The sound of a switch
when you navigate the forward or backward button from within a given brief-
case window is another. Although both sounds are iconic, the fi rst is special
since it relates to the semantics of the action performed. The crumpling sound
is a strong analogy to the intention of throwing away paper. The sound of a
switch however, does not relate to the intention of navigating back and forth.
Here the iconic analogy is purely the sound of something being activated.

System event sounds are typically short pitched sounds or short melodic
phrases that are synthetic in nature although many of them have a bell- like, or
even piano- like character. As symbols they bear no resemblance to the func-
tion they represent and therefore it takes time to learn which function they
address. Nevertheless, some of them are value- laden because they attribute an
emotional state to the action being performed; this lies beyond simple feed-
back information and beyond the semantics of the action.

The Aesthetic Use of Sound

Consider the two sounds that in many cases alert users to the state of the bat-
tery. The fi rst is a “low battery” warning, the other, if no action has been taken,
is a “critical battery” warning. The fi rst is a single percussive sound and the
second, more critical one is a deep- pitched, rhythmic fi gure of a repeated uni-
son note (da dam). The sound provides us with a simple feedback response that
demands our attention. Perhaps, or hopefully, we will learn that it refers to the
critical state of the battery (its semantic content). But even before we reach that
conclusion, the deep and insistent rhythm of the sound evokes a male stereo-
type communicating authority and strength. The sound signifi es not only the
purely objective information, that the battery is running out of power, but the
potential catastrophe of this fact. As such it presents itself as a warning.

The logon and logoff sounds of Windows XP are additional examples of
sounds that express emotional states beyond the context- specifi c semantics of

System Event Sounds

246

the action (log on / log off). The two sounds mirror each other, since it is the
same melody played forward (logon) and backward (logoff). The logon melody
is a rising interval of a fi fth with a small string sound crescendo played an oc-
tave lower than the fi rst note of the interval. The logoff melody is a descending
interval of a fi fth with a string sound played an octave above the fi rst note of the
interval. The most characteristic feature of the two melodies is the upward and
downward movement. From the theory of metaphorical projection2 we know
that the up / down dichotomy is used as a metaphorical projection across many
domains.3 Up (rising, ascending, etc.) is good, while down (descending, fall-
ing, etc.) is bad, as when we speak of a person as a rising or falling star. To stand
up demands energy (force), activity, and intentionality and when you stand,
your body is ready to act. To sit down you just let go. It demands no energy
since the body has a natural tendency to collapse. The ascending logon melody
is perceived as the positive energized action and the descending logoff as the
negative one. So what does the logon sound signify? It tells us that we have
pushed the button and are about to log on to the operating system of Windows.
It also indicates that the computer has been activated, that it is about to stand
up, forceful and ready.4

The power of music to express emotional states is generally accepted. Writ-
ers of the Attic period such as Plato and Aristotle in, respectively, The Republic
and Politics talked about the power of music and sound to control the emo-
tions of (young) people, warning against the seductive power of certain keys.
In the so called “affektenlehre” of the Baroque period, music theorists tried to
describe and categorize the affective connotations of scales, rhythms, and in-
struments; Italian theorist Geoseffe Zarlino’s asserted that it was well known
that the harmony of major and minor represent joy and sadness. Although we
know that we should be cautious about such assertions, we must acknowledge
that music, especially fi lm and theater music, draws heavily on stereotypes and
heuristic rules of ascending and descending melodies of slow and fast, straight
and syncopated rhythms, etc. In fact these media have stereotyped these ways
of hearing and comprehending. As such, the immediate understanding of the
“critical battery” sound as a warning and the experience of the logon sound
as a positive action is due to both innate experiences of music and cultural
ways of listening. By discussing these natural and cultural aspects of percep-
tion and understanding, we have entered the realm of aesthetics. Here we are
confronted with a much more ambiguous and subjective interpretation, built
upon the connotative power of sound and music.

System Event Sounds

247

In continuing the discussion we must move beyond the semiotic interest
of traditional human- computer interaction design and start to discuss how
system event sounds:

1. are employed to express and brand the qualities of the product and / or the
values of those who produce as well as those who use it, more than just to as-
sist us in navigating the virtual space of our computer. Sound can be a brand,
sound can be retro, sound can denote style, etc.
2. force our attention by representing the voice of our computer, as it explains
it needs (“my power is low”) or communicates something that slipped our at-
tention (“someone just mailed you”). As such the sounds of our computer reg-
ulate social behavior.

Let us continue by discussing the aesthetic function of the startup sound of
the Windows operating system and see what values are refl ected in the sound. The
startup sound signifi es that the operating system is starting up, in much the
same way that the toolbar click sound of Microsoft Word indicates that you did
push a button. But this simple information feedback is neither the sole nor the
most important reason why the sound is there. The startup sound introduces
the world opening up in front of us and, as such, is an overture to the Windows
XP experience. Compare this to the simple stereotypical fanfare (ta- da) fi rst
used as a startup sound in Windows 3.1.

A fanfare is a short trumpet or horn sound played in the low natural tones of
the instrument in a major triad. A fanfare is traditionally used for ceremonial
purposes, to state an occasion and to draw the listener’s attention, such as when
an important person arrives. The sound of the trumpet is loud and powerful
and the trumpet often has the function of marking power and status such as
that associated with kingship. The fall of the Walls of Jericho under the sound
of trumpets as described in the Old Testament is probably the most famous
allegory that refers to the trumpet.

It is doubtful that Microsoft designed a fanfare based on its historical use in
occidental music or with the intention to signify the culturally defi ned values
inherited with the sound of trumpets. However, we do know that Microsoft
does consider the cultural value and the importance of the startup sound as a
brand; they not only used Brian Eno as the composer of the Windows 95 startup
sound, but also recently engaged Robert Fripp, another famous experimental
rock musician, to compose and play the sounds for Windows Vista.

System Event Sounds

248

In an interview5 Brian Eno explained that Microsoft presented him with a
list of the adjectives (inspiring, optimistic, futuristic, sentimental, emotional,
etc.) that they wanted the sound to refl ect. He composed eighty- four different
pieces of music, from which they chose one.

The one chosen (the “Microsoft Sound”) is an ascending melody that can be
divided into three phrases all played on a bell or harp- like instrument. The fi rst
is an interval of a fi fth, the second a short arpeggio, and the third a repeating
lapping interval of a fi fth. Underneath the last phrase a string sound slowly ap-
pears. The direction of the melody is clear although a bit hesitant as it strives
upward. The harmony never resolves but includes a subtle minor second at the
end that shrouds the sound in mystery despite the generally warm and easy feel
of the melody. The Microsoft Sound is a gentle and much more elegant melody
than the simple fanfare of Windows 3.1. The melody has the positive movement
upwards, but not in any insistent or aggressive way. It signifi es calmness and
gentleness as it unfolds. The instrumentation is also signifi cant; the harp (if we
agree on the idea that it sounds like one) gives the melody a lyrical touch. In ro-
mantic music the harp is, by convention, a symbol of beauty and harmony. As
a more general symbol the harp is like a ladder. It leads to the world beyond, to
a new ontological level. But the mystery invoked by the minor second and the
unresolved harmony indicates that there is more than meets the eye. As such
the Microsoft Sound invites or perhaps even rouses us to dive into the Microsoft
world which reveals the full potential of the machine.

The commission of Brian Eno was well conceived. Brian Eno is famous for
playing keyboards in the experimental rock group Roxy Music in the early
1970s and for developing the concept of ambient music, as well as for ex-
perimenting with generative and aleatoric principles of composition inspired
by John Cage and Steve Reich, among others. He is well known as producer
of Talking Heads, David Bowie, and U2. Furthermore, Brian Eno not only
makes music but also publishes theoretical work and as such belongs to the in-
telligentsia of rock and electronic music. With his background Microsoft not
only hired a competent musician, they hired a cultural icon.

By means of the use of sound, the computer is given a voice and thereby
the ability to contact and communicate with its user and the world around
it. In short it comes alive. Three interesting aspects can be drawn from this
 Tamagotchi- like nature of the computer. First, the computer uses sound to
draw our attention the same way that the sound of a telephone or an alarm
does. Our responses to these sounds are part of our social behavior: consider how

System Event Sounds

249

the cell phone distracts us with its ring tone, even in inappropriate situations.
Second, the computer is able to communicate the nature of its own state, for
example: “I am running out of power” meaning that we have to interfere if we
want to avoid loosing our data or continue working. The ability to communi-
cate the possibility of its own ruin, thereby commanding us to act, is remark-
able and unique for a tool; not many tools interfere with our social behavior in
this way. Third, by the use of sound the computer not only communicates with
the user, it announces its presence within a larger context and exposes the ac-
tions of its user. We (shamefully) recognize this when sound reveals that we are
checking our email at a meeting or booting up our computer during a talk.

System event sounds as aesthetic objects have become a part of broader cul-
ture outside the control of Microsoft. Allowing for personalization, system event
sounds can be modifi ed or even replaced. Not surprisingly all kinds of funny
sounds from Star Trek, The Simpsons, and the like can be downloaded from the
internet, and used to brand ourselves. System event sounds are themselves also
used as material for music compositions like the “Windows Noises” of Clown
Staples.6 Hence system event sounds, as with all digital material, are edited
and mixed, downloaded and distributed. As aesthetic objects, system event
sounds have themselves equally become part of a culture (and of a new billion
dollar industry) of sharing, buying, managing, recording, and downloading.

Notes

NB: The system event sounds discussed in this article, can all be heard at, Marcin

Wichary, “GUIdebook, Graphical User Interface Gallery,” available at http: // www

.guidebookgallery.org / sounds / .

1. W. W. Gaver, “What in the World Do We Hear?: An Ecological Approach to

Auditory Event Perception.”

2. George Lakoff and Mark Johnson, Metaphors We Live By.

3. The theory of metaphorical projection is laid out by Mark Johnson in collaboration

with George Lakoff. The theory basically states that the metaphor is a fundamental

cognitive structure rooted in our bodily experience of the world. Our bodily experi-

ence and our spatial and temporal orientation develop into patterns of recognition that

structure the way we perceive and understand the world around us. Johnson calls these

patterns “Image Schemata.” There are many different schemata but here I refer to the

System Event Sounds

250

schemata of movement and force to suggest why different system event sounds are

designed the way they are and how we interpret them. Ibid.

4. In “What’s in those video games?” Ulf Wilhelmsson used the theory of metaphori-

cal projection to analyze the function of sound in Pac- Man and other videogames.

5. Joel Selvin, “Chronicle Pop Music Critic.”

6. See Clown Staples, available at http: // www.geocities.com / clownstaples / .

Text Virus
Marco Deseriis

Would you offer violence to a well intentioned virus on its slow
road to symbiosis?
—william s. burroughs1

On April 17, 2001, an alarmed email message was sent from an unknown
location in Brazil. Within a few days the message was bouncing frantically
through mailing lists, Usenet groups, and the private mailboxes of thousands
of users in many countries. One of the English versions of the message read:

Dear All: We received a virus on a message. I followed the instructions below . . .

located the virus and was able to delete it. The bad news is that you probably have it,

as you are in My Address book! More bad news is that my anti virus program did not

detect this virus. The virus lies dormant for 14 days and then “kills” your hard drive.

 Here is what to do. If you follow the instructions and then see that you have the

virus, you need to send a similar e- mail to everyone in your address book.

 Remove the virus by following these steps:

1. Go to “Start.” Then to “Find” or “Search.”

2. In the “Search for fi les or folders” type sulfnbk.exe—this is the name of the virus.

3. If your search fi nds this fi le, it will be an ugly blackish icon that will have the name

sulfnbk.exe. DO NOT OPEN IT! If it does not show up on your fi rst “Search,” try a

“New Search.”

4. Right click on the fi le—go down to “Delete” and left click.2

Text Virus

251

Each text had slightly different features. One version warned “The virus HIDES
in the computer for 2 weeks and then DAMAGES THE DISC IRREPARA-
BLY.” Another added that the latent phase of the virus had a specifi c dead-
line: “It will become active on June 1, 2001. It might be too late by then. It
wipes out all fi les and folders on the hard drive.”3 Although not all of the ver-
sions considered Sulfnbk.exe a lethal threat, most of them referred to the help-
lessness of standard antivirus software to detect it.

It took a few days to realize that Sulfnbk.exe was not a virus, but in fact a
regular Windows utility to restore long fi le names if they become damaged or
corrupted. As a result, the same gullible users who had erased the fi le on their
machine had to recover it from a Windows installation disc and to forward an
apologetic message explaining how to do this.

In the next few weeks various experts tried to analyze the case. Some ar-
chived it as an ordinary email hoax. Others, perhaps more accurately, read the
Sulfnbk.exe frenzy as an urban legend or a “self- fulfi lling mass hysteria.”4 As
a matter of fact, the alarm took off a few weeks after the fi rst detection of the
Magistr virus, a real mass- mailing email spreading as an .exe attachment and in-
fecting any 32- bit Windows portable executable fi le. The experts argued that
as Sulfnbk was probably one of the infected executables, “Someone who fell
victim to Magistr mistakenly thought that the host fi le was the culprit and
decided to warn others about it.”5

In other words, the hoax was not planned by anyone but was one of the by-
products of virus paranoia (the other major one being the prosperity of anti-
virus software companies). The episode could be dismissed as an accident if
the same cycle had not repeated itself a year later, targeting another Windows
utility—Jdbgmgr.exe, a fi le with a teddy bear icon used in Java environments.
Even in this case it was hard to say whether the hoax was planned or was a pos-
sible “spin- off” of the Magistr virus.

In the impossibility of ascertaining their origins, such hoaxes appear as epi-
phenomena of a machinic system characterized by a high level of commixture
of natural language and computer code. In fact, it is precisely in the moments
in which users delete what is supposed to be a virus that they become the virus
of their own operating systems. It is precisely in the moments in which users
try to help other people that they behave like worms within a distributed sys-
tem. To be sure, the users correctly decode the alert messages in natural lan-
guage, but being unable to grasp the meaning of computer code they behave,
de facto, as machines that mechanically perform instructions.

Text Virus

252

By adopting this inverted perspective, we can thus read the alert message as a
set of formal instructions (1. Go to Start, etc.), that are unambiguous enough to
be executed by a human recipient or a machine.6 From this angle, the Sulfnbk
type of email hoax is nothing more than a manually- driven virus in which hu-
mans and machines exchange roles.

Far from being a novelty, this process of inversion has deep roots, as shown
by the etymology of the word “hoax.” The term derives from hocus pocus, a
formula used by magicians (such as abracadabra or sim sala bim) that by trans-
muting an “h” into a “p” epitomizes the act of transformation itself. Some trace
the origin of the expression to the Roman Catholic Eucharist, when in the mo-
ment of lifting the wafer the priest utters “hoc est enim corpus meum” or “hoc
est corpus” (this is the body) to enact the transubstantiation of the wafer into
the body of Jesus.

Although not everybody agrees on the etymology of the term,7 what is rele-
vant to us is that hocus pocus is a performative speech act that has the power of
enacting and producing that which it names, rather than merely representing
it.8 However, in the context of a church or of a show, the priest and the magi-
cian reenact a discursive practice cemented by long tradition, whereas the text
virus lacks apparently such tradition. Nevertheless, the text virus is socially
recognized as such only after an antivirus fi rm categorizes it as such. By ar-
chiving, labeling, and rating viruses and hoaxes, antivirus fi rms set a tradition
and enact the same preservative function of the clergy. My argument here is
that this categorization freezes the ever- sliding nature of (machinic) writing,
and prevents us from discovering the power of this ambivalence.

In order to articulate this thesis, I have to step back to the Phaedrus, the
famous Platonic dialogue in which Socrates denounces writing as a mnemonic
device that, far from empowering memory, will make humans even more
 forgetful. What disturbs Socrates most (according to Plato and “retraced” by
Derrida) is the fact that writing is a supplement that, circulating randomly
without its father, cannot be interrogated, and thus diverts us from the search
for truth:

 And once a thing is put into writing, the composition, whatever it may be, drifts all

over the place, getting into the hands not only of those who understand it, but equally

of those who have no business with it; it doesn’t know how to address the right people,

and not address the wrong. And when it is ill treated and unfairly abused it always needs

its parent to come to its aid, being unable to defend or attend to its own needs.9

Text Virus

253

For this reason writing is a pharmakon—a Greek term that stands both for
medicine and poison—an errant simulacrum of a living discourse that comes
from afar and whose effects are unknown to those who take it.10 Adopting a fa-
milial metaphor, Plato portrays writing as the patricidal son who has the ability
to imitate and thus replace his father, that is, the only authority that can au-
thenticate with his living presence the truthfulness and property of speech.11

Now the analogies with our text virus are apparent. Devoid of a specifi c ori-
gin, the alert message “drifts all over the place,” appearing to the end user as a
drug that will prevent a disease from taking over his machine. But, in fact, the
drug is a poison, and only the second message, containing the instructions on
how to restore the fi le, will be the remedy for the self- infl icted damage. Equally,
if we consider Magistr as a parent of Sulfnbk.exe and Jdbgmgr.exe (the two are
labeled as viruses after infection by Magistr) we can see how the user has ex-
changed the offspring for the progenitor, and, in the impossibility of deciding
who is the real impostor, has killed them both.

Thus, with machinic writing, we arrive at a curious inversion of the genea-
logic relation described by Plato: This time it is the parent who has the power
to master (or to “magistr”) the offspring in order to spread through the system.
However, the user cannot read this genealogy insofar as she or he ignores the
underlying grammar and even the alphabet of the machinic environment.

This metaphor is quite literal, as it points us back to another major historic
leap—the introduction of the phonetic alphabet in the West. After the Greeks
inherited the alphabet from the Phoenicians, they elaborated a set of twenty-
 four characters in which each letter represented a consonant or a vowel.

Although the utter simplicity of this sound- based technical innovation rep-
resented a major shift from the complex logographic systems based on hun-
dreds of signs, the Semitic and Phoenician aleph- beth was still based on the
pictographic glyph. For instance the fi rst letter, aleph, was represented by a
symbol whose shape stylized an “ox” (aleph is also the ancient Hebrew word
for ox). The Greeks simply turned the symbol onto its head and so created the
“A.” The letter mem, that means “water” in Hebrew, was drawn by the Phoe-
nicians as a series of waves. The Greeks rendered it more symmetrical trans-
forming it into our “M.” The letter qoph, “monkey” in Hebrew, was a circle
intersected by a long tail. The Greek “Q” still retains a sense of that image.

By making the characters suitable for the needs of the hand and the eye,
that is, by making them more rational, the Greeks removed from the alpha-
bet all the references to sensible phenomena. As David Abram points out, the

Text Virus

254

pictographic glyph still referred to an external and animated world of which it
was the static image; for the Greeks “a direct association is established between
the pictorial sign and the vocal gesture, for the fi rst time completely bypassing
the thing pictured.”12

In this way, a self- referential system is set in motion whose dynamics are
exclusively determined by the interplay of the grammatical and phonetic rules
governing a specifi c language.

This self- refl exivity implies, following the linguist Ferdinand de Saussure,
the arbitrariness of the relation between signifi er and signifi ed and is a corner-
stone for the semiotic reading all the systems of signs, including games, sign-
posts, maps, genomes, etc. Computer code is no exception and its origin is
based on an invention that is conceptually no different that the shift from pic-
tographic to phonetic literacy.13

In 1937, Claude Shannon showed that a schema of relays and switching cir-
cuits could be easily translated into algebraic equations and binary arithmetic.14

Abstracted from their iconic counterparts, the operators of Boolean calculus
could now be used for controlling the fl ow of electricity inside computers.15

Initially computers had to be rewired constantly by human agents. In 1948,
the manual task of plugging and unplugging cables was deviated by em-
bedding a set of sixty stored instructions in the memory of the ENIAC. In a
certain sense, software was born and the introduction in 1949 of assembly
language simplifi ed the work of the programmer by translating the machine
language into a set of human- readable notations.16

The subsequent movement toward higher- level programming made the
code even closer to natural language, but at the same time obfuscated the ma-
chine behind layers and layers of code. Revising Derrida we can say that it is
the double translation of a relay scheme into a string of 0s and 1s and of that
string into a word that constitutes “the prior medium in which opposites are
opposed, the movement and the play that links them among themselves, re-
verses them or makes one side cross over into the other.”17 A “love letter” can
kill your hard drive. A patch is a virus. A remedy is a poison.

Thus, in a machinic environment the hoax constantly redoubles the acts of
magic through which programmers translated one language into another after
they lost their respective parents (the external world for the alphabet, the ma-
chine for code). Both orphans, the two systems can now exchange their func-
tions and look for a different destiny. But to express its virtuality, machinic

Text Virus

255

writing constantly struggles with the gatekeepers that try to disambiguate it
and reinscribe it in a proper and productive system of signifi cation.

Notes

1. William S. Burroughs, The Electronic Revolution, Expanded Media Edition, 7.

2. This is an abridged version. The full version can be found on the Symantec web site:

http: // www.symantec.com / avcenter / venc / data / sulfnbk.exe.warning.html.

3. Ibid.

4. Among those there is Vmyths.com, a website not sponsored by antivirus companies.

5. http: // urbanlegends.about.com / library / blsulfnbk.htm / .

6. Florian Cramer, “Concepts, Notations, Software, Art.”

7. For an exhaustive explanation of the origins of the term, see Craig Conley, Magic

Words: A Dictonary, available at http: // www.blueray.com / magic / magicwords / index

.php?p=177 / .

8. John Austin, How to Do Things with Words; John Searle, Speech Acts: An Essay in the

Philosophy of Language.

9. Plato, Phaedrus (275d– e).

10. On the concept of writing as a simulacrum or supplement, see Jacques Derrida,

Dissemination, 108–110.

11. Ibid., 80–81. In Plato’s Greece, the juridical personality was centered around the

 property- owning male. This property is made of himself, his land, wife, children,

household, animals, produce, etc. Contrary to the Sophists, who write and sell speeches

to the emerging class of the money- bearing democrats, the aristocrat speaks always in

the name of his property. He can lose his property, be exiled from the city, and hence

lose his citizenship. Thus, value cannot be detached from the person who is giving the

speech. Writing for Plato displaces this genealogical relationship and threatens the

ideal of the old agricultural society.

Text Virus

256

12. David Abram, The Spell of the Sensous, 100–101.

13. The magnitude of such a shift was fi rstly noted by Eric Havelock: “The invention

of the Greek alphabet, as opposed to all previous systems, including the Phoenician,

constituted an event in the history of human culture, the importance of which has not

as yet been fully grasped. Its appearance divides all pre- Greek civilizations from those

that are post- Greek.” Eric Havelock, “The Preliteracy of the Greeks,” 369.

14. Claude E. Shannon, A Symbolic Analysis of Relay and Switching Circuits.

15. Manuel De Landa, War in the Age of Intelligence Machines, 145–146.

16. Wendy Hui Kyong Chun notes how during World War II the ENIAC was re-

wired by the Women’s Royal Naval Service (Wrens), women with some background

in mathematics who physically plugged and unplugged cables at the orders of a male

programmer. After the war, this manual task was removed by directly embedding the

physical settings into the computer memory. This migration of knowledge dramatically

decreased the time necessary for programming while increasing the time necessary for

computation. The next step was to enable the computer to not only read instructions,

but to write its own instructions by using “interpreters, assemblers, compilers and gen-

erators—programs designed to operate other programs, that is, automatic program-

ming.” (Mildred Koss). Wendy Hui Kyong Chun, “On Software, or the Persistence of

Visual Knowledge.”

17. Derrida, Dissemination, 127.

Timeline (sonic)
Steve Goodman

A common feature of all time- based media, the timeline typically stratifi es the
on- screen workspace into a metric grid, adjustable in terms of temporal scale
(hours /minutes / seconds/musical bars or frames/scenes). With sonic timelines,
zooming in and out, from the microsonic fi eld of the sample to the macrosonic
domain of a whole project, provides a frame for possible sonic shapes to be
sculpted in time.

As an antidote to the digital philosophies of computer age, hype, many me-
dia philosophers have been reassessing the analog ground upon which digital

Timeline (sonic)

257

technology is built. They are, questioning temporal ontologies, which empha-
size the discreetness of matter via a spatialization of time (in the composition
of the digital) in favor of a refocus on the continuity of duration. Typical objec-
tions to the ontology of the digital temporality share much with the philoso-
phy of Henri Bergson. In Bergson’s philosophy of duration, he argues that the
spatialization of time belies the “fundamental illusion” underpinning Western
scientifi c thought. Bergson criticized the cinematographic error of Western sci-
entifi c thought,1 which he describes as cutting continuous time into a series of
discreet frames, separated from the temporal elaboration of movement, which
is added afterward (via the action, in fi lm, of the projector) through the percep-
tual effect of the persistence of vision. Yet sonic time plays an understated role
in Bergson’s (imagistic) philosophy of time, being often taken as emblematic
of his concept of duration as opposed to the cinematographic illusion of con-
sciousness. In Time & Free Will he uses the liquidity of the sonic, “the notes of
a tune, melting, so to speak, into one another” as exemplifying that aspect of
duration that he terms “interpenetration.”2

The sequencer timeline is one manifestation of the digital coding of sound,
which, while breeching Bergson’s spatialization of time taboo—an intensive
sonic duration is visualized and therefore spatialized—has opened a range of pos-
sibilities in audiovisual production. The timeline traces, in Bergsonian terms,
an illusory arrow of time, overcoding the terrain of the sequencing window
from left to right. As with European musical notation’s inheritance from writ-
ten text, digital audio software sequencers have inherited the habit of left- to-
 right visual scanning. The timeline constitutes the spatialization of the clock
into a horizontal time- coded strip that stretches from left to right across the
screen, constituting the matrix of the sequencing window across which blocks
of information are arranged. The sonic becomes a visualization in terms of a
horizontally distributed waveform spectrograph, or sonic bricks. The temporal
parts and the whole of a project are stretched out to cover an extensive space.

A temporal sequence of sounds suddenly occupies an area of the computer
screen. What is opened up by this spatialization is the ease of temporal recom-
bination. That marker of the transitory present, the cursor, and its ability to
travel into the future and past (the right or left of the cursor) melts what ap-
pears, at least within the Bergsonian schema, to be the freezing of audio time
into spatialized time stretches, instead of intensive durations. This arrange-
ment facilitates nonlinear editing by establishing the possibility of moving to
any point, constituting the key difference between nonlinear digital editing

Timeline (sonic)

258

and analog fast forwarding and rewinding. The timeline pivoting around the
cursor, marker of the transitory present, distributes the possible past (left of
the cursor) and future (to the right of the cursor) of the project.

Aside from its improvement of the practicalities of editing and the ma-
nipulation of possibility, the digital encoding of sonic time has opened an
additional sonic potential in terms of textural invention, a surplus value over
analog processing. While the temporal frame of the timeline in digital appli-
cations makes much possible, a more fundamental temporal potential of sonic
virtuality is locatable in the apparently un- Bergsonian realm of digital sam-
pling, known as discrete time sampling.3 At a fundamental level, in its slicing
of sonic matter into a multiplicity of freeze frames, digital samples treat ana-
log continuity as bytes of numerically coded sonic time and intensity, grains
which may or may not assume the consistency of tone continuity, the sonic
equivalent of the persistence of vision.

Warning against the conceptual confusion of virtual potential with actual
digital possibility, Brian Massumi notes that, despite the hype of the digital
revolution, “sound is as analog as ever, at least on the playback end . . . It is
only the coding of the sound that is digital. The digital is sandwiched between
an analog disappearance into code at the recording and an analog appearance
out of code at the listening end.”4 Yet, perhaps in the timestretching function
a machinic surplus value or potential is opened in sonic time.

In contrast to the Bergsonian emphasis on continuity in duration, in the
1940s, the elementary granularity of sonic matter was noted by physicist Den-
nis Gabor, dividing time and frequency according to a grid known as the Gabor
matrix. Prising open this quantum dimension of sonic time opened the fi eld of
potential, which much more recently became the timestretching tool within
digital sound editing applications.5 The technique “elongates sounds without
altering their pitch, demonstrates how the speed at which levels of acoustic
intensity are digitally recorded (around 44,000 samples / second) means that
a certain level of destratifi cation is automatically accomplished. Since magni-
tudes (of acoustic intensity) are all that each sample bit contains, they can be
manipulated so as to operate underneath the stratifi cation of pitch / duration
which depends on the differentiation of the relatively slow comprehensive
temporality of cycles per second.”6

The technique referred to as time- stretching cuts the continuity between
the duration of a sonic event and its frequency. In granular synthesis, discreet
digital particles of time are modulated and sonic matter synthesized at the

Timeline (sonic)

259

molecular level. In analog processing, to lower the pitch of a sound event adds
to the length of the event. Slow down a record on a turntable for example, and
a given word not only descends in pitch but takes a longer time to unfold. Or
allocate a discreet sampled sound object to a zone of a midi keyboard; the dif-
ference between triggering the sample using one key, and moving to a key one
octave down doubles the time of the sound, and halves its pitch. Timestretch-
ing, however, facilitates the manipulation of the length of a sonic event while
maintaining its pitch, and vice versa. Timestretching, a digital manipulation
process common to electronic music production is used particularly in the
transposing of project elements between one tempo (or timeline) and another,
fi ne tuning instruments, but also as a textural effect producing temporal per-
turbations in anomalous durations and cerated consistencies.

Notes

1. Henri Bergson, Creative Evolution, 322.

2. Henri Bergson, Time and Free Will: An Essay on the Immediate Data of Consciousness,

100.

3. Ken C. Pohlmann, Principles of Digital Audio, 21–22.

4. On the difference between the possible and potential (or virtual) see Brian Massumi,

“The Superiority of the Analog,” in Parables for the Virtual, 138.

5. Curtis Roads, Microsound, 57–60; and, Dennis Gabor, “Acoustical Quanta and the

Theory of Hearing.”

6. Robin Mackay, “Capitalism and Schizophrenia: Wildstyle in Effect,” 255.

Timeline (sonic)

260

Variable
Derek Robinson

To be is to be the value of a bound variable.
—willard van orman quine1

You can be anything this time around.
—timothy leary2

There is a distinction to be made between the variables employed by pro-
grammers and those employed by scientists, engineers, and mathematicians.
Not that one can’t straightforwardly write a program that uses computer- type
variables to implement statistical algorithms. Nor is it hard to fi nd a general
logical defi nition good for both types. But it would not reveal the pragmatic,
historical, and subcultural reasons why the word “variable” means different
things to the programmer and the statistician (even if the latter’s data analysis
is likely performed with software written by the former). The root of the differ-
ence is that a programmer’s variables are implemented on a computer, which
means they must concretely exist in a computer’s memory, in accordance with
whose concreteness they must be named, ordered, addressed, listed, linked,
counted, serialized, unserialized, encoded, decoded, raveled, and unraveled;
how this happens bears little resemblance to algebraic symbols scratched on a
chalkboard.

The programmer’s variable is a kind of box; its name is the label written on
the lid. To open the box, accomplished by the magical act of reciting its name
in a prepared context, is to be granted access to what has been put “inside” it:
the variable’s value—one datum. Or say, what it denotes, what it “means,”
under a hugely impoverished notion of meaning that analytical philosophers
spent much of the past century trying to shoehorn thought and language into.
Cavils aside, it’s in good part due to their efforts that there appeared in that
century’s middle third, the new science of computation.

A variable is a box stripped of sides, top, and bottom, abstracted away from
geometry and physics, of no especial size or shape or color nor situated—so
far as the programmer who conjures it needs to know or worry about—in any
particular place. It’s like there’s always a spare pocket available any time there’s
something to be kept track of, and all it costs is to think up a name for it. (And
then to remember what the name was; sadly not always so easy.) The passed

Variable

261

buck of reference, the regressus of signs, begins and ends in the blank affect-
less fact of the unfi lled vessel, an empty signifi er that awaits only assignment to
contain a content. (In the upside- down tree- universe of Lisp, all termini point
to “NIL.”)

High- level computer languages relieve programmers of worrying about
where values are kept in the computer’s address space or how to liberate the lo-
cations they’ve occupied when they’re no longer needed (this is done with a bit
of legerdemain called garbage collection). In reality the variable is situated in a
reserved area of physical memory called the Symbol Table. What is recorded in
the Symbol Table is just the variable’s name, paired with a pointer (a number
understood as an address), which points to the location of some other cell that’s
allocated on demand from a heap of memory locations not currently claimed.
Since all this takes place in a computer, naturally there are further layers of in-
direction and obliqueness between how a program accesses the variable’s value
and its extra- symbolic physical existence as an elaborate roundelay of trapped
charges in doped silicon or mottles of switchable ferromagnetic domains on a
spinning metal oxide- coated plastic disk.

The variable’s role is as an index that points to something, somewhere. C. S.
Peirce, grandfather of semiotics, once defi ned a sign as “a lesser that contains
a greater.”3 Like a magical Arabian Nights tent, it appears bigger on the in-
side than its outside. One hears an echo of Turing’s poser: “How can 2.5 kilo-
grams of grey- pink porridge contain a whole universe?” (A hint: The fi nger
points out of the dictionary.) A variable is a marker, a token, or placeholder
staking out a position within a formal conceptual scheme. As Alan Kay4 re-
marked, “The fundamental meaning of a mark is that it’s there.” An empty
slot awaiting instantiation by being “bound” to a specifi c value, to be provided
by someone’s fi ngers at keyboard and mouse, or by some sensed, measured,
electronically amplifi ed, transduced, encoded alteration in the fabric of things
happening elsewhere.

Some variables don’t vary. A “constant” is a mnemonic stand- in conscripted
simply because names are easier for people to remember and recognize than
numbers. At bottom this is what any variable is: a name standing for a number
that is interpreted as an address that indexes a memory location where a pro-
gram is directed to read or write a sequence of bits. Electronic sensors attached
to a computer are de facto variables registering external events in a set- aside
range of addresses that act as portholes to view sampled digital representations
of the changing voltages provided by the sensor.

Variable

262

In the Forth programming language, variables don’t even need names. They
can be values placed on top of a data stack as arguments to functions that apply
operations to them and leave the results on top of the stack as arguments for
subsequent functions. The necessity to name is here obviated by the specifi city
of place. (Forth has named variables too, but to actually use them is regarded as
unsporting.) The Unix operating system has its own unnamed variables, called
“pipes,” for chaining together sequences of code, turning outputs into inputs,
to engineer ad hoc assembly- lines of textual fi lters and transformers. It is this
brilliant concept to which Unix owes much of its enduring success.5

An especially important use of variables is as arguments passed to a function
subroutine. Instances of argument names found in the function body will be au-
tomatically replaced by the values of the variables that were provided when the
function was invoked. Instances of argument names occurring within a func-
tion’s scope act like pronouns referring to the place and time in the executing
program where the arguments were last assigned values. They are pseudonyms,
aliases, trails of breadcrumbs that point back up the “scope chain” of nested ex-
ecution contexts. (A function “A” called from another function “B” will acquire
any variable bindings found in the scope of B; likewise if B was itself called
from a function “C,” the latter’s bindings become a tertiary part of the con-
text of A.) In object- oriented languages there is a special argument or keyword
named “this” or “self,” which is used within class defi nitions to enable object
instances at runtime to reference themselves and their internal states.6

The single most critical constraint on a variable’s use is that it, and its every
instance, must be uniquely determined in the context or “namespace” of its ap-
plication, if it is to serve naming’s ambition of unambiguous indication. This
isn’t as uncomplicated as it might seem. Namespaces are easily entangled, and
before too long even 64 bits of internet addressing (allowing for 264 or some
18 sextillion different designations) won’t suffi ce to insure uniqueness. (Bruce
Sterling is good on the implications of this stuff, and Mark Tansey has made
a nice picture.7) However all that turns out, beyond the onomastic imperative
of having to be uniquely determined within a context, a variable can denote,
refer to or stand in place of anything that people are capable of apprehending,
conceiving, and representing as a “thing.”

Pronouncing upon the thingness of things has historically been considered
the special preserve of philosophers, but programmers, being the practical en-
gineering types that they are, simply had to get on with the job. The things
represented in software in one way or another all ultimately reduce to patterns

Variable

263

of series of on- and- off switches, zeros and ones. No bit- pattern can represent
anything without a program to interpret it. The meanings plied through natu-
ral language may, they say, be subject to the drift and swerve of an indefi nitely
deferred semiosis, but software’s hermeneutic regress must fi nally bottom out.
It’s interpreters all the way down—then it’s just bits.8

Under the hood, variables are arranged so that a specifi c pattern of 0s and
1s can be interpreted as a character string (and then as a word, or as several)
in one context, a series of numbers, part of a picture, or maybe some music in
another context. All of these pieces of information can be connected with some
person, some object, or some more abstract category, and stored in a database
somewhere. Ultimately they’re all bits, and what software does is make sure
that what one expects to fi nd when one asks for something, and what one does
fi nd are one and the same. (Deliberately or accidentally incurred or induced
violations are collected and swapped by connoiseurs of “glitch art” and “data
bending.”)9

Some things are fairly easily resolved. Numbers, still software’s main stock
in trade, are in the computer usually as integers (counting numbers, without
decimal points) from a range between a fi xed minimum and maximum (e.g.,
the 256 counting numbers from – 128 to +127) or they are “fl oating point”
numbers—a type of scientifi c notation (with exponents and mantissas) for rep-
resenting non- integer values (with decimal points), which can be much larger
or much smaller than integers. Alphanumeric characters have several different
UTF- standardized 8- , 16- , or 32- bit- long character codes for specifying any
graphic symbol used in any human language.

In the grand architectural design of Sir Tim Berners- Lee’s Semantic Web,
the bottomless puddle of the thingness of things is neatly sidestepped by dic-
tating that things referenced must have URIs (“Uniform Resource Indicators,”
like web addresses). As long as URIs can be resolved into properly formatted
truthful representations of information that people care to assert and are will-
ing to stand by then automated proof procedures can be applied to them.
Presumably, at the terminal node of the implied indefi nitely extended and
ramifying series of assertions asseverating the trustworthiness of other assev-
erations, we shall arrive at a planet- sized AI and either all our troubles are over,
or they’ve just begun.10

The recent rise of markup languages11 like HTML, CSS, XML, XSL, or SVG
is recognition that in many applications, once the data have been properly set
up, the ordinary kind of programming that relies on IF- THEN conditions to

Variable

264

alter execution fl ow isn’t much needed. The data organization can look after
the heavy lifting. Markup languages conform to the abstract data type known
as “trees,” branching geneologies whose member “nodes” (which can also be
trees) are accessed via parent and sibling relations. Trees resemble the table of
contents in a book. They are usually implemented using “list” data structures,
although how these lists are implemented under the hood isn’t important, as
long as the lists behave like lists so that trees (and other things) created out of
lists will behave like trees (or the other things).12

Data structures are compound, multicellular super- variables. Their purpose
is to make it easy to arrange logical aggregations of data in ways that make it
easy to carry out complex operations on their members. Apart from lists, whose
cells can be grown and pruned and grafted in near- organic profusion, core data
structures provided in most programming languages include character strings,
linear arrays indexed by the counting numbers (used to make 2- D or higher
dimensional data tables), and associative arrays: look- up tables whose cells are
indexed with arbitrary symbols as the keys (internally turned into addresses by
a hashing function,13 or stuffed into lexicographic trees perhaps). The devil’s in
the details. Get the data structures right—picture and populate them, imag-
ine traversals and topologies, strike a truce between redundancy and compres-
sion, cut a deal with the coder’s old familiar foes of Time and Space, “solve et
coagula,” and mind the gap—and everything else will follow.

If computers can be made to agree on how data shall be represented and
interpreted, encoded and decoded, then data can be shared between them the
way audio, video, and text fi les are shared, and many different programs writ-
ten in different languages running on different computer platforms can co-
operatively behave as one very large distributed computer running one very
large distributed program. The web is such a thing, and has gradually (if one
can call the delerious growth of the past ten years gradual) been awaking to
the fact. Mundane attention to marshaling and unmarshaling complex data
structures in accordance with commonly agreed dialects and schemas (provi-
sion of which is the purpose of the Extensible Markup Language, XML, whose
authors had the foresight to see that a data format for specifying data formats
would be a good idea) is already rewriting the conduct of commercial life. A
spirit of openness and peer collaboration is blowing even through hidebound
proprietary holdouts like academic publishing; we await Silent Tristero’s Em-
pire and the Brittanica’s demise.14

Variable

265

Notes

1. W. V. O. Quine (1939), “Designation and Existence.” This phrase (“To be is to be

the value of a bound variable”) became a motto of Quine’s, and through him, of mid-

 century Anglo- American analytical philosophy generally. (Reprinted in H. Feigl, and

W. Sellars, Readings in Philosophical Analysis.

2. Dr. Timothy Leary, You Can be Anyone This Time Around.

3. For a summary of C. S. Peirce’s philosophy of the sign, see Umberto Eco’s Semiotics

and the Philosophy of Language.

4. Alan Kay coined the term “object- oriented,” headed the Learning Systems Group at

Xerox PARC in the 1970s (which developed the now ubiquitous bit- mapped graph-

ical desktop metaphor), invented the “Dynabook,” and was the model for (obscure

computer geek trivia alert) the Jeff Bridges video game programmer hero in the 1982

Disney fi lm “Tron” (Kay’s wife wrote the screenplay).

5. For Forth, see Leo Brodie’s Thinking Forth, widely regarded as one of the best books

about programming for anyone who programs in any language; a free PDF of the 2004

revision is available at the author’s website. The Unix philosophy is summarized by

Doug McIlroy (inventor of pipes) as follows: 1. Write programs that do one thing well;

2. Write programs that work together; 3. Use text streams as a universal interface.

6. For more information on scope, binding, and reference, see Harold Abelson, Gerald

Jay Sussman, The Structure and Interpretation of Computer Programs. (A free online version

can be found at the book’s MIT Press website.)

7. Brian Cantwell Smith’s On the Origin of Objects plumbs software’s ontology very

deeply and very densely (however it’s only recommended for people not put off by

infi nite towers of procedural self- refl ection).

8. Bruce Sterling would be the well- known science fi ction writer, astute cognizer of

past and present trends, peripatetic blogger, affi cionado and sometime teacher of con-

temporary design. Recently he authored a book, Shaping Things, about “spimes,” his

neologism for a new category of post- industrially fabricated semi- software objects.

Mark Tansey paints large monochromatic post- modern puzzle pictures in the high

style of mid- twentieth- century illustration art. The painting referred to shows the

crouching fi gure of (we assume) an archaeologist, bent over a small object, likely a

Variable

266

rock, in a desert landscape that contains many widely scattered small rocks. It has the

enigmatic title, “Alain Robbe- Grillet Cleansing Everything in Sight.”

9. See “Glitch,” this volume.

10. Dieter Fensel, et al., Spinning the Semantic Web. An authoritative and up- to- date

source is the World Wide Web Consortium: http: // www.w3.org / .

11. Markup languages like XML acronymically descend from a typesetting language

for IBM computer manuals called SGML, dating from a time (circa 1966) when IBM

stood second only to the Jehovah’s Witnesses as the world’s biggest publisher of print

materials. See Yuri Rubinsky, SGML on the Web.

12. John McCarthy, LISP 1.5 Programmer’s Manual. For non- tree data structures imple-

mented using lists, see Ivan Sutherland’s Sketchpad: A Man- Machine Graphical Com-

munication System—this was the fi rst object- oriented program, the fi rst computer aided

design program, and the fi rst “constraints- based” programming system. Utterly revo-

lutionary at the time, it still rewards a look. In 2003 an electronic edition was released

on the web.

13. Hash functions are numerical functions for mapping arbitrary character data re-

garded as numbers to pseudo- random addresses within a predefi ned range. Their great

virtue is constant- time access, unlike tree- based structures. The data stored in hash-

 tables are (obviously) unordered, however.

14. Jon Willinsky, The Access Principle: The Case for Open Access to Research and Scholar-

ship. Silent Tristero is implicated in the secret sixteenth- century postal service around

whose continued existence or lack thereof the plot of Thomas Pynchon’s novel The

Crying of Lot 49 revolves; elements of Pynchon’s baroque conspiracy are borrowed from

the Rosicrucian Brotherhood, an actual sixteenth- century conspiracy whose Invisible

College perhaps only existed as carefully planted and cultivated rumors. (A mailing

list of the name is frequented by white- hatted hacker types; with luck and unbending

diligence in the pursuit of the art an invitation one day may arrive in your mailbox.)

Variable

267

Weird Languages1

Michael Mateas

Programming languages are often seen as a given an immutable logic within
which everyday coding practice takes place. Viewed in this light, a program-
ming language becomes a tool to be mastered, a means to an end. The practice
of writing obfuscated code (see Montfort in this volume) exploits the syntactic
and semantic play of a language to create code that, often humorously, com-
ments on the constructs provided by a specifi c language. But the constructs
and logics of languages are themselves contingent abstractions pulled into be-
ing out of the space of computational possibility, and enforced and maintained
by nothing more than programs, specifi cally the interpreters and compilers
that implement the languages.

In the fi eld of “weird” or “esoteric” languages,2 programmers explore and
exploit the play that is possible in programming language design. Weird pro-
gramming languages are not designed for any real- world application or normal
educational use; rather, they are intended to test the boundaries of program-
ming language design itself. A quality they share with obfuscated code is that
they often ironically comment on features of existing, traditional languages.

There are literally dozens, if not hundreds of weird languages, which com-
ment on many different aspects of language design, programming history, and
programming culture. A representative selection is considered here, with an
eye toward understanding what these languages have to tell us about program-
ming aesthetics.

Languages are considered in terms of four dimensions of analysis: (1) parody,
spoof, or explicit commentary on language features, (2) a tendency to reduce
the number of operations and strive toward computational minimalism, (3)
the use of structured play to explicitly encourage and support double- coding,
and (4) the goal of creating a puzzle, and of making programming diffi cult.
These dimensions are not mutually exclusive categories, nor are they meant to
be exhaustive. Any one weird language may be interesting in several of these
ways, though one particular dimension will often be of special interest.

INTERCAL is the canonical example of a language that parodies other
programming languages. It is also the fi rst weird language, and is highly re-
spected in the weird language community. It was designed in 1972 at Prince-
ton University by two students, Don Woods and James Lyon. (Later, while at

Weird Languages

268

 Stanford, Woods was the co- author of the fi rst interactive fi ction, Adventure.)
The explicit design goal of INTERCAL is

to have a compiler language which has nothing at all in common with any other major

language. By “major” we meant anything with which the author’s were at all familiar,

e.g., FORTRAN, BASIC, COBOL, ALGOL, SNOBOL, SPITBOL, FOCAL, SOLVE,

TEACH, APL, LISP and PL / I.3

INTERCAL borrows only variables, arrays, text input / output, and assign-
ment from other languages. All other statements, operators, and expressions
are unique (and uniquely weird). INTERCAL has no simple “if ” construction
for doing conditional branching, no loop constructions, and no basic math op-
erators—not even addition. Effects such as these must be achieved through
composition of non- standard and counterintuitive constructs. In this sense
 INTERCAL also has puzzle aspects.

However, despite the claim that this language has “nothing at all in com-
mon with any other major language,” INTERCAL clearly spoofs the features
of contemporaneous languages, combining multiple language styles together
to create an ungainly, unaesthetic style. From COBOL, INTERCAL borrows
verbose, English- like constructs, including optional syntax that increases the
verbosity; all statements can be prepended with PLEASE. Sample INTERCAL
statements in this COBOL style include FORGET, REMEMBER, ABSTAIN
and REINSTATE. From FORTRAN, INTERCAL borrows the use of optional
line numbers, which can appear in any order, and the DO construct, which in
FORTRAN is used to initiate loops. In INTERCAL, however, every statement
must begin with DO. Like APL, INTERCAL makes heavy use of single char-
acters with special meaning, requiring even simple programs to be liberally
sprinkled with non- alphanumeric characters. INTERCAL exaggerates the worst
features of many languages and combines them together into a single language.

Thirty- three years after its conception, INTERCAL still has a devoted fol-
lowing. Eric Raymond, the current maintainer of INTERCAL, revived the
language in 1990 with his implementation C- INTERCAL, which added the
COME FROM construct to the language—the inverse of the much- reviled
GO TO.

While parody languages comment on other programming languages, lan-
guages in the minimalist vein comment on the space of computation. Specifi -
cally, they call attention to the very small amount of structure needed to create

Weird Languages

269

a universal computational system. A “system” in this sense can be as varied
as a programming language, a formal mathematical system, or physical pro-
cesses, such as one embodied in a machine. Universal computation was discov-
ered by Alan Turing and described in his 1937 investigation of the limits of
computability, “On Computable Numbers.”4 A universal system can perform
any computation that it is theoretically possible to perform; such a system
can do anything that any other formal system is capable of doing, including
emulating any other system. This property is what allows one to implement
one language, such as Perl, in another language, such as C, or to implement
an interpreter or compiler for a language directly in hardware (using logic
gates), or to write a program that provides a virtual hardware platform for
other programs (as the Java Virtual Machine does). Universality in a program-
ming language is obviously a desired trait, as it means that the language places
no limits on the processes that can be specifi ed in the language.

Minimalist languages strive to achieve universality while providing the
smallest number of language constructs possible. Such languages often strive
for syntactic minimalism, making the textual representation of programs min-
imal as well. Minimal languages are sometimes called Turing Tarpits, after
epigram 54 in Alan Perlis’ Epigrams of Programming: “54. Beware the Tur-
ing tar- pit in which everything is possible but nothing of interest is easy.”5

Brainfuck is an archetypically minimalist language, providing merely eight
commands, each represented by a single character. These commands operate
on an array of 30,000 byte cells initialized to 0. The commands are:

> Increment the pointer (point to the memory cell to the right)

< Decrement the pointer (point to the memory cell to the left)

+ Increment the byte pointed to

– Decrement the byte pointed to

. Output the byte pointed to

, Accept a byte of input and write it into the byte pointed to

[Jump forward to the corresponding] if pointing to 0

] Jump back to the command after the corresponding [if pointing to a nonzero

value.

A Brainfuck program which prints out the string “Hello World,” follows.

+++++++++[>++++++>++++++++++>+++>+<<<<]>++.>+.+++++++..+++.>++.«+

++++++++++++++.>.+++.------.--------.>+.>.

Weird Languages

270

Some weird languages encourage double- coding by structuring the play
within the language such that valid programs can also be read as a literary ar-
tifact. Double- coding is certainly possible in languages such as C and Perl, and
in fact is an important skill in the practice of obfuscated programming. But
where C and Perl leave the space of play relatively unstructured, forcing the
programmer to shoulder the burden of establishing a double- coding, struc-
tured play languages, through their choice of keywords and their treatment
of programmer- defi ned names (i.e., variable names), support double coding
within a specifi c genre of human- readable textual production. The language
Shakespeare exemplifi es this structured play aspect.

Here is a fragment of a Shakespeare program that reads input and prints it
out in reverse order:

[Enter Othello and Lady Macbeth]

Othello:

You are nothing!

Scene II: Pushing to the very end.

Lady Macbeth:

Open your mind! Remember yourself.

Othello:

You are as hard as the sum of yourself and a stone wall. Am I as

horrid as a flirt- gill?

Lady Macbeth:

If not, let us return to scene II. Recall your imminent death!

Othello:

You are as small as the difference between yourself and a hair!

Shakespeare structures the play of the language so as to double- code all pro-
grams as stage plays, specifi cally, as spoofs on Shakespearean plays. This is
done primarily by structuring the play (that is, the free space) that standard
languages provide in the naming of variables and constants. In standard lan-

Weird Languages

271

guages, variable names are a free choice left to the programmer, while nu-
meric constants (e.g., 1) are either specifi ed by the textual representation of the
number, or through a name the programmer has given to specifi c constants.
In contrast, Shakespeare Dramatis Personae (variables) must be the name of a
character from a Shakespeare play, while constants are represented by nouns.
The two fundamental constants in Shakespeare are –1 and 1. The nouns recog-
nized by the Shakespeare compiler have been divided into positive, negative,
and neutral nouns. All positive (e.g., “lord,” “angel,” “joy”) and neutral (e.g.,
“brother,” “cow,” “hair”) nouns have the value 1. All negative nouns (e.g.,
“bastard,” “beggar,” “codpiece”) have the value –1. Constants other than –1
and 1 are created by prefi xing them with adjectives; each adjective multiplies
the value by 2. So “so sorry little codpiece” denotes the number –4.

The overall structure of Shakespeare follows that of a stageplay. Variables
are declared in the Dramatis Personae section. Named acts and scenes become
labeled locations for jumps; “let us return to scene II” is an example of a jump
to a labeled location. Enter and exit (and exeunt) are used to declare which
characters (variables) are active in a given scene; only two characters may be
on stage at a time. Statements are accomplished through dialog. By talking to
each other, characters set the values of their dialog partner and themselves,
compare values, execute jumps, and so forth.

In a programming language, keywords are words that have special meaning
for the language, indicating commands or constructs, and thus can’t be used
as names by the programmer. An example from C is the keyword “for,” used
to perform iteration; “for” cannot be used by the programmer as the name of a
variable or function. In standard languages, keywords typically limit or bound
play, as the keywords are generally not selected by language designers to facili-
tate double- coding. This is, in fact, what makes code poetry challenging; the
code poet must hijack the language keywords in the service of double- coding.
In contrast, weird languages that structure play provide keywords to facilitate
the double- coding that is generally encouraged by the language.

Another language, Chef, illustrates different design decisions for structur-
ing play. Chef facilitates double- coding programs as recipes. Variables are de-
clared in an ingredients list, with amounts indicating the initial value (e.g.,
6 oz. of red salmon). The type of measurement determines whether an ingredient
is wet or dry; wet ingredients are output as characters, dry ingredients are out-
put as numbers. Two types of memory are provided—mixing bowls and bak-
ing dishes. Mixing bowls hold ingredients that are still being manipulated,

Weird Languages

272

while baking dishes hold collections of ingredients to output. What makes
Chef particularly interesting is that all operations have a sensible interpretation
as a step in a food recipe. Where Shakespeare programs parody Shakespearean
plays, and often contain dialog that doesn’t work as dialog in a play (“you are
as hard as the sum of yourself and a stone wall”), it is possible to write programs
in Chef that might reasonably be carried out as a recipe. Thus, in some sense,
Chef structures play to establish a triple- coding: the executable machine mean-
ing of the code, the human meaning of the code as a literary artifact, and the
executable human meaning of the code as steps that can be carried out to pro-
duce food.

A number of languages structuring play have been based on other weird lan-
guages. Brainfuck is particularly popular in this regard, spawning languages
such as FuckFuck (operators are replaced with curse words) and Cow (all in-
structions are the word “moo” with various capitalizations).

Languages that have a puzzle aspect explicitly seek to make programming
diffi cult by providing unusual, counterintuitive control constructs and opera-
tors. While INTERCAL certainly has puzzle aspects, its dominant feature is its
parody of 1960s language design. Malbolge, named after the eighth circle of hell
in Dante’s Inferno, is a much more striking example of a puzzle language. Where
INTERCAL sought to merely have no features in common with any other lan-
guage. Malbolge had a different motivation, as author Ben Olmstead writes:

It was noticed that, in the fi eld of esoteric programming languages, there was a par-

ticular and surprising void: no programming language known to the author was spe-

cifi cally designed to be diffi cult to program in . . .

 Hence the author created Malbolge. . . . It was designed to be diffi cult to use, and

so it is. It is designed to be incomprehensible, and so it is. So far, no Malbolge pro-

grams have been written. Thus, we cannot give an example.6

Malbolge was designed in 1998. It was not until 2000 that Andrew Cooke, us-
ing AI search techniques, succeeded in generating the fi rst Malbolge program,
the “hello, world!” program—actually, it prints “HEllO WORld”—that
follows:

(=<`$9]7<5YXz7wT.3,+O / o’K%$H”’~D|#z@b=`{^Lx8%$Xmr kpohm-

 kNi;gsedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA

@?>=<;:9876543s+O<oLm

Weird Languages

273

The writing of more complex Malbolge programs was enabled by Lou Schef-
fer’s cryptanalysis of Malbolge in which he discovered “weaknesses” that the
programmer can systematically exploit:

The correct way to think about Malbolge, I’m convinced, is as a cryptographer and not

a programmer. Think of it as a complex code and / or algorithm that transforms input

to output. Then study it to see if you can take advantage of its weaknesses to forge a

message that produced the output you want.7

His analysis proved that the language allowed for universal computation. The
“practical” result was the production of a Brainfuck to Malbolge compiler.

What makes Malbolge so diffi cult? Like many minimalist languages, Mal-
bolge is a machine language written for a fi ctitious and feature- poor machine,
and thus gains some diffi culty of writing and signifi cant diffi culty of reading
from the small amount of play provided to the programmer for expressing hu-
man, textual meanings. However, as Olmstead points out, the mere diffi culty
of machine language is not enough to produce a truly devilish language. The
machine model upon which Malbolge runs has the following features that con-
tribute to the diffi culty of the language: a trinary, rather than binary, machine
model, minimalism, counterintuitive operations, indirect instruction coding
(the meaning of a program symbol depends on where it sits in memory), and
mandatory self- modifying code (code mutates as it executes, so it never does
the same thing twice). These factors account for the two years that passed be-
fore the fi rst Malbolge “hello, world” program appeared.

By commenting on the nature of programming itself, weird languages
point the way toward a refi ned understanding of the nature of everyday coding
practice. In their parody aspect, weird languages comment on how different
language constructions infl uence programming style, as well as on the history
of programming language design. In their minimalist aspect, weird languages
comment on the nature of computation and the vast variety of structures ca-
pable of universal computation. In their puzzle aspect, weird languages com-
ment on the inherent cognitive diffi culty of constructing effective programs.
And in their structured play aspect, weird languages comment on the nature
of double- coding, how it is that programs can simultaneously mean something
for both the machine and for human readers.

All of these aspects are seen in everyday programming practice. Program-
mers are extremely conscious of language style, of coding idioms that not only

Weird Languages

274

“get the job done” but do it in a way that is particularly appropriate for that
language. Programmers actively structure the space of computation for solv-
ing specifi c problems, ranging from implementing sub- universal abstractions
such as fi nite- state machines for solving problems such as string searching, up
to writing interpreters and compilers for custom languages tailored to specifi c
problem domains, such as Perl for string manipulation. All coding inevitably
involves double- coding. “Good” code simultaneously specifi es a mechanical
process and talks about this mechanical process to a human reader. Finally, the
 puzzle- like nature of coding manifests not only because of the problem solving
necessary to specify processes, but because code must additionally, and simul-
taneously, make appropriate use of language styles and idioms, and structure
the space of computation. Weird languages thus tease apart phenomena pres-
ent in all coding activity, phenomena that must be accounted for by any theory
of code.

Notes

1. Parts of this article are based on a paper (“A Box Darkly: Obfuscation, Weird Lan-

guages and Code Aesthetics”) that Nick Montfort and I presented at Digital Arts and

Culture 2005.

2. “Esoteric” is a more common term for these languages, but it is a term that could

apply to programming languages overall (most people do not know how to program

in any language) or to languages such as ML and Prolog, which are common in aca-

demia but infrequently used in industry. A better designation might be art languages.

However, while such languages are undoubtedly a category of software art, developers

of these languages do not use this term themselves, and it seems unfair to apply the

term “art,” with all of its connotations, to their work. The term “weird” better captures

the intention behind these languages, and is used at times by the language designers

themselves.

3. Donald Woods and James Lyon, The INTERCAL Programming Language Revised Ref-

erence Manual. 1st ed. (1973). C- INTERCAL revisions, L. Howell and E. Raymond,

(1996).

4. Alan M. Turing, “On Computable Numbers, with an Application to the Ent-

scheidungsproblem. A Correction,” from Proceedings of the London Mathematical Society,

Ser. 2, Vol. 43, 1937.

Weird Languages

275

5. Alan Perlis, “Epigrams on Programming.”

6. Ben Olmstead, Malbolge, available at http: // www.antwon.com / other / malbolge /

malbolge.txt 1998 / .

7. Lou Scheffer, Introduction to Malbolge, available at http: // www.lscheffer.com /

malbolge.html / .

Weird Languages

Bibliography

0100101110101101.org. Life_Sharing, 2000– 2003. Available http: // www

.0100101110101101.org / home / life_sharing / (accessed March 20, 2006).

Abbate, Janet. Inventing the Internet. Cambridge, MA: The MIT Press, 2000.

Abendsen, Hawthorne, The Grasshopper Lies Heavy.(n.d.).

Abigail. “JAPHs and Other Obscure Signatures,” presentation slides, 2000– 2001.

Available at http: // www.foad.org / %7Eabigail / Perl / Talks / Japhs / .

Abelson, Harold, and Gerald Jay Sussman with Julie Sussman. Structure and Interpreta-

tion of Computer Programs, 2nd ed. Cambridge, MA; The MIT Press, 1996.

Abram, David. The Spell of the Sensuous. New York: Vintage Books, 1996.

Agre, Philip. Computation and Human Experience. Cambridge: Cambridge University

Press, 1997.

Aho, Alfred V., Jeffrey D. Ullman, and John E. Hopcroft. Data Structures and Algo-

rithms. Boston, MA: Addison- Wesley, 1983.

Alexander, Christopher, et al. A Pattern Language: Towns, Buildings, Construction. New

York: Oxford University Press, 1977.

278

Bibliography

Anderson, David P. BOINC: A System for Public- Resource Computing and Storage,”

5th IEEE / ACM International Workshop on Grid Computing, Pittsburgh, PA (No-

vember 8, 2004). See also http: // boinc.berkeley.edu / .

Apple Computer, Apple Human Interface Guidelines, Apple Computer Inc., Cu-

pertino, CA (2006). Retrieved March 20, 2006 from http: // developer.apple.com /

documentation / UserExperience / Conceptual / OSXHIGuidelines / .

Aristotle. On Memory and Reminiscence. Translated by J. I. Beare. eBooks@Adelaide,

The University of Adelaide Library, Adelaide, 2004. Available at http: // etext.library

.adelaide.edu.au / a / aristotle / memory / memory.zip / .

Artifi cial Paradises. Available at http: // www.1010.co.uk / ap0202.html / .

Ashby, W. Ross. Introduction to Cybernetics, 2nd ed. London: Chapman and Hall, 1957.

Ascher, Marcia and Robert Ascher. Code of the Quipu: A Study in Media, Mathematics, and

Culture. Ann Arbor: University of Michigan Press, 1980.

Atkinson, Richard, and Richard Shiffrin. “Human Memory: A Proposed System and

Its Control Processes.” In K. W. Spence and J. T. Spence, eds., The Psychology of Learn-

ing and Motivation: Advances in Research and Theory, Volume 2. New York: Academic

Press, 1968.

Auden, W. H. The Dyers Hand. London: Faber, 1955.

Austin, John. How to Do Things with Words, edited by J. O. Urmson. Oxford: Claren-

don Press, 1962.

Axelrod, Robert. Structure of Decision. Princeton: Princeton University Press, 1976.

Ayers, Douglas D., and Mubarak Shah, “Monitoring Human Behavior from Video

Taken in an Offi ce Environment,” Image and Vision Computing, vol. 19, issue 12, 1

(2001), 833–846.

Babbage, Charles. The Ninth Bridgewater Treatise, 2nd ed. London: John Murray,

1838.

Francis Bacon, The Advancement of Learning, Second Book. Available at Renascence Edi-

tions, an online repository of works printed in English between the years 1477 and

1799, University of Oregon, http: // darkwing.uoregon.edu / ~rbear / adv2.htm / .

279

Bibliography

Balibar, Etienne, “Ambiguous Universality,” Differences: A Journal of Feminist Cultural

Studies 7(1)(1995), 48–74.

Barnsley, Michael. Fractals Everywhere: The First Course in Deterministic Fractal Geometry.

New York: Academic Press, 1988.

“Barszcz.” Available at http: // www.barszcz.net / .

Basel Action Network. Available at http: // www.ban.org / .

Bataille, Georges, Isabelle Woldberg, and Lain White. Encyclopaedia Acephalica. Lon-

don: Atlas Press, 1995.

Bateson, Gregory. Steps to an Ecology of Mind. New York: Ballantine Books, 1972.

Beer, Stafford. Brain of the Firm, 2nd ed. Chichester, UK: John Wiley & Sons,

1981.

Béguin, P., and P. Rabardel. “Designing for Instrument Mediated Activity,” Scan-

dinavian Journal of Information Systems 12, 2000, 173–193. Available at http: // www

.daimi.au.dk / ~olavb / sjis12 / 7- PB_p173- 190.PDF (accessed April 23, 2006).

Bellantoni, Jeff, and Matt Woolman. Type in Motion: Innovations in Digital Graphics.

London: Thames and Hudson, 2000.

Benjamin, Walter. Illuminations. Essays and Refl ections. Edited and with an Introduction

by Hannah Arendt. New York: Shocken, 1969.

Bergson, Henri. Creative Evolution. Translated by Arthur Mitchell. London: MacMil-

lan, 1911.

Bergson, Henri. Time and Free Will: An Essay on the Immediate Data of Consciousness.

Translated by F. L. Pogson. New York: Harper & Brothers, 1960.

Berman, Marshall. All That Is Solid Melts Into Air: The Experience of Modernity. London:

Verso, 1999.

Bertelsen, Olav W., and Søren Pold. “Criticism as an Approach to Interface Aesthet-

ics.” In Proceedings of the third Nordic conference on Human- Computer Interaction, Tampere,

Finland, ACM Press, 2004.

280

Bibliography

Bertin, Jacques. Graphics and Graphic Information Processing. Berlin and New York:

Walter de Gruyter, 1981.

Bijker, Wiebe E., Thomas P. Hughes, and Trevor Pinch, eds. The Social Construction of

Technological Systems: New Directions in the Sociology and History of Technology. Cambridge,

MA: The MIT Press, 1987.

Bilotta, Eleonora, Pietro Pantano, and Valerio Talarico. “Synthetic Harmonies: An

Approach to Musical Semiosis by Means of Cellular Automata.” In Bedau, Mark A.

et al. eds., Artifi cial Life VII Proceedings of the Seventh International Conference on Artifi cial

Life. Cambridge, MA: The MIT Press, 2000.

Black, Maurice J. The Art of Code. Ph.D. Dissertation, University of Pennsylvania,

2002.

Blackmore, Susan. The Meme Machine. Oxford: Oxford University Press, 2000.

Blum, B. I. “Free- Text Inputs to Utility Routines,” Communications of the ACM, vol. 9,

issue 7 (July 1966).

Bolter, J. David, and Richard Grusin. Remediation: Understanding New Media. Cam-

bridge, MA: The MIT Press, 1999.

Bolter, J. David. Turing’s Man. Chapel Hill, NC: University of North California Press,

1984.

Bolton, William, Microprocessor Systems. Harlow, UK: Longman Pearson Education,

2000.

Booch, Grady. Object- Oriented Analysis and Design, with Applications. 2nd ed. Redwood

City, CA: Benjamin / Cummings, 1994.

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel. Sebastopol, CA:

O’Reilly, 2001.

Bowker, Geoffrey C., and Star, Susan L. Sorting Things Out: Classifi cation and Its Conse-

quences. Cambridge, MA: The MIT Press, 1999.

Brand, Stuart. The Media Lab. London: Penguin, 1987.

281

Bibliography

Brassier, Ray. “Liquider l’homme une fois pour toutes.” In Gilles Grélet, ed., Théorie—

rébellion. Paris: L’harmattan, 2005.

Brodie, Leo. Thinking Forth. Englewood Cliffs, NJ: Prentice- Hall, 1984.

Brooks, Rodney. “Intelligence Without Representation,” Artifi cial Intelligence Jour-

nal (47) (1991), 139–159. Available at http: // people.csail.mit.edu / brooks / papers /

representation.pdf / .

Brookshear, J. Glenn. Computer Science. Redwood City, CA: Benjamin / Cummings, 1994.

Brown, Julian. Minds, Machines, and the Multiverse. New York: Simon & Schuster,

2000.

Bruhn, Henning. “Periodical States and Marching Groups in a Closed Owari.” 2005,

preprint, available at http: // www.rpi.edu / ~eglash / isgem.dir / texts.dir / clowari.pdf / .

Burroughs, William S. “The Discipline of DE” In Exterminator! London: Corgi Books,

1976.

Burroughs, William S. The Electronic Revolution. Bonn: Expanded Media Edition, 1991.

Camara, Gilberto. “Open Source Software Production: Fact and Fiction.” In MUTE,

vol. 1, issue 27 (Winter / Spring 2004), 74–79.

Campbell- Kelly, Martin. From Airline Reservations to Sonic the Hedgehog: A History of the

Software Industry. Cambridge, MA: The MIT Press, 2004.

Campbell, Lewis, and William Garnet. Life of James Clerk Maxwell. London: Macmil-

lan, 1882.

Canonical Ltd., The Ubuntu Manifesto, available at: http: // www.ubuntu.com.

Card, Stuart, Jock Mackinlay, and Ben Schneiderman, eds. Readings in Information Visu-

alization: Using Vision to Think. San Francisco: Morgan Kaufmann, 1999.

Ceruzzi, Paul E. A History of Modern Computing. Cambridge, MA: The MIT Press, 1998.

Chaitin, Gregory, “Elegant LISP Programs.” In Cristian Calude, ed., People and Ideas

in Theoretical Computer Science. Singapore: Springer Verlag, 1998.

282

Bibliography

Chaitin, Gregory. “Epistemology as Information Theory: From Leibniz to Omega.”

Alan Turing Lecture on Computation and Philosophy, E- CAP’05, European Computing and

Philosophy Conference, Malarden University, Vasterås, Sweden, June 2005.

Chaitin, Gregory, Meta Maths. The Quest for Omega. London: Atlantic Books, 2006.

Chen, Chaomei. Information Visualisation, 2nd ed. Heidelberg: Springer, 2004.

Chiu, Eugene, Jocelyn Lin, Brok McFerron, Noshirwan Petigara, and Satwiksai Sesha-

sai. “The Mathematical Theory of Claude Shannon: A Study of the Style and Context

of His Work up to the Genesis of Information Theory,” submitted for The Structure of

Engineering Revolutions (MIT course 6.933J / STS.420J), n.d.

Chun, Wendy Hui Kyung. “On Software, or the Persistence of Visual Knowledge,”

Grey Room 18 (Winter 2005), 26- 51.

Chun, Wendy Hui Kyung. Control and Freedom. Cambridge, MA: The MIT Press,

2006.

Chun, Wendy Hui Kyung, and Thomas Keenan, eds. New Media, Old Media. New

York: Routledge, 2005.

Clark, Andy. Being There: Putting Brain, Body, and World Together Again. Cambridge,

MA: The MIT Press, 1997.

Clown Staples. Available at http: // www.geocities.com / clownstaples / .

Codase available at http: // www.codase.com / .

Codefetch, available at http: // www.codefetch.com / .

Code Snippets available at http: // bigbold.com / snippets / .

Coleman, Biella. “The Politics of Survival and Prestige: Hacker Identity and the

Global Production of an Operating System.” Masters Thesis, University of Chicago,

1999. Available at http: // healthhacker.org / biella / masterslongversion.html.

Colemann, Biella. “High- Tech Guilds in the Era of Global Capital.” Available at http: //

www.healthhacker.org / biella / aaapaper.html, undated.

283

Bibliography

Computer-Human Interaction in Southern Africa. CHI-SA, 2006. Cape Town, South Af-

rica, ACM Press, 2006, 69–74.

Conley, Craig. Magic Words: A Dictonary. Available at http: // www.blueray.com / magic /

magicwords / index.php?p=177 / .

Constant. Cuisine Interne Keuken, 2004. Available at http: // www.constantvzw.com /

cn_core / cuisine / .

Cood, E. F. Cellular Automata. London: Academic Press, 1968.

Coplien, James O. “To Iterate is Human, to Recurse, Divine” C++ Report 10(7), July

August (1998), 43– 51.

Cotton, C. M. Ethnobotany: Principles and Applications. New York: John Wiley & Sons,

1996.

Cox, Geoff, Alex McLean, and Adrian Ward. “The Aesthetics of Generative Code,”

Generative Art 00 conference, Politecnico di Milano, Italy, 2001. Available at http: //

www.generative.net / papers / aesthetics / index.html / .

Cox, Geoff. “Software Actions.” In Joasia Krysa, ed., Curating Immateriality: DATA

Browser 03. New York: Autonomedia, 2006.

Coy, Wolfgang. Aufbau und Arbeitsweise von Rechenanlagen: Eine Einführung in Rechner-

architektur und Rechnerorganisation für das Grundstudium der Informatik, 2nd revised and

expanded edition. Wiesbaden: Braunschweig, 1992.

Coyne, Richard. “Heidegger and Virtual Reality: The Implications of Heidegger’s

Thinking for Computer Representations.” In Leonardo: Journal of the International Society

for the Arts, Sciences, and Technology vol. 27 no. 1, (1994), 65– 73.

Cramer, Florian. “and.pl.” Available at http: // cramer.plaintext.cc:70 / poems / and / .

Cramer, Florian. “Commentary on London.pl.” Runme software art repository, available

at http: // www.runme.org / feature / read / +londonpl / +34 / .

Cramer, Florian. “Concepts, Notations, Software, Art” (2002). Available at http: //

userpage.fu- berlin.de / ~cantsin / homepage / writings / software_art / concept_notations /

 concepts_notations_software_art.html.

284

Bibliography

Cramer, Florian. “Ten Theses About Software Art” (2003). Available at http: // cramer

.plaintext.cc:70 / all / 10_thesen_zur_softwarekunst / .

Crawford, Chris. The Art of Computer Game Design. Berkeley: McGraw- Hill / Osborne,

1984.

Crowston, Kevin, and James Howison. “The Social Structure of Open Source Software

Development Teams” (2003). Available at http: // crowston.syr.edu / papers / icis2003sna

.pdf / .

Crutzen, Cecile. “Giving Room to Femininity in Informatics Education.” In A. F.

Grundy, D. Köhler, V. Oechtering, and U. Petersen, eds., Women, Work and Computer-

ization: Spinning a Web from Past to Future. Berlin: Springer- Verlag, 1997, 177– 187.

Crutzen, Cecile. and Jack F. Gerrissen. “Doubting the OBJECT World.” In Ellen

Balka and Richard Smith, eds., Women, Work and Computerization: Charting a Course to

the Future. Boston: Kluwer Academic Press, 2000, 127–136.

Crutzen, Cecile. Interactie, een wereld van verschillen. Een visie op informatica vanuit gender-

studies (2000). Thesis, Open Universiteit Nederland, Heerlen.

Dahl, Ole- Johan. The Birth of Object Orientation: The Simula Languages, 2001. Available

at http: // heim.ifi .uio.no / ~olejohan / birth- of- oo.pdf (accessed April 24, 2006).

Darwin, Charles. The Origin of Species. London: Murray, 1859.

Davis, Alan M. Software Requirements: Objects, Functions and States. Englewood Cliffs, NJ:

Prentice Hall, 1993.

Dawkins, Richard. The Blind Watchmaker. London: Penguin, 1986.

De Landa, Manuel. War in the Age of Intelligent Machines. New York: Swerve Editions,

1991.

Deleuze, Gilles. Foucault. Paris: Minnit, 1986.

Deleuze, Gilles, and Félix Guattari. A Thousand Plateaus, 2nd ed. Translated by Brian

Massumi. London: Continuum, 2004.

285

Bibliography

Deleuze, Gilles, and Fé1ix Guattari. Anti- Oedipus, 2nd ed. Translated by Robert Hur-

ley, Mark Seem, and Helen R. Lane. London: Continuum, 2004.

Deleuze, Gilles. The Fold. Translated by Tom Conley. London: Continuum, 2006.

Dennett, Daniel. Consciousness Explained. London: Penguin, 2004.

Derrida, Jacques. Of Grammatology. Baltimore and London: Johns Hopkins University

Press, 1976.

Derrida, Jacques. “Freud and the Scene of Writing.” In Writing and Difference. Trans-

lated by Alan Bass., Chicago: University of Chicago Press, 1978.

Derrida, Jacques. Dissemination. Translated by Barbara Johnson. Chicago: University

of Chicago Press, 1981.

Dever, Jaime, Niels da Vitoria Lobo, and Mubarak Shah. “Automatic Visual Recogni-

tion of Armed Robbery,” IEEE International Conference on Pattern Recognition, Canada,

(2002), 451–455.

Dibbell, Julian. “Viruses Are Good For You.” In Wendy Hui Kyong Chun and Thomas

Keenan, eds., New Media, Old Media. London: Routledge, 2005, 219–232.

Dick, Philip K. The Man in the High Castle. New York: Putnam, 1962.

Digitalcraft, ‘Obfuscated Code,’ available at http: // www.digitalcraft.org / iloveyou /

 c- code.html.

Dijkstra, Edsger, W. “Go To Statement Considered Harmful,” Communications of the

ACM, vol. 11, no. 3 (1968), 147–148.

Dijkstra, Edsger W. “My recollections of operating system design” (2000–2001). Hand-

written memoir, pp. 13–14, available as an electronic document, EWD1303, from the

Dijkstra archives: http: // www.cs.utexas.edu / users / EWD / transcriptions / EWD13xx /

EWD1303.html and http: // www.cs.utexas.edu / users / EWD / ewd13xx / EWD1303.PDF / .

Dominus, Mark- Jason. “Explanation of japh.pl” (October 31, 2000). Available at http: //

perl.plover.com / obfuscated / solution.html / .

286

Bibliography

Eberbach, Eugene, Dina Goldin, and Peter Wegner. “Turing’s Ideas and Models

of Computation.” In Christof Teuscher, ed., Alan Turing: Life and Legacy of a Great

Thinker. Berlin: Springer, 2004.

Eco, Umberto. “La bustina di Minerva,” Espresso (September 30, 1994). Translation avail-

able at http: // www.themodernword.com / eco_mac_vs_pc.html / (accessed March 27,

2006).

Eco, Umberto. Semiotics and the Philosophy of Language. Bloomington: Indiana Univer-

sity Press, 1983.

Edwards, Paul. The Closed World: Computers and the Politics of Discourse in Cold War

America. Cambridge, MA: The MIT Press, 1996.

Edwards, Paul. “The Army and the Microworld: Computers and the Politics of Gender

Identity,” Signs 18:1 (1990).

Eglash, Ron. “Culturally Situated Design Tools.” Available at: http: // www.rpi.edu /

~eglash / csdt.html / .

Eglash, Ron. “Geometric Algorithms in Mangbetu Design.” In Mathematics Teacher,

v. 91 n. 5 (May 1998), 376– 381.

Eglash, Ron. African Fractals: Modern Computing and Indigenous Design. New Brunswick,

NJ: Rutgers University Press, 1999.

Eglash, Ron, and J. Bleecker. “The Race for Cyberspace: Information Technology in

the Black Diaspora,” Science as Culture, vol. 10, no. 3 (2001).

Eglash, Ron, Jennifer L. Croissant, Giovanna Di Chiro, and Rayvon Fouche, eds. Ap-

propriating Technology: Vernacular Science and Social Power. Minneapolis: University of

Minnesota Press, 2004.

Emerson, Ralph Waldo. “The Poet.” In Essays: Second Series, 1866.

Engelbart, Douglas. “Augmenting Human Intellect: A Conceptual Framework.” Sum-

mary Report for SRI Project No. 3578, Stanford Research Institute, Stanford, CA (1962).

Available at http: // www.bootstrap.org / augdocs / friedewald030402 / augmentinghuman

intellect / 3examples.html#A.3 (accessed on April 9, 2006).

287

Bibliography

Eshun, Kodwo. “An Unidentifi ed Audio Event Arrives from the Post- Computer Age.”

In Jem Finer, ed., Longplayer. London: Artangel, 2001.

Eriksson, Inger V., Barbara A. Kitchenham, and Kea G. Tijdens. Women, Work and

Computerization: Understanding and Overcoming Bias in Work and Education. Amsterdam:

Elsevier Science Publishers, 1991.

“Facsimile & SSTV History.” Available at http: // www.hffax.de / html / hauptteil_fax

history.htm.

Fensel, Dieter, James Hendler, Henry Lieberman, and Wolfgang Wahlster. Spinning

the Semantic Web. Cambridge, MA: The MIT Press, 2003.

ffmpeg, FFMPEG Multimedia System. Available at http: // ffmpeg.sourceforge.net /

index.php / (accessed Feb 4, 2006).

Fiell, Charlotte, and Peter Fiell, eds. Graphic Design for the 21st Century: 100 of the

World’s Best Graphic Designers. Cologne: Taschen, 2003.

Fisher, R. A. “Theory of Statistical Estimation,” Proceedings of the Cambridge Philosophi-

cal Society, vol. XXII, no. 709 (1925).

Fleischmann, Kenneth R. “Exploring the Design- Use Interface: The Agency of Bound-

ary Objects in Educational Technology,” Doctoral dissertation, dept of STS, Rensselaer

Polytechnic Institute, 2004.

Flusser, Vilém. “Curie’s Children: Vilém Flusser on an Unspeakable Future,” Artforum

(March 1990).

Foucault, Michel. The Order of Things. London and New York: Routledge, 1980.

Foucault, Michel. The Archaeology of Knowledge. Translated by Alan Sheridan Smith.

London: Routledge, 1989.

Freshmeat. Available at http: // freshmeat.net /.

Fuller, Matthew. Behind the Blip: Essays on the Culture of Software. New York: Autono-

media, 2003.

288

Bibliography

Fuller, Matthew. Media Ecologies: Materialist Energies in Art and Technoculture. Cam-

bridge, MA: The MIT Press, 2005.

Fuller, Matthew. “It Looks Like You’re Writing a Letter,” Telepolis (March 7, 2001).

Available at http: // www.heise.de / tp / r4 / artikel / 7 / 7073 / 1.html / (last accessed March 29,

2006).

Fuller, Matthew. Softness, Interrogability, General Intellect, Art Methodologies in Software.

Digital Research Unit, Huddersfi eld University, Huddersfi eld, 2006.

Gabor, Dennis. “Acoustical Quanta and the Theory of Hearing,” Nature 159(4044)

(1947), 591– 594.

Gardner, Howard. The Mind’s New Science: A History of the Cognitive Revolution. New

York: Basic Books, 1985.

Gass, William. The World Within the Word. New York: Knopf, 1978.

Gaver, W. W. “What in the World Do We Hear?: An Ecological Approach to Audi-

tory Event Perception,” Ecological Psychology, 5(1) (1993), 1–29.

Gay Joshua. Free Software, Free Society: Selected Essay of Richard M. Stallman. Boston, MA:

GNU Press, Free Software Foundation, 2002.

Geus, Aart J. de. “To the rescue of Moore’s Law,” keynote address, 20th Annual Custom

Integrated Circuits Conference, Santa Clara, CA, May 11- 14, 2000.

Ghosh, Rishab Aiyer. “Clustering and Dependencies in Free / Open Source Software

Development: Methodology and Tools,” First Monday, 8(4) (April 2003).

Gilder, George. “The Information Factories,” Wired vol. 16, no 10. pp. 178– 202, Oct.

2006.

Ginzburg, Carlo. “Clues: Morelli, Freud, Sherlock Holmes.” In Umberto Eco and

Thomas Sebeok, eds., The Sign of Three. Bloomington: Indiana University Press, 1983.

Girard, Réné. Mensonge et vérité romanesque. Paris: Hachette, 1999.

Goldschlager, Les, and Andrew Lister. Computer Science: A Modern Introduction, 2nd ed.

Hemel Hempstead: Prentice- Hall, 1988.

289

Bibliography

Goldstine, H. H., and A. Goldstine. “The Electronic Numerical Integrator and Com-

puter (ENIAC),” IEEE Annals of the History of Computing, 18:1 (Spring 1996), 10– 15.

Goodman, Nelson. Languages of Art, an approach to a theory of Symbols, Indianapolis:

Hackett Publishing Company, 1976.

Goriunova, Olga and Alexei Shulgin eds. Read Me 1.2 Festival, catalogue, Moscow

2002. Also online at http: // www.macros- center.ru / read_me / .

Goriunova, Olga and Alexei Shulgin eds. Read Me 2.3 Reader, about software art. Nordic

Institute for Contemporary Art, Helsinki, 2003.

Goriunova, Olga and Alexei Shulgin eds. Read_Me, Software Art and Cultures, edition

2004. Århus: University of Århus Press, 2004.

Graham, Stephen, and Simon Marvin. Telecommunications and the City: Electronic Spaces,

Urban Places. London: Routledge, 1996.

Brassier, Ray. “Liquider l’homme une fois pour toutes.” In Gilles Grélet, ed., Théorie—

rébellion. Paris: L’harmattan, 2005.

Grassmuck, Volker. “Das Ende der Universalmaschine.” In Claus Pias, ed., Zukünfte des

Computers. Zürich- Berlin: Diaphanes, 2005.

Greenpeace, Green My Apple Campaign. Available at http: // www.greenmyapple.org /.

Grier, David. When Computers Were Human. Princeton, NJ: Princeton University Press,

2005.

Grier, David. “The ENIAC, the Verb ‘to program’ and the Emergence of Digital Com-

puters,” IEEE Annals of the History of Computing 18:1 (Spring 1996).

Grune, Dick. Concurrent Versions System. Amsterdam: Vrije Universiteit. Available at

http: // www.cs.vu.nl / ~dick / CVS.html#History / .

Gumbrecht, Hans Ulrich and K. Ludwig Pfeiffer, eds., Materialities of Communication.

Translated by William Whobrey, Stanford, CA: Stanford University Press, 1994.

Habermas, Jürgen. “Modernity—An Incomplete Project” (1980). In Hal Foster, ed.,

Postmodern Culture. London: Pluto Press, 1991.

290

Bibliography

Hacker, Sally L. Doing it the Hard Way.

Hackitectura. MAPA: Cartografi ando el territorio madiaq (2004). Available at http: // mcs.

hackitectura.net / tiki- index.php?page=MAPA%3A+cartografi ando+el+territorio+ma

diaq (accessed March 14, 2006).

Hagen, Wolfgang. “The Style of Source Codes.” In Wendy Hui Kyong Chun and

Thomas Keenan, eds., New Media, Old Media. New York: Routledge, 2005.

Hall, Fred L. McMaster Algorithm (2000). Available at http: // www.mcmaster.ca /

graduate / fl hall / macalg.html (accessed March 14, 2006).

Hankins Thomas and Robert Silverman. Instruments and the Imagination. Princeton:

Princeton University Press, 1995.

Hansen, H. R. and W. H. Janko, eds. Dikussionspapiere zum Tatigkeitsfeld Informations

verarbeitung unde Informationswirtschaft.

Haraway, Donna. Lecture, UCSC, 1992.

Hardwick, M. Martin, David L. Spooner, Tom Rando, and K.C. Morris. “Sharing

Manufacturing Information in Virtual Enterprises,” Communications of the ACM, vol.

39, no. 2 (February 1996).

Hardy, Norman. “History of Interrupts” (2005). Available at http: // www.cap- lore

.com / Hardware / int.html / (accessed March 14, 2006).

Harman, Graham. Tool- Being.

Hartley, V. L. “Transmission of Information,” Bell System Technical Journal, vol. VII,

no. 540 (July 1928).

Harwood, Graham. Lungs: Slave Labour. 2005. Permanent collection, ZKM, Karlsruhe,

Germany. Available at http: // www.mongrel.org.uk / lungs / .

Hashagen, Ull and Rául Rojas, eds., The First Computers: History and Architecture. Cam-

bridge, MA: The MIT Press, 2000.

Havelock, Eric. “The Preliteracy of the Greeks,” New Literary History, vol. 8, no. 3

(1977), 369–91.

291

Bibliography

Haykin, Simon. Neural Networks. A Comprehensive Foundation. Hemel Hempstead:

 Prentice- Hall, 1998.

Hayles, N. Katherine. My Mother Was a Computer. Chicago: The University of Chicago

Press, 2006.

Hayles, N. Katherine. Writing Machines. Cambridge, MA: The MIT Press, 2002.

Hazlitt, William. The Spirit of the Age (1825). Project Gutenburg, available at http: //

www.gutenberg.org / etext / 11068 / .

Heath, Christian, and Paul Luff. Technology in Action. Cambridge: Cambridge Univer-

sity Press, 2000.

Heidegger, Martin. Die Technik and die Kehre. Stuttgart: Günther Neske, 1962.

Heilbron, J. H. Electricity in the 17th and 18th Centuries. Berkeley: University of Cali-

fornia Press, 1979.

Heims, Steve. The Cybernetics Group. New York: Basic Books, 1980.

Herken, Rolf, ed. The Universal Turing Machine: A Half- Century Survey. Oxford: Oxford

University Press, 1988.

Hertzfeld, Andy. Revolution in The Valley. Sebastapol, CA: O’Reilly, 2004.

Hillis, W. Daniel. The Pattern on the Stone. London: Phoenix, 2001.

Hiltzik, Michael. Dealers of Lightning, Xerox PARC and the Dawn of the Computer Age.

New York: HarperBusiness, 1999.

Hodges, Andrew, and Alan Turing. The Enigma of Intelligence. London: Unwin, 1985.

Hopkins, Sharon. “Camels and Needles: Computer Poetry Meets the Perl Program-

ming Language.” In The Perl Review, Vol. 0, Issue 1 (1991). Available at http: // www

.theperlreview.com / Issues / The_Perl_Review_0_1.pdf / .

Hull, Richard. “Governing the Conduct of Computing: Computer Science, the Social

Sciences and Frameworks of Computing.” Accounting, Management & Information Tech-

nology, 7 (4) (1997), 213–240.

292

Bibliography

Hutchins, Ed. Cognition in the Wild. Cambridge, MA: The MIT Press, 1995.

Huws, Ursula. The Making of a Cybertariat: Virtual Work in a Real World. London:

Merlin, 2003.

Hyde, Randall. “Interrupts and Polled I / O.” In The Art of Assembly Language Pro-

gramming. San Francisco: No Starch Press, 2003. Available at http: // courses.ece.uiuc

.edu / ece390 / books / artofasm / CH03 / CH03- 6.html#HEADING6- 15 (accessed March

14, 2006).

Innis, Harold A. Empire and Communications, 2nd ed. Toronto: University of Toronto

Press, 1972.

Introna, Lucas D., and David Wood. “Picturing Algorithmic Surveillance: The Politics

of Facial Recognition Systems.” In, Norris, McCahill, and Wood, eds., Surveillance and

Society, CCTV Special, 2 (2 / 3), 177–198. Available at http: // www.surveilllance- and- society

.org / cctv.htm / .

ISO / IEC 11172- 1:1993.

ISO / IEC 13818- 1, I. I. Information technology—Generic coding of moving pictures

and associated audio information: Systems (1995).

ISO / IEC 13818- 2 Information technology—Generic coding of moving pictures and

associated audio information: Video, 1995.

Iverson, K. E. A Programming Language. New York: John Wiley & Sons, 1962.

Jacobson, Ivar, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard. Object-

 Oriented Software Engineering: A Use Case Driven Approach. Reading, MA: Addison Wes-

ley, 1992.

JAPHs. Available at http: // www.cpan.org / misc / japh / .

The Jargon Fi1e. Available at http: // www.dourish.com / goodies / jargon.html / .

JODI, http: // wwwwwwwww.jodi.org / .

JODI, untitled game, http: // text.jodi.org / .

293

Bibliography

Johnson, Jeff, and Teresa L. Roberts, “The Xerox Star: A Retrospective,” IEEE Com-

puter (September 1989), 11– 29.

Johnson, Steven. Interface Culture: How New Technology Transforms the Way We Create and

Communicate. San Francisco: HarperEdge, 1997.

Kahn, David. The Codebreakers: The Story of Secret Writing, 9th ed. New York: Simon

and Schuster, 1979.

Kamppuri, Minna, Matti Tedre, and Markku Tukiainen. “Towards the Sixth Level in

Interface Design: Understanding Culture.” In Darelle van Greunen, ed., Proceedings

of the CHI- SA 2006, 5th Conference on Human Computer Computer- Human Interaction in

Southern Africa. CHI- SA, 2006 Cape Town, South Africa, ACM Press, 2006, 69– 74.

Kare, Susan. “Design Biography.” Available at http: // www.kare.com / design_bio.html / .

Kay, Alan C. “The Early History of SmallTalk,”. ACM SIGPLAN notices, vo1. 8, no. 3

(1993). Available at http: // gagne.homedns.org / ~tgagne / contrib / EarlyHistoryST.html / .

Kay, Alan. “User Interface: A Personal View.” In Brenda Laurel, ed., The Art of Human-

 Computer Interface Design. Reading, MA: Addison- Wesley, 1990.

Keller, Evelyn Fox. Refl ections on Gender and Science. New Haven, CT: Yale University

Press, 1985.

Kennedy, Bill. “Two Old Viruses,” The Risks Digest, vol. 6, issue 53, March 1988.

Kenner, Hugh. “Beckett Thinking.” In Hugh Kenner, The Mechanic Muse. Oxford:

Oxford University Press, 1987, 83–107.

Kidd, Eric. “More Debugging Tips.” Addenda to a webpage by Bram Cohen, “Aes-

thetics of Debugging,” posted December 17, 2000. Available at http: // advogato.org /

article / 215.html / .

Kirschenbaum, Matthew G.C., “Virtuality and HTML: Software Studies after Mano-

vich,” Electronic Book Review. 8 / 29 / 2003.

Kittler, Friedrich. Literature, Media, Information Systems. Amsterdam: G&B Arts Inter-

national, 1997.

294

Bibliography

Kittler, Friedrich. “Universities: Wet, Hard, Soft, and Harder,” Critical Inquiry, Vol.

31, issue 1 (Autumn 2004), 244–255.

Knuth, Donald. Literate Programming. Stanford, CA: Center for the Study of Language

and Information, Stanford University Press, 1992.

Knuth, Donald E. “Computer Programming as an Art.” In Literate Programming. Stan-

ford, CA: Center for the Study of Language and Information, 1992, 1– 16.

Knuth, Donald. The Art of Computer Programming, vols. 1- 3, 3rd ed. Reading, MA:

Addison Wesley, 1997.

Knuth, Donald. “Structured Programming with GO TO Statements” (1974). Avail-

able at http: // pplab.snu.ac.kr / courses / adv_p104 / papers / p261- knuth.pdf /

Koch, Stefan, and Georg Schneider. “Results from Software Engineering Research into

Open Source Development Projects Using Public Data.” In H. R. Hansen and W. H.

Janko, eds. Dikussionspapiere zum Tatigkeitsfeld Informationsverarbeitung unde Information-

swirtschaft, Nr. 22. Vienna: Wirtschaftsuniversitat, 2000.

Koders. Available at http: // www.koders.com / .

Koenig, Sven. aPpRoPiRaTe! Available at http: // popmodernism.org / appropirate / .

Kolinko, Hotlines: Call- Centre, Inquiry, Communism. Oberhausen: Kolinko, 2002. Also

available at http: // www.prol- position.net / .

Koopman, Phil. Stack Computers: The New Wave. Chichester, UK: Ellis Horwood,

1989.

Kowalski, Robert. “Algorithm = logic + control.” Communications of the ACM, 22(7)

(1979): 424–435.

Krishnamurti, Shriram. Programming languages: Application and Interpretation (2006).

Available at http: // www.cs.brown.edu / ~sk / Publications / Books / ProgLangs / .

Krysa, Joasin, ed., Curating Immateriality: Data Browser 03, New York: Autonomedia,

2006.

Krugle. Available at http: // www.Krugle.com / .

295

Bibliography

Lacan, Jacques. Écrits. A Selection. Translated by Alan Sheridan. London: Routledge,

2001.

Lakoff, George, and Johnson, Mark. Metaphors We Live By. Chicago: University of Chi-

cago Press, 1981.

Lampson, Butler W. “Hints for Computer System Design,” Proceedings of the Ninth

ACM Symposium on Operating Systems Principles. New York: ACM Press, 1983.

Lange, Thomas. “Helmut Hoelzer, Inventor of the Electronic Analog Computer.” In

Ull Hashagen and Rául Rojas, eds., The First Computers: History and Architecture. Cam-

bridge, MA: The MIT Press, 2000.

Latour, Bruno. Science in Action: How to Follow Scienists and Engineers Through Society.

Milton Keynes: Open University Press, 1987.

Latour, Bruno, E. Hermant, et al. Paris Ville Invisible. Paris Le Plessis- Robinson, La

Dâecouverte; Institut Synthâelabo pour le progrâes de la connaissance, 1998. Available

at http: // www.ensmp.fr / ~latour / virtual / #.

Latour, Bruno. Reassembling the Social: An Introduction to Actor- Network Theory. Oxford:

Oxford University Press, 2005.

Latour, Bruno. “Drawing Things Together.” In Michael Lynch and Steve Woolgar,

eds., Representation in Scientifi c Practice. Cambridge, MA: The MIT Press, 1990.

Laurel, Brenda. Computers as Theatre. Reading, MA: Addison- Wesley, 1997.

Lautréamont. Les chants de Maldoror, Russian edition: Lotreamont, Pesni Maldorora,

Moscow, Ad Marginem, 1998. English edition: Comte de Lautremont, Maldoror,

translated by Alexis Lykiard. Boston: Exact Change Press, 1993.

Law, John, and Annemarie Mol, eds. Complexities: Social Studies of Knowledge Practices.

Durham, NC: Duke University Press, 2002.

Leandre, Joan. (Retroyou), R / C and NostalG. Available at http: // www.retroyou.org / and

http: // runme.org / project / +SOFTSFRAGILE / .

Leary, Timothy. You Can be Anyone This Time Around. Rykodisc, 1992. (CD re- issue of

the original vinyl release from 1970.)

296

Bibliography

Leibniz, Gottfried Wilhelm. Epistolae ad diversos, vol. 2. Translated by Chr. Kortholt.

Leipzig, 1734.

Levy, Steven. Insanely Great: The Life and Times of Macintosh. London: Penguin, 1994.

Leyton, Michael. Symmetry, Causality, Mind. Cambridge, MA: The MIT Press, 1992.

Licklider, J. C. R., “Man- Computer Symbiosis,” IRE Transactions on Human Factors in

Electronics, volume HFE- 1, (1960) 4– 11. Available at http: // memex.org / licklider.pdf / .

Licklider, J. C. R. “The Computer as a Communications Device,” Science and Technology

(April 1968). Available at http: // memex.org / licklider.pdf / .

Lineback, Nathan. “GUI Gallery.” Available at http: // toastytech.com / guis / index.html /

 (accessed March 7, 2006).

Ludovico, Alessandro. “Virus Charms and Self- Creating Codes.” In Franziska Nori,

ed., I love you: computerviren, hacker, kultur, exhibition catalogue. Frankfurt: Museum für

Angewandte Kunst, 2002.

Lyon, Richard F. “A Brief History of ‘Pixel.’” Reprint, paper E1 6069- 1, Digital Pho-

tography II, IS&T / SPIE Symposium on Electronic Imaging, San Jose, CA (January 2006).

Mackay, Robin. “Capitalism and Schizophrenia: Wildstyle in Effect.” In Keith Ansell

Pearson, ed., Deleuze and Philosophy: the Difference Engineer, London: Routledge, 1997.

Mackay, Robin. “Capitalism and Schizophrenia: Wildstyle in full effect.” In Keith An-

sell Pearson, ed. Deleuze and Philosophy: The Difference Engineer. New York: Routledge,

1997, 247– 269.

MacKenzie, Donald, and Judy Wajcman, eds. The Social Shaping of Technology, 2nd ed.

Milton Keynes: Open University Press, 1999.

Madey, Gregory, Vincent Freeh, and Renee Tynan. “Modeling the Free / Open Source

Software Community: A Quantitative Investigation.” In Stefan Koch, ed., Free / Open

Source Software Development, 203– 220. Hershey, PA: Idea Group Publishing, 2003.

Manovich, Lev. The Language of New Media. Cambridge MA: MIT Press, 2001.

297

Bibliography

Massumi, Brian. “The Superiority of the Analog.” In Parables for the Virtual. Durham:

Duke University Press, 2002.

Mateas, Michael, “Procedural Literacy: Educating the New Media Practitioner.”

In On The Horizon, Special Issue: Future of Games, Simulations and Interactive Media in

Learning Contexts, vol. 13, n. 1 (2005). Also available at http: // www.lcc.gatech.edu /

~mateas / publications / MateasOTH2005.pdf / .

Mateas, Michael, and Nick Montfort, “A Box Darkly: Obfuscation, Weird Languages

and Code Aesthetics.” In Proceedings of the 6th Digital Arts and Culture Conference, IT

University of Copenhagen (Dec 1– 3, 2005), 144–153. Available at http: // nickm.com /

 cis / a_box_darkly.pdf / .

Mathews, Harry and Alistair Brotchie, Oulipo Compendium, London: Atlas Press, 1998.

Mauss, Marcel. “Technqiues of the Body.” In Zone 6: Incorporations. New York: Zone

Books, 1992.

McCarthy, John, LISP Prehistory—Summer 1956 through Summer 1958 (1996). Avail-

able at http: // www- formal.stanford.edu / jmc / history / lisp / node2.html / .

McCarthy, John. LISP 1.5 Programmer’s Manual. Cambridge, MA: The MIT Press, 1962.

McCormick, Bill H., Tom A. DeFanti, and Maxine Brown. “Visualisation in Scientifi c

Computing,” Computer Graphics, 21 (November 1987).

McCulloch, Warren S., and Walter H. Pitts. “A Logical Calculus of the Ideas Imma-

nent in Nervous Activity.” In Deirdre Boden, ed., The Philosophy of Artifi cial Intelligence.

Oxford: Oxford University Press, 1990.

McGaughey, William. “On the Cutting Edge of Knowledge: A Short History of the

Most Advanced Techniques of Establishing Truth in Each Age” (2005). Available at

http: // worldhistorysite.com / cuttingedge.html.

Mead, Carver. Analog VLSI and Neural Systems. Milton Keynes, UK: Addison- Wesley,

1989.

Mead, Carver. Collective Electrodynamics. Cambridge, MA: The MIT Press, 2000.

298

Bibliography

Meadows, Donella, Dennis L. Meadows, and Jørgen Randens. The Limits to Growth.

New York: Signet Books, 1972.

Meadows, Donella, Dennis L. Meadows, and Jørgens Randers, The Limits to Growth.

Meillassoux, Quentin. Aprés la fi nitude.

 Meltzer, Kevin. “The Perl Poetry Contest.” In The Perl Journal, vol. 4, issue 4, (2000).

Available at http: // www.tpj.com / .

Message Understanding Conference Proceedings (MUC- 7). Available at http: // www- nlpir.nist

.gov / related_projects / muc / proceedings / muc_7_toc.html / (accessed April 9, 2006).

Meyerhold, Vsevolod. “Artist of the Future.” In Hermitage, no. 6 (1922).

Meiksins Wood, Ellen. The Origins of Capitalism: A Longer View, London: Verso, 2002.

Miranda, Eduardo R. Composing Music with Computers. Woburn, MA: Focal Press, 2001.

Mirowski, Philip. Machine Dreams: Economics Becomes a Cyborg Science. Cambridge: Cam-

bridge University Press, 2002.

Mitchell, W. J. T. The Language of Images. Chicago: Chicago University Press, 1974.

Moore, David. “Rheolism: One Line Tetromino Game.” Available at http: // www.survex

.com / ~olly / dsm_rheolism / (accessed July 1, 2001).

Mumford, Lewis. Technics and Civilization. New York: Harbinger, 1963.

Myers, Christopher R. “Software Systems as Complex Networks: Structure, Function,

and Evolvability of Software Collaboration Graphs,” Physical Review E 68, 046116,

2003.

Nabokov, Vladimir. Speak Memory. New York: Putnam, 1966.

Nake, Frieder. Der Computer als Automat, Werkzeug und Medium und unser Verhältnis zu

ihm. Bremen: Universität Bremen, 2000.

Nietzsche, Friedrich. The Gay Science. Translated by Walter Kaufmann. New York:

Vintage, 1974.

299

Bibliography

Nold, Christian. “Greenwich Emotion Map,” 2006. Available at http: // www.emotion

map.net.

Noll, Landon Curt, Simon Cooper, Peter Seebach, and Leonid A. Broukhis. “The Inter-

national Obfuscated C Code Contest” (2005). Available at http: // www.ioccc.org / main

.html / .

Ludovico, Alessandro. “Virus Charms and Self- Creating Codes.” In Franziska Nori,

ed., I love you: computerviren, hacker, kultur, exhibition catalogue. Frankfurt: Museum für

Angewandte Kunst, 2002.

Nyquist, Harry. “Certain Factors Affecting Telegraph Speed,” Bell System Technical

Journal, 3 (April 1924), 324–346.

Nyman, Michael. Experimental Music: Cage & Beyond. Cambridge: Cambridge Univer-

sity Press, 1999.

Odum, E. P., and H. T. Odum. Fundamentals of Ecology. Philadelphia: W. B. Saunders

Co., 1953.

Odum, Howard. Systems Ecology. Wiley, 1983.

Okanoya, Kazuo. “Finite- State Syntax in Bengalese Finch Song: From Birdsong to the

Origin of Language.” Third Conference on Evolution of Language, April 3–4, Paris 2000.

Available online at http: // www.infres.enst.fr / confs / evolang / actes / _actes52.html / .

Olmstead, Ben. Malbolge (1998). Available at http: // www.antwon.com / other / malbolge /

 malbolge.txt / .

Olson, Harry F. Dynamical Analogies, 2nd ed. New York: Van Nostrand, 1958.

Olson, Harry F. Music, Physics and Engineering. New York: Dover Books, 1967.

Oudshoorn, Nelly, and Trevor Pinch, eds. How Users Matter. Cambridge, MA: The

MIT Press, 2003.

Owen, Mark. “BASIC Spreadsheet.” Quoted in C. D. Wright, “One line spreadsheet

in BASIC,” post to comp.lang.functional. Message- ID: <D01s7J.LK3@cix.compulink

.co.uk> (November 29, 1994).

300

Bibliography

Oxford English Dictionary. Available at: http: // www.oed.com /

Parikka, Jussi. “The Universal Viral Machine,” CTheory. Available at http: // www

.ctheory.net / articles.aspx?id=500 / (accessed April 13, 2006).

Pascual, Marsha. “Black Monday, Causes and Effects” (1998). Available at http: // www

.ncs.pvt. k12.va.us / ryerbury / pasc / pasc.htm / .

Paynter, Henry, ed. A Palimpsest on the Electronic Analog Art. Geo. A. Philbrick Re-

searches Inc., 1955.

Peitgen, Hans Otto, and Peter Richter. The Beauty of Fractals: Images of Complex Dy-

namical Systems. Berlin: Springer Verlag, 1985.

Peltier, Thomas R. “The Virus Threat,” Computer Fraud & Security Bulletin, June 1993,

p. 15.

Perlis, Alan. “Epigrams on Programming,” SIGPLAN Notices, 17(9), (September

1982). Available at http: // www.bio.cam.ac.uk / ~mw263 / Perlis_Epigrams.html / .

Petersen, Jonas & Hansen, Jens Hofman. “MacLab Danmark.” Available at http: // www

.maclab.dk / (accessed March 7, 2006).

Pias, Claus, ed. Zukunfte des Computers.

Pickering, Andrew. The Mangle of Practice: Time, Agency, and Sciences. Chicago: Univer-

sity of Chicago Press, 1995.

Pinker, Steven. How The Mind Works. London: Penguin, 1988.

Pohlmann, Ken C. Principles of Digital Audio. New York: McGraw-Hill, 1992.

Pold, Søren. “Interface Realisms: The Interface as Aesthetic Form,” Postmodern Culture

15(2). Available at http: // muse.jhu.edu / journals / postmodern_culture / v015 / 15.2pold

.html / (accessed March 7, 2006).

Popper, Karl. “Science as Falsifi cation.” In Conjectures and Refutations. London: Rout-

ledge and Kegan Paul, 1963, pp. 33- 39.

Popper, Karl. The Logic of Scientifi c Discovery. London: Routledge, 2003.

301

Bibliography

Powell, Barry B. Homer and the Origin of the Greek Alphabet. Cambridge: Cambridge

University Press, 1991.

Predko, Myke. Programming and Customizing PICmicro MCU Microcontrollers. New York:

McGraw- Hill, 2001.

Proudhon, Pierre- Joseph. What is Property? An Inquiry into the Principle of Right and of

Government. Translated by Benjamin R. Tucker. New York: Dover, 1970.

Proust, Marcel. Remembrance of Things Past. Volume 1: Swann’s Way: Within a Budding

Grove. Translated by C. K. Scott Moncrieff and Terence Kilmartin. New York: Vin-

tage, 1970.

Punin, Nikolay. The Memorial to the Third International. Petersburg: ISO NKP Depart-

ment Press, 1920.

Pynchon, Thomas. Gravity’s Rainbow. New York: Viking, 1973.

Pynchon, Thomas. The Crying of Lot 49. New York: Lippincott, 1966.

Quine, W. V. O. “Designation and Existence.” In Herbert Sellars Feigl Wilfried Sel-

lars Feigl, eds., Readings in Philosophical Analysis. New York: Appleton- Century Crofts,

1949.

Raskin, Jef. The Humane Interface: New Directions for Designing Interactive Systems. Read-

ing, MA: Addison- Wesley, 2000.

Raymond, Eric S. The Art of UNIX Programming. Boston, MA: Addison- Wesley, 2004.

Read, Herbert. The True Voice of Feeling. New York: Pantheon Books, 1953.

Reimer, Jeremy. “A History of the GUI.” (May 5, 2005). Available at http: // arstechnica

.com / articles / paedia / gui.ars (accessed March 7, 2006).

Riepl, Wolfgang. Das Nachrichtenwesen des Altertums: Mit besonderer Rücksicht auf die

Römer (1913). Reprint, Darmstadt, 1972.

Ritchie, David. “Shannon and Weaver: Unraveling the Paradox of Information,” Com-

munication Research, vol. 13, no. 2 (April 1986), 278–298.

302

Bibliography

Roads, Curtis. Microsound. Cambridge, MA: The MIT Press, 2001.

Robinson, Derek. “Index and Analogy: A Footnote to the Theory of Signs,” Rivista di

Linguistica 7:2, Pisa (1995).

Rogers, Everett M. Diffusion of Innovations, 5th ed. New York: Free Press, 2003.

Ronell, Avital. Stupidity. Chicago: University of Illinois Press, 2003.

Ronell, Avital. Finitude’s Score: Essays for the End of the Millennium. Lincoln: University

of Nebraska Press, 1994.

Rosen, Robert. “Effective Processes and Natural Law.” In Rolf Herken, ed., The Uni-

versal Turing Machine: A Half- Century Surveys. Oxford: Oxford University Press, 1988.

Rossum, Guido van. 2.3.8 Mapping Types—classdict. Python Library Reference, Python

Software Foundation 2006. Available at: http: // docs.python.org / lib / lib.html / .

Rotman, Brian. Signifying Nothing: The Semiotics of Zero. Stanford, CA: Stanford Uni-

versity Press, 1987.

Rubinsky, Yuri. SGML on the Web. New York: Prentice- Hall, 1997.

Rumbaugh, James R., Michael R. Blaha, William Lorensen, Frederick Eddy, and Wil-

liam Premerlani. Object- Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice-

 Hall, 1991.

RunMe, software art repository. Available at http: // www.runme.org / .

Rusling, David A. “Interrupts and Interrupt Handling.” In The Linux Kernel (1999).

Available at http: // www.tldp.org / LDP / tlk / dd / interrupts.html / (accessed March 14,

2006).

Sabel, Charles, and Michael Piore. Dialog on Flexible Manufacturing Networks. Durham,

NC: Southern Technology Council, 1990.

Sack, Warren. “Aesthetics of Information Visualization” In Paul Christiane, Victoria

Vesna, Margot Lovejoy eds. Context Providers, Minneapolis: University of Minnesota

Press, 2007.

303

Bibliography

Saussure, Ferdinand de. “Chapter I: Nature of the Linguistic Sign,” from Course in

General Linguistics. Translated by Wade Baskin. In The Norton Anthology of Theory and

Criticism. New York: Norton, 2001, 964–966.

Scaife, Mike and Yvonne Rogers, “External Cognition how do graphical representa-

tions work?,” International Journal of Human- Computer Studies, vol. 45, no. 2, 185–213.

Scheffer, Lou. Introduction to Malbolge. Available at http: // www.lscheffer.com / malbolge

.htm / .

Scheutz, Matthias, ed. Computationalism: New Directions.

Sloman, Aaron, “The Irrelevance of Turing Machines to AI,” in Matthias Scheutz, ed.,

Computationalism: New Directions, 87–127.

Schrödinger, Erwin. What is Life? Available at http: // home.att.net / ~p.caimi / schro-

dinger.html / (accessed March 29, 2006).

Schultz, Pit. “Jodi as a Software Culture.” In Tilman Baumgarten, ed. Install.exe / Jodi,

Christoph Merian Basel: Verlag, 2002.

Schwartz, Hillel. The Culture of the Copy: Striking Likenesses, Unreasonable Facsimiles,

223.

Schwartz, Randall L., and Tom Phoenix. Learning Perl. Sebastapol, CA: O’Reilly,

2001.

Searle, John. Speech Acts: An Essay in the Philosophy of Language, Cambridge: Cambridge

University Press, 1969.

Selvin, Joel. “Chronicle Pop Music Critic,” San Francisco Chronicle (Sunday, June 2,

1996).

Sengers, Phoebe, and Bill Gaver. “Designing for Interpretation,” Proceedings of Hu-

man- Computer Interaction International, 2005. Available at http: // cemcom.infosci.cornell

.edu / papers / sengers- gaver.design- for- interpretation.pdf / (accessed April 24, 2006).

Shannon, Claude E. “An Algebra for Theoretical Genetics.” PhD dissertation, MIT,

1940.

304

Bibliography

Shannon, Claude E. A Symbolic Analysis of Relay and Switching Circuits. Cambridge, MA:

Massachusetts Institute of Technology, Department of Electrical Engineering, 1940.

Shannon, Claude E. “A Mathematical Theory of Communication,” Bell System Techni-

cal Journal v. 27, (July 1948) 379– 423 and (October 1948) 623– 656. Available at

http: // cm.bell- labs.com / cm / ms / what / shannonday / paper.html / .

Shannon, Claude E., and Warren Weaver. A Mathematical Theory of Communication.

Urbana: University of Illinois Press, 1949.

Shannon, Claude E. Ein / Aus: Ausgewählte Schriften zur Kommunikations- und Nachrichten-

theorie. Edited by Friedrich Kittler et al. Berlin: Brinkmann U. Bose, 2000.

Shapiro, Fred R. “Origin of the Term Software: Evidence from the JSTOR Electronic

Journal Archive.” IEEE Annals of the History of Computing 22 (April– June, 2000): 69.

Available at http: // computer.org / annals / an2000 / pdf / a2069.pdf / .

Shelley, Mary. Frankenstein, or, The Modern Prometheus. London: Lackington, Allen &

Co., 1818.

Shepard, R. N. “Towards a Universal Law of Generalization for Psychological Studies.”

Plenary Lecture to the Cognitive Science Society, Ann Arbor, 1987. Also in Science, vol.

237, issue 4820, 1317–1323.

Schneiderman, Ben. Leonardo’s Laptop: Human Needs and the New Computing Technologies.

London: The MIT Press, 2002.

Shuttleworth, Mark. Rosetta, (Software) 2006.

Shuttleworth, Mark. The LauchPad Homepage, 2006 available at http: // www.launchpad

.net / .

Siegert, Bernhard. “Der Untergang des römischen Reiches.” In Paradoxien, Dissonan-

zen, Zusammenbrüche. Situationen offener Epistemologie, eds. Hans Ulrich Gumbrecht and

K. Ludwig Pfeiffer. Frankfurt / M. 1991, pp. 495- 514. In English as “The Fall of The

Roman Empire,” In Hans Ulrich Gumbrecht and K. Ludwig Pfeiffer, eds., Materialities

of Communication. Translated by William Whobrey, Stanford, CA: Stanford University

Press, 1994.

Silicon Valley Toxics Coalition. Homepage available at http: // www.svtc.org / .

305

Bibliography

Simon, Herbert A. The Sciences of the Artifi cial, 3rd ed. Cambridge, MA: The MIT Press,

1996.

Slade, Robert. “History of Computer Viruses” (1992). Available at http: // www.cknow

.com / articles / 6 / 1 / Robert- Slade&%2339%3Bs- Computer- Virus- History / .

Sloman, Aaron, “The Irrelevance of Turing Machines to AI,” in Matthias Scheutz, ed.,

Computationalism: New Directions, 87–127.

Smith, Brian Cantwell. On the Origin of Objects. Cambridge, MA: The MIT Press, 1998.

Smith, S. W. The Scientist and Engineer’s Guide to Digital Signal Processing. San Diego:

California Technical Publishing, 2001.

Smotherman, Mark. “Interrupts” (2004). Available at http: // www.cs.clemson.edu /

~mark / interrupts.html / (accessed March 14, 2006).

Solnit, Rebecca. Wanderlust: A History of Walking. London: Verso, 2000.

SourceForge. Available at http: // sourceforge.net /

Spolsky, Joel, ed. The Best Software Writing 1: Selected and Introduced by Joel Spolsky.

Berkeley: Apress, 2005.

Stallman, Richard. “GNU Project.” In Joshua Gay, ed., Free Software, Free Society: Se-

lected Essays of Richard M. Stallman. Boston, MA: GNU Press, Free Software Founda-

tion, 2002, 31- 39.

Stallman, Richard. “Why Free Software is Better than Open Source.” In Joshua Gay,

ed., Free Software, Free Society: Selected Essays of Richard M. Stallman. Boston, MA: GNU

Press, Free Software Foundation, 2002, 55- 60.

Star, Susan Leigh. “Invisible Work and Silenced Dialogues in Knowledge Representa-

tion.” In Inger V. Eriksson, Barbara A. Kitchenham, Kea G. Tijdens, Women, Work and

Computerization: Understanding and Overcoming Bias in Work and Education. Amsterdam:

Elsevier Science Publishers, 1991, 81- 92.

Stengers, Isabelle. The Invention of Modern Science. Translated by Daniel W. Smith. Min-

neapolis: University of Minnesota Press, 2000.

306

Bibliography

Stengers, Isabelle. Penser avec Whitehead. Paris: Seuil, 2002.

Stephenson, Neal. In the Beginning was the Command Line. New York: Avon Books,

1999.

Sterling, Bruce. Shaping Things. Cambridge, MA: The MIT Press, 2005.

Stone, Allucquére Rosanne. “Will The Real Body Please Stand Up?: Boundary Stories

About Virtual Cultures.” In Michael Benedikt, ed., Cyberspace: First Steps. Cambridge,

MA: The MIT Press, 1991.

Suchman, Lucy. Plans and Situated Actions: The Problems of Human- Machine Communica-

tion. Cambridge: Cambridge University Press, 1987.

Suetonius Tranquillus, Caius. Vitae Caesarum, I 56, 6 and II 86.

Sukenick, Ronald. Narralogues: Truth in Fiction. Albany, NY: State University of New

York Press, 2000.

Sulfnbk Virus. See http: // www.symantec.com / avcenter / vcnc / data / sulfnbk.exe. Also

see http: // urbanlegends.about.com / library / blsulfnbk.htm / .

Sun Microsystems. After Internationalization, The Java Tutorial. (2006).

Suetonius, The Twelve Caesars. Translated by Robert Graves. London: Penguin, 2003.

Sutherland, Ivan. Sketchpad: A Man- Machine Graphical Communication System, PhD the-

sis, MIT, 1963.

Swift, Jonathan, Gulliver’s Travels, Project Gutenberg Ebook, available at http: // www

.gutenberg.org / dirs / etext97 / gltrv10.txt /.

Symantec website. Available at http: // www.symantec.com / avcenter / venc / data/ sulfnbk

.exe.warning.html/.

Tanenbaum, Andrew S. Operating Systems: Design and Implementation. Englewood Cliffs,

NJ: Prentice- Hall, 1987.

307

Bibliography

Tedre, Matti, Erkki Sutinen, Esko Kähkönen and Piet Kommers. “Is Universal Us-

ability Universal Only to Us?” On- line proceedings of the ACM conference CUU2003, Van-

couver BC, Canada (November 10–11, 2003).

Tedre, Matti, Erkki Sutinen, Esko Kähkönen and Piet Kommers. “Ethnocomput-

ing: ICT in Social and Cultural Context,” Communications of the ACM, vol. 49 no. 1,

126–130.

Tergan, Sigmar- Olaf, and Tanja Keller, eds. Knowledge and Information Visualisa-

tion: Searching for Synergies (Lecture Notes in Computer Science). Berlin and Heidelberg:

 Springer- Verlag, 2005.

Teuscher, Christof, ed. Alan Turing: Life and Legacy of a Great Thinker. Berlin: Springer,

2004.

Thompson, Ken. “Refl ections of Trusting Trust,” Communications of the ACM, vol. 27,

issue 8 (August 1984).

Todd, Peter. “Simulating the Evolution of Musical Behaviour.” In Walling, Nils L.,

Björn Merker, and Steven Brown, eds., The Origins of Music. Cambridge, MA: The MIT

Press, 2000.

Toop, David. Haunted Weather. London: Serpents Tail, 2005.

Tort, Patrick. La Raison Classifi catoire: Les Complexes Discursifs- Quinze Etudes. Paris:

 Aubier, 1989.

Touretzky, David COMMON LISP: A Gentle Introduction to Symbolic Computation. Red-

wood City, CA: Benjamin / Cummings, 1990.

Tuck, Mike. “The Real History of the GUI,” (August 13th 2001). Available at http: //

www.sitepoint.com / print / real- history- gui / (accessed March 7, 2006).

Tufte, Edward. Visual Explanations. Cheshire, CT: Graphics Press, 1997.

Tukey, John W. “The Teaching of Concrete Mathematics.” American Mathematical

Monthly no. 65 (January, 1958): 1–9.

Turkle, Sherry. “Artifi cial Intelligence and Psychoanalysis: A New Alliance,” Daeda-

lus, vol. 17, no. 1 (Winter 1988).

308

Bibliography

“Two Old Viruses,” The Risks Digest, Vol. 6, Issue 53 (March 1988), available at http: //

catless.ncl.ac.uk / risks.

Alan M. Turing. Intelligence Service: Schriften. Edited by Bernhard Dotzler and Friedrich

Kittler. Berlin: Brinkmann U. Bose, 1987.

Alan M. Turing. The Essential Turing. Edited by Jack Copeland. Oxford: Oxford Uni-

versity Press, 2004.

Alan M. Turing. “Intelligent machinery.” In Machine Intelligence 5. Edited by Bernhard

Meltzer and Donald Michie. North Holland: Elsevier, 1970.

Alan M. Turing, “Computing Machinery and Intelligence,” Mind, no. 59 (October

1950), 433, 460.

Alan Turing. “On Computable Numbers with an Application to the Entscheidungsprob-

lem,” Proceedings of the London Mathematical Society, ser. 2. vol. 42 (1936–1937), 253.

Ulanowicz, Robert. Growth & Development: Ecosystems Phenomenology. New York:

Springer, 1986.

Unicode Consortium. “What is Unicode?” Available at http: // www.unicode.org /

standard / WhatIsUnicode.html / (accessed on April 21, 2006).

Urban Legends. Available at http: // urbanlegends.about.com / library / blsulfnbk.htm / .

Valery, Paul. “Man and the Seashell.” In Paul Valery: An Anthology. Princeton, NJ:

Princeton University Press, 1977.

Van De Mieroop, Marc. Cuneiform Texts and the Writing of History. New York and

London: Routledge, 1999.

Verran, Helen. Science and an African Logic. Chicago: The University of Chicago Press,

2001.

Vesisenaho, Mikko, et al. “Contextualizing ICT in Africa: The Development of the

CATI Model in Tanzanian Higher Education,” African Journal of Information and Com-

munication Technology 2(2) (June 2006) 88–109.

Virus Myths. Available at http: // www.vmyths.com / (accessed on April 21, 2006).

309

Bibliography

von Neumann, John. “First Draft of a Report on the EDVAC,” 1945.

Waldby, Catherine, The Visible Human Project: Informatic Bodies and Posthuman Medicine.

New York: Routledge, 2000.

Waldrop, M. Mitchell. The Dream Machine: J. C. R. Licklider and the Revolution that

Made Computing Personal. London: Penguin, 2001.

Wall, Larry. “Perl, the First Postmodern Computer Language” (1999). Available at

http: // www.wall.org / ~larry / pm.html / .

Wall, Larry, Tom Christiansen, and Jon Orwant, Programming Perl. Sebastopol CA:

O’Reilly, 2000.

Ward, Adrian. Signwave Auto- Illustrator (2000–2002). Available at http: // www

.auto- illustrator.com / .

Ware, Colin, Information Visualization: Perception for Design. San Francisco: Morgan

Kaufmann Publishers, 2000.

Wark, McKenzie. A Hacker Manifesto. Cambridge, MA: Harvard University Press,

2004.

Weber, Max. The Protestant Ethic and the Spirit of Capitalism. London: Allen and Unwin,

1930.

Webster’s Ninth Collegiate Dictionary, Springfi eld MA: Merriam- Webster, 1983.

Wegner, Peter. “The Paradigm Shift from Algorithms to Interaction: Why Interaction

is More Powerful Than Algorithms,” Communications of the ACM, vol. 40 no. 5 (May

1997), 81–91. Available at http: // www.cs.brown.edu / people / pw / papers / fi cacm.ps / .

Wegner, Peter, and Dana Goldin. “Computation Beyond Turing Machines” (2002).

Available at http: // www.cs.brown.edu / people / pw / .

Weisfeld, Matt. “Moving from Procedural to Object- Oriented Development” (2004).

Available at http: // www.developer.com / design / article.php / 3317571 (accessed April 22,

2006).

310

Bibliography

Weizenbaum, Joseph. “ELIZA—A Computer Program for the Study of Natural Lan-

guage Communication between Man and Machine.” In Communications of the ACM, vol.

9, no. 1 (January 1966), 36–45.

Whitehead, Alfred North. Introduction to Mathematics. London: Williams and Norgate,

1911.

Whitehead, Alfred North. Process and Reality. New York: Free Press, 1978.

Whitehead, Alfred North. Science and the Modern World. New York: Free Press, 1997.

Wichary, Marcin. GUIdebook, Graphical User Interface Gallery. Available http: // www

.guidebookgallery.org / (accessed March 7, 2006).

Wiener, Norbert. Cybernetics, or Control and Communication in Animals and Machines.

Cambridge, MA: The MIT Press, 1948.

Wigner, E. P. “The Unreasonable Effectiveness of Mathematics in the Natural Sci-

ences,” Communications in Pure and Applied Mathematics 13:1, 1960.

Wikipedia, the free encyclopedia, available at http: // wikipedia.org / .

Wilhelmsson, U. “What’s in those video games?” In Proceedings of Computer Games &

Digital Textualities, IT University of Copenhagen (2001), 44–54.

Williams, Raymond. Keywords: A Vocabulary of Culture and Society. London: Fontana,

1976.

Willinsky, Jon. The Access Principle: The Case for Open Access to Research and Scholarship.

Cambridge, MA: The MIT Press, 2005.

Winthrop- Young, Geoffrey, and Michael Wutz. “Translator’s Introduction: Friedrich

Kittler and Media Discourse Analysis.” In Friedrich Kittler, Gramophone, Film, Type-

writer. Stanford, CA: Stanford University Press, 1999.

Witherspoon, Gary, and Glen Peterson. Dynamic Symmetry and Holistic Asymmetry in

Navajo and Western Art and Cosmology. New York: Peter Lang Publishing, 1995.

Wittgenstein, Ludwig. Philosophical Investigations. Translated by G. E. M. Anscombe.

Oxford: Blackwell, 1953.

311

Bibliography

Wolfram, Stephen, A New Kind of Science, Champaign, IL: Wolfram Media, 2002. Also

available at http: // www.wolframscience.com / nksonline / toc.html / .

Woods, Donald, and James Lyon. The INTERCAL Programming Language Revised Refer-

ence Manual, 1st ed. (1973). C- INTERCAL revisions, Louis Howell and Eric Raymond

(1996).

World Wide Web Consortium. Available at http: // www.w3.org / .

Yeats, William Butler. Synge and the Ireland of His Time. Shannon: Irish University

Press, 1970. Project Gutenburg, available at http: // www.gutenberg.org / etext / 8557 / .

Youngblood, Gene. Expanded Cinema. New York: E. P. Dutton, 1970.

Zaslavsky, Claudia. Africa Counts: Number and Pattern in Africa Culture.

Zehle, Sehle. “FLOSS Redux: Notes on African Software Politics.” Mute, vol. 3, no. 06

(2005). Available at http: // www.metamute.org / en / FLOSS- Redux- Notes- on- African-

 Software- Politics / (accessed on April 21, 2006).

Zlatanov, Teodor. “Cultured Perl: The Elegance of JAPH.” In Developer Works: IBM’s

Resource for Developers (1 July 2001). Available at http: // www.128.ibm.com / developer-

works / linux / library / l- japh.html.

Zolli, Andrew. “Pixelvision: A Meditation,” Core77, undated. Available at http: // www

.core77.com / reactor / opinion_06.03.asp / .

About the Contributors

Alison Adam is Professor of Information Systems at the University of Salford, UK. Her

research interests are in gender and information systems, AI, and computer ethics. Recent

books include Artifi cial Knowing: Gender and the Thinking Machine (Routledge, 1998) and

Gender, Ethics and Information Technology (Palgrave, 2005).

Morten Breinbjerg is Associate Professor at the Institute of Aesthetic Disciplines,

Multimedia Studies, University of Aarhus, Denmark, and holds a PhD in Computer Mu-

sic Aesthetics. His research covers digital culture, media and aesthetics, interface studies of

music software, and game audio.

Ted Byfi eld is Associate Chair of the Parsons School of Design, co- editor of ICANN

Watch, and was the 2002 Journalism Fellow of the Design Trust for Public Space. He has

worked for a decade as a freelance nonfi ction editor with an emphasis on cultural, intellec-

tual, and technological history. He co- moderates the Nettime mailing list and co- edited its

book of proceedings, Readme! (Autonomedia, 1999). His writings have appeared in several

languages in technical, political, and cultural journals, and he has spoken on the same range

of subjects in the US and throughout Europe. He currently works as a consultant and / or

advisor for several commercial and noncommercial organizations.

Wendy Hui Kyong Chun is Associate Professor of Modern Culture and Media at

Brown University. She has studied both Systems Design Engineering and English Litera-

ture, which she combines and mutates in her current work on digital media. She is author

of Control and Freedom: Power and Paranoia in the Age of Fiber Optics (The MIT Press, 2006),

and co- editor (with Thomas Keenan) of New Media, Old Media: A History and Theory Reader

314

About the Contributors

(Routledge, 2005). She is currently working on a monograph entitled Programmed Visions:

Software, DNA, Race (forthcoming from the MIT Press, 2008).

Geoff Cox is an artist, teacher, and projects organizer as well as currently lecturer in

Computing at University of Plymouth, UK. He co- edited “Economising Culture” and “En-

gineering Culture” as part of the DATA browser series (Autonomedia, 2004, 2005). He is

also a trustee of Kahve- Society and the UK Museum of Ordure. For more information see

http: // www.anti- thesis.net / .

Florian Cramer is a Berlin- based independent researcher in Comparative Literature, and

a writer on literature, the arts, and computing. His most recent publication is “Words Made

Flesh: Code, Culture, Imagination,” on the cultural history of software. For more information

see http: // pzwart.wdka.hro.nl / mdr / research / fcramer / wordsmadefl esh / and http: // cramer

.plaintext.cc:70 / .

Cecile Crutzen is Associate Professor of the School of Informatics of the Open Univer-

sity of the Netherlands. Her domain is “People, Computers, and Society.” Her research fi eld

is the interaction between Gender Studies and Computer Science, specifi cally regarding in-

teraction and e- learning.

Marco Deseriis (a.k.a. Snafu) is a PhD student in the Department of Culture and Com-

munication at New York University. In 2003 he co- authored L’Arte della Connessione (Mi-

lan: Shake Editions) with Giuseppe Marano. As a networker, he manages the Italian node of

The Thing (thething.it) and organizes Dina (d- i- n- a.net), an international festival of guer-

rilla communication and culture jamming. He is also a translator and a freelance journalist

who contributes to various magazines distributed with La Repubblica.

Ron Eglash holds a B.S. in Cybernetics, an M.S. in Systems Engineering, and a PhD in

History of Consciousness, all from the University of California. A Fulbright postdoctoral

fellowship enabled his fi eld research on African ethnomathematics, which was published

by Rutgers University Press in 1999 as African Fractals: Modern Computing and Indigenous

Design. He is now Associate Professor of Science and Technology Studies at Rensselaer

Polytechnic Institute. Recent essay titles include “The Race for Cyberspace: Information

Technology in the Black Diaspora” (Science as Culture), and “Race, Sex and Nerds: From

Black Geeks to Asian- American Hipsters” (Social Text). His current project, funded by

the NSF, HUD, and the Department of Education, translates the mathematical concepts

embedded in cultural designs of African, African American, Native American, and Latino

communities into software design tools for secondary school education. The software is

available online at http: // www.rpi.edu / ~eglash / csdt.html.

315

About the Contributors

Matthew Fuller is David Gee Reader in Digital Media at the Centre for Cultural Stud-

ies, Goldsmiths College, University of London. He is author of ATM; Behind the Blip: Essays

on the Culture of Software; Media Ecologies: Materialist Energies in Art and Technoculture and has

worked in groups such as I / O / D and Mongrel.

Andrew Goffey is Senior Lecturer in Media, Culture, and Communication at Middlesex

University, London. He researches in and writes about the zones of interference between

philosophy, science, and culture, edited the “Contagion and the Diseases of Information”

issue of Fibreculture (http: // www.fi breculture.org /), and co- edited the “Biopolitics” issue of

CultureMachine (http: // www.culturemachine.net /).

Steve Goodman is Program Leader of the MA Sonic Culture at the University of East

London. He is currently writing a book on sonic warfare, and has published widely on

sound, cybernetic culture, and philosophies of affect. He runs the record label Hyperdub

(www.hyperdub.net), and under the name Kode9 (www.kode9.com), has released music on

labels such as Rephlex, Tempa, and his own imprint, Hyperdub.

Olga Goriunova is a new media researcher, teacher, and organizer. She is a co- creator of

the Readme software art festival series (Moscow 2002, Helsinki 2003, Aarhus 2004, Dort-

mund 2005), and a co- organizer of Runme.org software art repository (http: // runme.org /).

She is currently completing her PhD in Media Lab, University of Industrial Arts and De-

sign, Helsinki, Finland.

Graham Harwood is the artistic director of the UK artist group Mongrel (http: // www

.mongrel.org.uk /). His main interests are in the networked image and in helping other

people set things up for themselves. He currently lives at the mouth of the Thames with

Matsuko Yokokoji, also a member of Mongrel, and their son Lani, where they are help-

ing to set up a free media space, mediashed.org, for local people. For more information see

http: // www.scotoma.org / .

Wilfried Hou Je Bek is an independent social fi ction worker whose projects can be

found at www.socialfi ction.org.

Friedrich Kittler is Professor of Media History and Aesthetics at Humboldt University-

 Berlin’s Institute for Aesthetics. He is the author of numerous books and articles; those that

have been translated into English are currently: Discourse Networks 1800 / 1900; Literature,

Media, Information Systems; Gramophone, Film, Typewriter.

Erna Kotkamp is ICT Coordinator and a junior teacher / researcher for the Institute of

Media and Representation at Utrecht University. She combines technical ICT skills with

316

About the Contributors

academic research to compare the methodology and design process of educational software

in open source vs. proprietary software from a gender perspective.

Joasia Krysa is an independent curator and lecturer in Art and Technology at the Uni-

versity of Plymouth, UK. She established the curatorial research project, KURATOR,

http: // www.kurator.org / , in 2005 and currently co- organizes the Curatorial Network (with

Arts Council England, South West), http: // www.curatorial.net / . Recent projects include

the conference “Curating, Immateriality, Systems” (London: Tate Modern, 2005) and the

edited book Curating Immateriality (DATA Browser 03, Autonomedia, 2006; http: // www

.data- browser.net /).

Adrian Mackenzie is at the Institute for Cultural Research, Lancaster University,

where he researches in the area of technology, science, and culture using approaches from

cultural studies, social studies of technology, and critical theory. He has published several

monographs on technology, including Transductions: Bodies and Machines at Speed (London:

Continuum, 2002); Cutting Code: Software and Sociality (New York: Peter Lang, 2006), and

articles on technology, digital media, science, and culture.

Lev Manovich <www.manovich.net> is the author of Soft Cinema: Navigating the Da-

tabase (The MIT Press, 2005), and The Language of New Media (The MIT Press, 2001),

which is hailed as “the most suggestive and broad ranging media history since Marshall

McLuhan.” He is a professor of Visual Arts of the University of California, San Diego

<visarts.ucsd.edu> and a director of The Lab for Cultural Analysis at California Institute

for Telecommunications and Information Technology <www.calit2.net>.

Michael Mateas’s work explores the intersection between art and artifi cial intelligence,

forging a new art practice and research discipline called Expressive AI. He is a faculty mem-

ber at the University of California at Santa Cruz. Prior to moving to UCSC, he held a joint

appointment in the College of Computing and the school of Literature, Communication,

and Culture at the Georgia Institute of Technology. With Andrew Stern he developed the

interactive drama Facade, an AI- based fi rst- person, real- time, interactive story (www.inter-

activestory.net). Michael received his BS in Engineering Physics from the University of the

Pacifi c, his MS in Computer Science from Portland State University, and his PhD in Com-

puter Science from Carnegie Mellon University.

Nick Montfort is a PhD candidate at the University of Pennsylvania. He writes and

programs interactive fi ction, is a poet, and has collaborated on a variety of digital literary

projects. He is author of Twisty Little Passages: An Approach to Interactive Fiction and co- editor

of The New Media Reader, both published by the MIT Press in 2003.

317

About the Contributors

Michael Murtaugh is a lecturer in the MA Media Design program of the Piet Zwart In-

stitute, Willem de Kooning Academie Hogeschool Rotterdam. He also works as a freelance

designer and programmer focusing on tools for reading and writing. Links and information

about his work are available online at http: // www.automatist.org / .

Jussi Parikka is senior lecturer in media studies at Anglia Ruskin University, Cam-

bridge, UK. He has a PhD in Cultural History from the University of Turku, Finland.

Parikka is the author of Digital Contagions. A Media Archaeology of Computer Viruses (2007)

and several essays in English and Finnish on digital culture. A co- edited volume (with Tony

Sampson) titled The Spam Book: On Viruses, Spam and Other Anomalies from the Dark Side of

Digital Culture is forthcoming in 2008. In addition, he is now working on a book on “insect

media.” Parikka’s homepage is at http: // users.utu.fi / juspar.

Søren Pold is Associate Professor of Digital Aesthetics at Institute of Aesthetic Disci-

plines / Multimedia, University of Aarhus, Denmark. He has published in Danish and En-

glish on digital and media aesthetics from the nineteenth- century panorama to the interface.

He established the Digital Aesthetics Research Centre (http: // www.digital- aestetik.dk /) at

Aarhus University in 2002; in 2004 he co- organized the Read_me festival on software art;

and currently he is in charge of the research project, “The Aesthetics of Interface Culture”

(http: // www.interfacekultur.au.dk), supported by the Danish Research Agency. His latest

book is “Ex Libris—Medierealistisk litteratur—Paris, Los Angeles & Cyberspace” (in Danish),

which deals with relationships between literature, media, and urbanity. See http: // www

.bro- pold.dk / for more information.

Derek Robinson lives in a cheap hotel in Vancouver, BC, where he enjoys puttering

about with books and computers and ideas. In 2000 he wrote the second in- browser WYSI-

WYG HTML editor, in Javascript (the fi rst was by Tim Berners- Lee, written in Objective- C

for the NeXT computer in 1991), in partial atonement for a season as Stockholm’s least- ept

Linux sysadmin. He taught Integrated Media at the Ontario College of Art in Toronto from

1986 to 1998. He publishes sparingly, although in 1995 an essay, “Index and Analogy: A

Footnote to the Theory of Signs,” appeared in Rivista di Linguistica, and in 1993 a novel al-

gorithm for feature discovery in very large databases was presented before the International

Joint Congress of A.I., Special Workshop on AI and the Genome. He’s a slow learner.

Warren Sack is a software designer and media theorist whose work explores theories

and designs for online public space and public discussion. Before joining the faculty at the

University of California, Santa Cruz in the Film & Digital Media Department, Warren was

an assistant professor at UC Berkeley, where he directed the Social Technologies Group.

318

About the Contributors

He has also been a research scientist at the MIT Media Laboratory, and a research collabo-

rator in the Interrogative Design Group at the MIT Center for Advanced Visual Studies.

He earned a BA from Yale College and an SM and PhD from the MIT Media Laboratory.

He is currently an assistant professor in the Film and Digital Media Department; affi liated

faculty with the Computer Science Department; and, a member of the graduate faculty for

the Digital Arts / New Media MFA Program (housed jointly by the Arts Division and the

School of Engineering) at the University of California, Santa Cruz. For more information see

http: // people.ucsc.edu / ~wsack / .

Grzesiek Sedek is an Open Source and Linux enthusiast. He has been working on sys-

tem programming, multimedia, video, animation, e- commerce, B2B integration, and net-

work security. He currently works at Wimbledon School of Art and is actively involved in

the development of the MARCEL high bandwidth network. His other interests include

music, performance, and interactive installation.

Alexei Shulgin is an artist, theorist, musician, curator, and photographer; his works in-

clude Form Art (1997), FU- FME (1999), and the world’s fi rst cyberpunk rock band 386

DX (1998 – onwards). Alexei is a co- organizer of Runme.org software art repository (2003)

and a co- curator of the Readme software art festivals (Moscow 2002, Helsinki 2003, Aarhus

2004, Dortmund 2005). His recent works include the conceptual VJ tool WIMP, Super- I-

 Real Virtuality system and Electroboutique (http: // www.electroboutique.com /). For more

information see http: // www.easylife.org / .

Matti Tedre is a researcher at the Department of Computer Science, University of Joen-

suu, Finland. His PhD dissertation on the topic “Social Studies of Computer Science” will

be published in August 2006. His M.Sc thesis on the topic “Ethnocomputing” was pub-

lished in May 2002. For more information see http: // www.tedre.name / .

Adrian Ward is a software artist, programmer, systems administrator, and lecturer. Since

1999, his London- based company, Signwave UK (http: // www.signwave.co.uk /), has ex-

isted as a mere excuse for him to do some fun things with software. He is the author of,

among other things, Autoshop and Auto- Illustrator, the latter of which co- won the 2001

Transmediale Software Art award. He continues to collaborate with artists, musicians and

academics in exploring new realms for software. Please see http: // www.adeward.com / for

more information.

Richard Wright is an artist who has been working in digital moving image and

 software- based practice for nearly twenty years. Films include Heliocentrum (1995)—a cross

between a political documentary and a seventeenth- century rave video—and LMX Spiral

(1998)—a conceptual music video about the eighties. Recent work includes The Bank of

319

About the Contributors

Time (2001)—a BAFTA nominated online screensaver—and Foreplay (2004)—a porn fi lm

without the sex. Currently in production is The Mimeticon—a visual search engine that ex-

ploits the interdependence of image and text through the history of the Western alphabet.

For more information see http: // www.futurenatural.net.

Simon Yuill is an artist based in Glasgow, Scotland, where he is part of the Chateau Insti-

tute of Technology. Projects include: spring_alpha (http: // www.spring- alpha.org), the Social

Versioning System (http: // www.spring- alpha.org / svs), slateford (http: // www.slateford.org),

and Your Machines (http: // www.yourmachines.org).

Index

Abram, David, 253

Abstractionism, 112

Adobe Illustrator, 122–124

Adobe InDesign, 122

Adobe Photoshop, 124

Adventures of Electronic Boy, 114

Aenas, 40

After Effects, 122, 124

Agre, Phil, 99

AI (Artifi cial Intelligence), 107, 133,

136–140, 171, 176–177, 231, 263

Aischylos, 40

Alberti, Battista Leone, 42–44, 70, 213

ALGOL, 197, 268

Algol-60, 180

Algorithm(s), 1, 6 , 8, 15–19, 50, 61,

71–72, 75, 82, 91, 95, 111, 117–118,

122, 136, 144, 148, 151, 157, 162,

164, 168, 170, 181, 190, 210, 214,

215, 229–230, 232–234, 236–237,

260

American Mathematical Monthly, 2

Ampere, 24

Amsterdam Compiler Kit (ACK), 65

Anderson, Peter, 121–122

Analog

circuit(s), 27

computer(s), 21–23, 26, 27

connection, 32

controller(s), 22

data, 171

engineer(s), 26

hacker(s), 23

hardware, 225

machine(s), 32, 225

mechanical functionality, 32

neural networks, 28

Analogical representation, 82

Apeloig, Philippe, 122

APL (A Programming Language), 193,

268

Appalachian Center for Economic Net-

works (ACENet), 63

Apple, 219, 222

Apple Quick Time library, 67

aPpRoPiRaTe, 117

Archaeology of Knowledge, The, 17

Archimedean hydrostatics, 24

Arecibo radio telescope, 62

Aristotle, 106, 184, 186, 246

322

Index

Arnaud, Noel, 197

ARPANET, 72

Art of Computer Programming, The, 8, 157,

236

Artifi cial Life, 60, 136, 138–140, 229,

231, 233

Artifi cial Paradises, 5

Aspen Movie Map, 145

Associative array, 104

Atari, 113

AtEase, 219

Atkinson, Richard, 185

AT&T, 127

Augmentation Research Center, 74

Augustus, 40–42

Automated Number Plate Recognition

Systems (ANPRS), 163

Babbage, Charles, 105, 237

Analytical Engine, 237

Backus-Naur form, 45

Balzac, 114

Barnsley, Michael, 82

Barszcz.net, 240

BASIC, 150, 168, 193–194, 237, 268

Bataille, Georges, 9

Documents, 9

Batch processing, 161

Bateson, Gregory, 130

BBC Micro BASIC, 194

Beckett, Samuel, 168

Beer, Stafford, 144

Bell Labs, 23, 72, 127

Bell System Technical Journal, 126

Benjamin, Walter, 70, 76

Bergson, Henri, 257

Time & Free Will, 257

Berkley Open Infrastructure for Net-

work Computing (BOINC), 62

Berliner, Brian, 65

Berman, Marshall, 210

All That Is Solid Melts into Air, 210

Bernard, Claude, 26

Berners-Lee, Sir Tim, 263

Bertin, Jacques, 80

BioMapping, 84

BitKeeper, 65

Black, Harold, 23

Blackmore, Susan, 72

Blake, William, 208

Boolean Logic, 105–106, 210, 254

Borel, Emile, 91

Borges, Jorge Luis, 176

BSD (Berkeley Software Distribution),

239

Bowie, David, 248

Bowker, Geoffrey, 175

Brainfuck, 272–273

Brand, Stuart, 145

Brooks, Rodney, 139

Brunelleschi, Fillippo de, 213, 214

Burroughs, William S., 89

Bush Differential Analyzer, 21

C, 51, 67, 168, 170, 194–195, 197,

207, 237, 240, 269–271

C++, 207

Cage, John, 230, 248

Campanella, Tommaso, 172

Citta del Sole, 172

Campbell-Kelly, Martin, 3

Camus, 230, 232

Cannon, Walter B., 26

Cardew, Cornelius, 230

CAR, 176

Cartografi ando el Territorio Madiaq, 164

Cathode Ray Tube, 143

C-cassette, 76

CCTV (Closed Circuit Television),

163–165

323

Index

CD-disc, 76

CDR (Compact Disc-Recordable), 176

Cellular automata, 98, 231–232

Ceruzzi, Paul E., 238

A History of Modern Computing, 238

CGI (Common Gateway Interface), 197

Chaitin, Gregory, 88–89

Charge Coupled Device (CCD), 215

Chaucer, William, 126

Canterbury Tales, 126

Chef, 271–272

Chen, Chaomei, 81

Chomsky, Noam, 57–58

Cicero, 41, 184

Cipher, 42

Circuit(s), 21, 23–24, 26, 27, 110, 225,

233, 243, 254

COBOL, 197, 268

Codase, 238

Code(s), 6, 23, 33, 40–46, 50–51, 64–68,

71, 75, 81, 86, 87–88, 91, 101–104,

111, 114, 117, 119, 136, 138–139,

152, 154, 156, 165, 172–173, 181,

182, 193–195, 197–198, 207, 209,

217, 219, 220, 222, 232, 236–240,

251, 254, 262, 271, 273, 274

Codec(s) [MPEG-1, MPEG-2, MPEG-4,

H.263, H.264, theora, dirac, DivX,

XviD, MJPEG,WMV, RealVideo,

VLC , DVB, AtsC, AVC, MP3],

48–50, 52–54

Code condenser, 43

Codefetch, 238

Code Snippets, 238

Codex Lustinianus, 41

Codex Theodosius, 41

Coleridge, Samuel Taylor, 180–183

Colossus computer, 22

Comenius, 172

Orbis Pictus, 172

Complementary Metal Oxide Semicon-

ductor (CMOS), 215

Computational offl oading, 82

Computing Machinery and Intelligence,

132

Commodore, 113, 193

Concurrent Versions System (CVS),

64–66, 68, 238

Conservation laws, 25

Conway, John, 231

Cooke, Andrew, 272

Cooperative modeling, 146

Copy Protection Technical Working

Group, 75

Corpus Iuris, 41

Coy, Wolfgang, 40

Coyne, Richard, 203

Cow, 272

CP command, 72

Cratchit, Bob, 70

Cron, 5

Crutchfi eld, James, 60

CSS (Cascading Style Sheets), 73, 263

Cubo-Futurism, 112

Culturally Situated Design Tools, 95

CU-Seeme, 111

Cybernetics, 26, 107, 220

Cyborg science, 185, 188

Dadaism, 114

Dahl, Ole-Johan, 201

Darwin, Charles, 26, 232

Darwinian (evolution), 60, 230

Data mining, 80

Dato, 70

Data table, 80

Data visualization, 78, 84

Dawkins, Richard, 72, 232

Deleuze, Gilles, 18, 136, 139–140

Dennett, Daniel, 137

324

Index

Derrida, Jacques, 162, 184–185, 252, 254

Descartes, Rene, 24, 26

DEUCE, 103

Deutsch, L. Peter, 182

Dickens, Charles, 70

A Christmas Carol, 71

Dictionary, 9, 158

Digital

activities, 56

art(s), 116, 171

circuit(s), 27

copying, 76

CPU (Central Processing Unit), 23, 27,

102, 105, 149, 161, 233

culture(s), 49, 71–73, 75, 229

era, 72

hardware, 46

image, 50, 79

machine(s), 22, 225–226

material, 78

object(s), 1, 11, 90

optical archiving, 73

products, 76

rights management (DRM), 76

sampling, 258

signal, 49

simulations, 229

software, 22, 71

sound(s), 54, 258

space(s), 114, 234

storage, 78

technology, 28, 256–257

television, 49

video, 50

Dijkstra, Edsger, 165, 181

Discrete Cosine Transform (DCT),

51–53

DOS (Disc Opeating System), 72, 150,

218

Dostoyevsky, Fyodor, 114

DRAM (Dynamic Random Access

Memory), 189

DSP (Digital Signal Processing), 50

3DS Max, 122

Dynamo, 27

Echostar Communications, 75

Eckert, J. Presper, 187

Eco, Umberto, 218

Edwards, Paul, 227

Effective processes, 16

Eglash, Ron, 95

Electronic calculators, 2

ELIZA, 133, 170

Enactive knowledge, 82

Engelbart, Douglas, 31, 74, 190

ENIAC (Electronic Numerical Inte-

grator And Computer), 224–225, 254

Eno, Brian, 231, 247–248

Enthymeme (logical fallacy), 106

Eshun, Kodwo, 230

Ethernet local network, 76

Euler, Leonhard, 25

Feedback, 4, 23, 24, 25–26, 27, 145–

146, 149, 151, 225, 244–245

Fermat, Pierre de, 25

Ferro, Pablo, 121

Fibonacci numbers, 182

FIFO (fi rst in, fi rst out), 174

Fischli, Peter, 198

Fisher, R. A., 126–127

Theory of Statical Estimation, 126

Fishinger, Oscar, 120

Flaubert, Gustave, 114

Fleischmann, Kenneth R., 59

Flexible Economic Network (FEN), 63

FLOSS (Free, Libre and Open Source

Software), 65–67, 155, 239

Flusser, Vilém, 82

325

Index

Fluxus, 114

FOCAL, 268

Forth, 103, 262

FORTRAN, 71, 168, 170, 177, 268

Foucault, Michel, 17, 67, 68, 83, 136

Fourier, 51

Fourier Transforms, 51

Frankenstein, 114

Franklin, Benjamin, 24

Fripp, Robert, 247

French, Carlos, 99

Freehand, 122–123

Freshmeat, 238

Freud, Sigmund, 184–185

FuckFuck, 272

Fuller, Matthew, 227

Functional Programming, 103

Gabor, Denis, 258

Galileo, Galilei, 24

Galvanic Skin Response, 83

Game of Life, 231–232

Gardner, Howard, 185

General inverse problem, 107

Generic coding method, 50

GEORGE, 103

Gilbert, Juan, 98–99

Girard, Rene, 133

Glitch(es), 4, 110–114, 118

GNOME, 66

GNU (Gnu’s Not Unix), 65, 97, 155

GNU / GPL (GNU / General Public

 License), 239

Goldberg, Rube, 198

Goldin, Dina, 144–147

Goldschlager, Les, 15

Gontcharova, Natalia, 112

Goodman, Nelson, 171

Google, 60, 84

Google Earth, 84

GPS (Global Positioning System), 164

Graphic Design for the 21st Century: 100 of

the World’s Best Graphic Designers, 121

Grep, 207

Grier, David Alan, 224–225

Ground truths, 102

Group of Pictures (GOP), 53

Grune, Dick, 65

Guattari, Félix, 18, 139–140

Gutenberg, 42, 70, 74

Hackability, 4

Halley’s comet, 186

Hamblin, Charles, 103

Hammurabi code, 175

Haraway, Donna, 60

Hardware, 2–3, 6, 34–35, 46, 91, 98,

110, 128, 136, 149–151, 170, 181,

185–186, 189–190, 200–201, 203,

204, 216–217, 225–226, 227, 267

Hartley, Ralph V. L., 126–127

transmission of information, 127

Harvey, 24

Harwood, Graham, 85, 208–209

London.pl, 208

Hayles, N. Katherine, 209

Writing Machines, 209

Heath, Christian, 165

Heidegger, Martin, 205

Heller, Robert, 182

Hilbert, David, 5, 16

Hodges, Andrew, 136

Hoelzer, Helmut, 22

Homer, 45

HTML (HyperText Mark-up Language),

114, 170, 220, 263

HTTP (HyperText Transfer Protocol), 68

Huffman, 50

Human Genome Project, 60

Hutchins, Ed, 137

326

Index

IBM, 2–3, 71, 75, 238

Imitatio, 70

Implementation details, 15

Inca Quipi, 93

Intel, 75

Intelligent Transportation Systems

(ITS), 163

Interactive computation, 144, 147

Interactive computing, 161

Interactivity, 58–59

INTERCAL, 267–268, 272

Interface

API (Application Programming Inter-

faces), 149–151

ASCII (American Standard Code for

Information Interchange), 31, 197

button(s), 32, 36

command line, 111

designer, 31

GUI (Graphic User Interface), 31, 61,

74, 98–99, 119, 143, 155, 171, 190,

201, 218

Gypsy, 74

humane, 171

programming, 150–152

user, 150–152, 190

International Obfuscated C Code Con-

test (IOCCC), 194, 197, 240

Internet, 72, 95, 249

Internet I, 59

Internet II, 59

Interrealism effect, 59

Interrupt(s), 161–165

Interrupt vector, 162

Information age, 125, 129

Information and Communication Tech-

nology (ICT), 4, 94–97, 202

Information economy, 129

Information society, 125, 129

Information theory, 107, 127

I-Picture (Intra Picture), 51, 53

IRC (Internet Relay Chat), 65

IRQ (Interrupt ReQuest), 161

IT Magazine, 122

Jameson, Fredric, 74

The Jargon File, 9

Jarry, Alfred, 198

JavaScript, 102–104, 136, 153–155,

157–158, 168, 170, 251

Java Software Development Kit, 155

Java Virtual Machine, 269

Jodi, 116–117

Johnson, Steven, 33

Judaism, 114

Just another Perl hacker (JAPH),

194–197

Kandinsky, Wassilly, 112

Kare, Susan, 31

Kay, Alan, 2, 180, 261

KDE (K Desktop Environment), 66

Kelvin, 21

Tidal Predictor, 21

Harmonic Analysers, 21

Keller, Evelyn Fox, 204

Kenner, Hugh, 168

Kittler, Friedrich, 75, 140, 185

Knuth, Donald, 8, 87–90, 157, 180–

181, 193, 236, 239

Koders, 238

Koenig, Sven, 117

Kolmogorov, 43

Krugle, 238

Lacan, Jacques, 134, 140

Lamarckian evolution, 60

Lao-Tzu, 25

Laplace, Pierre-Simon, 226–227

Latour, Bruno, 135, 162, 175

327

Index

LaunchPad, 156

Lautréamont, Comte de, 114

Law, John, 176

Leandre, Joan, 117

Lego, 123–124

Leibniz, Gottfried Wilhelm, 24–25, 43,

230

Lessig, Lawrence, 19

Licklider, J. C. R., 143, 146

LIFO (last in, fi rst out), 174

Lingua franca, 177

Linneas, 91

Linux, 7, 97, 155

Lippman, Andy, 145–147

Lisp, 102–104, 150, 158, 170, 176–

177, 237, 261, 268

Lister, Andrew, 15

Computer Science: A Modern Introduc tion, 15

Literate Programming, 87

Locales, 154

Logo, 151

LOOP, 179–183

Lossy compression, 49

Lovelace, Ada, 237

Lubiano, Wahneema, 56

Lucier, Alvin, 230

Luff, Paul, 165

Lyon, James, 267

Machinic intelligence, 134–135, 140

Machine architecture, 15, 48

Machine languages, 168

Macintosh, 2, 31, 90

Macroblocks, 52–53

Macromedia Flash, 122

Macrovision, 75

Malbolge, 272–273

Malevich, Kazimir, 112

Manovich, Lev, 74, 143

Markov chains, 45

Marshall Space Flight Center Computa-

tion Lab, 22

Marxist, 58

Massumi, Brian, 258

Mateas, Michael, 10

Mathews Corpus, 197

Mathews, Harry, 197

Mauchly, John, 187

Maupertius, 25

Max / MSP, 230

Maxwell, James Clerk, 21, 26

Maya, 122

Mayakovsky, Vladimir, 112

McCarthy, John, 176–177

McCulloch, Warren, 138

McLuhan, Marshall, 58

Mead, Carver, 27–28

Melville, Herman, 71

Bartleby the Scrivener, 71

Metamedia, 123

Meyerhold, Vsevolod, 112

Microsoft, 73, 75, 220, 222, 248–249

Microsoft EULA (End User Licence

Agreement), 239

Microsoft.Net, 67, 155

Microsoft Windows, 218, 244, 247

Microsoft Word, 220–221, 227, 224,

247

MIDI (Musical Instrument Digital In-

terface), 232

Miller, George, 187–188

Miranda, Eduardo, 231–232

Mirowski, Philip, 185

Mischgerat, 22

MIT (Massachusetts Institute of Tech-

nology), 143, 150, 173, 239

Modus ponens, 106

Modus tollens, 105

Mol, Annemarie, 176

MONIAC, 26

328

Index

Moore’s Law, 61

Morse, Samuel, 43

Morse code, 226

MS-DOS, 218

Mumford, Lewis, 112

MySpace, 59–60

Nake, Frieder, 32–33

Naming obfuscation, 195

Napoleon, 41, 43

Napster, 61, 76

National Mathematics Awareness

Week, 58

Naur, Peter, 180

Nelson, Gary Lee, 233

Sonomorphs, 233

von Neumann, John, 98, 187, 224–225,

231, 238

Newton, Isaac, 23, 24, 213

Newtonian order, 226

Nietzsche, Friedrich, 11

Nold, Christian, 83

NostalG, 117

Nygaard, Kristen, 201

Nyman, Michael, 230

Nyquist, Harry, 127

Certain Factors Affecting Telegraph Speed,

127

Numerical values, 157

Object Orientation (OO), 201–202,

203, 205

Object-Oriented Programming (OOP),

201

Olmstead, Ben, 272–273

Onion structure, 66

On Computable Numbers, 269

Optical telegraph, 43

OSI (Open Systems Interconnection), 97

Oulipo, 173

Owari, 93, 98

Oxford English Dictionary, 126, 224

Pan, 182

PARC (Palo Alto Research Center), 74

Parental controls, 218

Pascal, 168

Pathologicaly Eclectic Rubbish Lister,

195, 207

Peirce, Charles S., 106, 261

PERL (Practical Extraction and Report

Language), 181, 194–197, 207–211,

237, 239, 269–270, 274

Perl Journal, The, 194

Perl Poetry Contest of 2000, The, 208

Persistant Turing Machine, 145

Petersen, Robert Storm, 198

Pickering, Andrew, 94, 135

Pinker, Steven, 134

Thinking Machines, 134

Pitts, Walter, 138

A Logical Calculus of the Ideas Immanent

in Nervous Activity, 138

Pixel, 213–217

Phaedrus, 252

Philips, 73, 75

Phillips, Bill, 26

Phyla, 136

Physiocrats, 24

PL / 1 (Programming Language One),

268

Plato, 184, 246, 252–253

Plutarch, 40

Pole Position, 197

Polling, 161

Pong, 59

Pop Art, 114

Popper, Karl, 5

Portland Pattern Repository, 66

Prabhar, Vinay, 99

329

Index

Procedural Literacy, 10

Proceedings of the Cambridge Philo-

sophical Society, 126

Programming language(s), 15–16, 27,

42, 46, 72, 88, 103, 150–151, 153,

158–159, 168–172, 176, 179–182,

189, 194, 197–198, 201, 202, 207,

209, 237, 240, 262, 264, 267–268,

269, 271, 272, 273

Proust, Marcel, 189–190

Ptolemys, 105

Punin, Nikolai, 112

Pure Data (Pd), 230

Python, 67, 158, 237

Quesnay, François, 24, 27

Queues, 174

Quinitilian, 184

RAM (Random Access Memory), 149

Raskin, Jef, 171

Rationalism, 112

Rayonism, 112

Raymond, Eric, 268

Ray, Lily, 45

Reactor, 230

Read, Herbert, 181

Realist critique, 56

Reich, Steve, 230, 248

Remington Rand, 238

Resource Bundle, 154

Reverse Polish Notation (RPN), 103

RFID (Radio Frequency Identifi cation),

163–164

Riley, Terry, 230

Robinson, Derek, 225

Robinson, Heath, 198

Robots, 137, 139

Ronell, Avital, 134, 136, 162

Rosen, Robert, 16, 137, 139

Rosetta, 156

Rousseau, Jean-Jacques, 56

Run Length Encoding, 50

Runme.org, 240

Russian constructivists, 112

Rzewski, Frederic, 230

de Saussure, Ferdinand, 169, 254

Scheffer, Lou, 273

Schrodinger, Erwin, 226–227

What is Life?, 226

Schwartz, Randal, 194, 196

Semi-Thue groups, 45

Secure Media, 75

Semantic sugar, 5

Semantic Web, 263

Sengers, Phoebe, 99

Serial pattern generator, 59

Shakespeare, William, 270–272

Shakespeare Dramatis Personae, 271

Shannon, Claude, 127–128, 254

A Mathematical Theory of Communication,

127–128

Shiffrin, Richard, 185

SHARE, 238

Short Code, 172

Shuttleworth, Mark, 155

Simon, Herbert, 185

Simple Direct Media library, 68

Simula, 201

Sketchpad program, 143

Smalltalk, 170, 180

Smith, Brian, 98–99

SNOBOL, 268

Software

aesthetics, 111–112

age, 122, 124–125

animation / compositing, 124

architectures, 159

art, 8, 33

330

Index

Software (cont.)

artists, 152

buttons, 34–35

culture, 2, 71, 119–120, 233–234

data-mining, 139

design, 155

designer(s), 147, 205

desktop, 163

development, 64, 67, 136

dimension, 140

editing, 123–124

elegance, 89

engineering, 16, 203

Free, 7, 61, 65, 97, 156, 239

functionality, 113

genealogies, 190

hackers, 143

immateriality, 4

industry, 153

interactive, 143

interface(s), 31, 33, 150, 163, 219–

220, 222

internationalization, 156–157, 159

music, 230

neurons, 138

networked, 145

Open Source, 7, 49, 61, 65, 68, 98,

156, 207, 238, 239

otherness, 153

platform, 153

programs, 123–124

roots, 2

reality, 136

simulation, 33

social, 162, 230

system(s), 67, 74, 163–164, 232

tool(s), 67, 120, 122, 155, 220

Ubuntu, 157

vector drawing, 124

Socrates, 252

SOLVE, 268

Sony, 73, 75

Sourceforge, 238

Spectral density, 48

Sperry, Elmer, 26

SPITBOL, 268

Spreadsheet model, 24

Stacks, 174

Stallman, Richard, 239

Free Software, Free Society, 239

Star, Susan Leigh, 175, 204

Stengers, Isabelle, 135

The Invention of Modern Science, 135

Stephenson, Neal, 7

Stevin, Simon, 24

Stone, Sandy, 57

Structural relationships, 157–158

Structured Programming, 180

Subsumption architecture, 139

Subversion, 65

Suetonius, 40–41

Lives of the Caesars, 40

Sui generis, 125

Sukenick, Ronald, 9

Sun Microsystems Corporation, 153–154

Suprematism, 112

Supercollider, 230

Surrealism, 114

Sutherland, Ivan, 143

SVG (Scalable Vector Graphics), 68,

263

Swift, Jonathan, 172

Symbol Table, 261

Symbol systems, 185

Syntax, 17, 94, 103, 152, 170–171, 182,

195, 200, 207, 237, 268

Tableau Economique, 24, 27

Tacitus, 40

Talking Heads, 248

331

Index

Tamagotchi, 248

Tansey, Mark, 262

Taschen, 121–122

Tatlin, 112

Taylorization, 177

TEACH, 268

Telos, 26

Tetris, 193

Tinguely, Jean, 102

Homage to New York, 102

Tort, Patrick, 175

Tool Kit, 90

Trac, 65

Theodosius, Imperator, 41

Thomson, 75

Thompson, Ken, 71

Thorton, Don, 99

Thousand Plateaus, A, 139

Tufte, Edward, 79

Tukey, John W., 2

Turing, Alan Mathison, 5, 16, 43–45,

91, 132–133, 136–137, 140, 145,

150–151, 170, 186–188, 226–227,

261, 269

Turing machine(s), 16–17, 41, 43, 45,

57, 75, 132–133, 137, 144–145, 153,

162, 180

Turing Tarpits, 269

Turing Test, 132–133

Turkle, Sherry, 187–188

TX-2, 143

U2, 248

Ubuntu Manifesto, 155–156

Ulam, Stanislav, 231

Unconscious counting, 230

Unicode, 155

UNIVAC (Universal Automatic Com-

puter), 22, 238

Universal Code Condensers, 43

UNIX, 5, 61, 65, 72, 150–151, 169,

171, 207, 210, 218, 262

Untitled Game, 117

URI (Uniform Resource Indicator), 263

URL (Uniform Resource Locator), 220

UTF (Unicode Transformation Format),

263

Utopia, 84, 181

Verran, Helen, 157–159

Science and an African Logic, 157

Viacom, 75

Viete, François, 42–43

Visualization in Scientifi c Computing

(ViSC), 78–79

Visual Basic, 197

Virus, 250–254

VLSI (Very Large Scale Integrated) cir-

cuit, 27

Volta, 24

Wall, Larry, 207, 210

Ward, Adrian, 36

Ware, Colin, 79, 81

Watt, James, 26

Way Things Go, The, 198

Weaver, Warren, 127–128

Web 2.0, 60

Wegner, Peter, 144–147

Weiss, David, 198

Weizenbaum, Joseph, 133, 170

Whitehead, Alfred North, 19, 101, 136

Wigner, Eugene, 25

Wiki, 66

Wikipedia, 49, 62

Williams, Raymond, 9

Keywords, 9

Windows Longhorn 4015, 219

Windows Media Player, 84

Windows Vista, 247

332

Index

Windows XP, 243, 244–246, 247, 251

Winterbottom, Angie, 208–209

Wittgenstein, Ludwig, 6

Wolff, Christian, 230

Wolfram, Stephen, 16, 91

Woods, Don, 267–268

Xerox Company, 74

Xerox SmallTalk, 31

Xerox Star, 31, 74

XML (Extensible Mark-up Language),

263–264

XOR, 106

XSL (Extensible Stylesheet Language),

263

Yeats, William Butler, 180

Yoruba numbering practices, 157, 159

YouTube, 59

Zarlino, Goseffe, 246

Zehle, Soenhke, 156

LEONARDO

Roger F. Malina, Executive Editor

Sean Cubitt, Editor- in- Chief

The Visual Mind, edited by Michele Emmer, 1993

Leonardo Almanac, edited by Craig Harris, 1994

Designing Information Technology, Richard Coyne, 1995

Immersed in Technology: Art and Virtual Environments, edited by Mary Anne Moser with
Douglas MacLeod, 1996

Technoromanticism: Digital Narrative, Holism, and the Romance of the Real, Richard
Coyne, 1999

Art and Innovation: The Xerox PARC Artist- in- Residence Program, edited by Craig
Harris, 1999

The Digital Dialectic: New Essays on New Media, edited by Peter Lunenfeld, 1999

The Robot in the Garden: Telerobotics and Telepistemology in the Age of the Internet, edited
by Ken Goldberg, 2000

The Language of New Media, Lev Manovich, 2001

Metal and Flesh: The Evolution of Man: Technology Takes Over, Ollivier Dyens, 2001

Uncanny Networks: Dialogues with the Virtual Intelligentsia, Geert Lovink, 2002

Information Arts: Intersections of Art, Science, and Technology, Stephen Wilson, 2002

Virtual Art: From Illusion to Immersion, Oliver Grau, 2003

Women, Art, and Technology, edited by Judy Malloy, 2003

Protocol: How Control Exists after Decentralization, Alexander R. Galloway, 2004

At a Distance: Precursors to Art and Activism on the Internet, edited by Annmarie
Chandler and Norie Neumark, 2005

The Visual Mind II, edited by Michele Emmer, 2005

CODE: Collaborative Ownership and the Digital Economy, edited by Rishab Aiyer
Ghosh, 2005

334

The Global Genome: Biotechnology, Politics, and Culture, Eugene Thacker, 2005

Media Ecologies: Materialist Energies in Art and Technoculture, Matthew Fuller, 2005

Art Beyond Biology, edited by Eduardo Kac, 2006

New Media Poetics: Contexts, Technotexts, and Theories, edited by Adalaide Morris and
Thomas Swiss, 2006

Aesthetic Computing, edited by Paul A. Fishwick, 2006

Digital Performance: A History of New Media in Theater, Dance, Performance Art, and
 Installation, Steve Dixon, 2006

MediaArtHistories, edited by Oliver Grau, 2006

From Technological to Virtual Art, Frank Popper, 2007

META / DATA: A Digital Poetics, Mark Amerika, 2007

Signs of Life: Bio Art and Beyond, Eduardo Kac, 2007

The Hidden Sense: Synesthesia in Art and Science, Cretien van Campen, 2007

Closer: Performance, Technologies, Phenomenology, Susan Kozel, 2007

Video: The Refl exive Medium, Yvonne Spielmann, 2007

Software Studies: A Lexicon, edited by Matthew Fuller, 2008

	Contents
	Series Foreword
	Acknowledgments
	Introduction
	Algorithm
	Analog
	Button
	Class Library
	Code
	Codecs
	Computing Power
	Concurrent Versions System
	Copy
	Data Visualization
	Elegance
	Ethnocomputing
	Function
	Glitch
	Import / Export
	Information
	Intelligence
	Interaction
	Interface
	Internationalization
	Interrupt
	Language
	Lists
	Loop
	Memory
	Obfuscated Code
	Object Orientation
	Perl
	Pixel
	Preferences
	Programmability
	Sonic Algorithm
	Source Code
	System Event Sounds
	Text Virus
	Timeline (sonic)
	Variable
	Weird Languages
	Bibliography
	About the Contributors
	Index

